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Optimal storage for solar energy
self-sufficiency

Anders E. Carlsson1* and S. Redner2

1Department of Physics, Washington University, St. Louis, MO, United States, 2Sante Fe Institute, Santa Fe,
NM, United States

We determine the energy storage needed to achieve self sufficiency to a given
reliability as a function of excess capacity in a combined solar-energy generation
and storage system. Based on 40 years of solar-energy data for the St. Louis region,
we formulate a statistical model that we use to generate synthetic insolation data
over millions of years. We use these data to monitor the energy depletion in
the storage system near the winter solstice. From this information, we develop
explicit formulas for the required storage and the nature of cost-optimized system
configurations as a function of reliability and the excess generation capacity.
Minimizing the cost of the combined generation and storage system gives the
optimal mix of these two constituents. For an annual failure rate of less than 3%,
it is sufficient to have a solar generation capacity that slightly exceeds the daily
electrical load at the winter solstice, together with a few days of storage.
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1 Introduction

Moving away from fossil fuels to renewable energy is a crucial step to minimize the extent
of global warming. Because renewable energy sources, such as wind and solar, are intermittent,
achieving a 100% renewable scenario requires either a large excess generation capacity, a
substantial amount of storage, or a judicious mixture of the two. Understanding the nature of
is tradeoff between excess capacity and storage is crucial for the design and optimization of
effective renewable energy systems. Understanding the factors that determine the tradeoff will
improve our grasp of the right balance between the uncertain costs of generation and storage
in the future.

This tradeoff is characterized by two fundamental parameters: The generation factor g, the
ratio of the average annual generation capacity to the annual load, and the storage capacity S,
the number of days of electrical load that reside in a storage system. Various simulation studies
have given scattered values for the optimal mix of g and S values, with little understanding
of how they depend on physical parameters. Shaner et al. (2018) examined combined energy
generation and storage systems in the United States and in specific subregions, with both wind
and solar generation. For solar-only generation, a system with g ≈ 2.1 and a storage equivalent S
of 4 days of load was virtually 100% reliable, defined as the fraction of total energy demand that
was met by renewables plus storage. However, equally high reliability was obtained with g ≈ 1.3
and a month of storage. Heide et al. (2010) focused on the case g = 1, with a mix of solar and
wind energy and found that a storage S of 1.1–2.5 months was required.

Tong et al. (2020) developed optimized energy systems for the continental United States
over a range of storage costs, using the same underlying model as in Shaner et al. (2018). For
inexpensive storage, they found g ≃ 2.2, while more expensive storage required an increase in
the capacity to g ≃ 2.7. Concomitantly, the amount of storage dropped from about 5 days of
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load to 1 day. Budischak et al. (2013) determined optimal solutions for
a power network in the eastern United States with disparate storage
modalities. The requisite g values were in the range of 2.5–2.9 and S
between 0.3–3 days, depending on the type of storage. Related studies
Heide et al. (2011); Rasmussen et al. (2012); Jacobson et al. (2015);
Cebulla et al. (2017) added easily dispatchable renewable sources, such
as hydroelectric power, which reduced the required storage.

Given the range of the these predictions about optimal
configurations, a need exists for an analytical theory that would:
1) clarify the relation between input physical parameters and the
performance of a combined generation/storage system, and 2)
help constrain the parameters of this system to guide the realm of
feasibility. In this work, we construct such a theory that is based
on an idealized, but general model that faithfully incorporates the
actual solar irradiation statistics, including seasonality and day-to-day
correlations. This theory allows us to specify the nature of an optimal
generation/storage system and make explicit predictions about its cost
and reliability. Although optimal systems will in general include both
wind and solar energy, we treat only solar energy in order to obtain a
theoretically tractable model. We believe that the general features of
our results will hold for mixed systems as well.

Our model extends previous analytical theories that were based
on simplified solar irradiation statistics. Gordon and Zoglin (1986)
assumed a deterministic day-night profile, while ignoring daily
and seasonal fluctuations. Bucciarelli (1984); Bucciarelli (1986)
and Gordon (1987) included daily, but not seasonal weather
variations, and day-to-day correlations in some cases. They found
that the failure probability decays exponentially with increasing
storage capacity, and Gordon (1987) gave explicit formulas for the
storage capacity required to achieve a given reliability. Markvart
(1996) included the effects of seasonality in generation and/or
load but did not treat random weather fluctuations. Egido and
Lorenzo (1992) used an empirical fit to reliability simulations based
on historical weather data (including seasonality), and found an
exponential relationship between generation and storage. However,
a principled theory that quantitatively treats the combination of
stochastic daily weather fluctuations, day-to-day correlations, and
seasonality does not yet seem to exist. Here we develop such a
theory.

We begin by first outlining basic features of the solar-flux data for
the St. Louis region, which typifies those of the entireUnited States.We
then introduce our data-driven model and use it to develop analytic
formulas for the failure rate and storage capacity needed to achieve a
given reliability. We use these to calculate the generation and storage
capacities of a combined system that minimizes the cost and yet is
extremely reliable. We verify our predictions based on simulations of
millions of years of synthetic data.

2 Empirical background

2.1 Solar flux data

To illustrate the issues and as a preliminary to develop our model,
we first present and analyze data for the solar flux on a 270 km
× 270 km region centered on St. Louis over the 40-year period
1980–2019. This region is large enough that its energy needs can be
met by covering a small fraction of the total land areawith solar panels,
but small enough that power transmission across the region is nearly

FIGURE 1
Average daily energy ⟨E⟩ per unit area from 1980 to 2019 on the St. Louis
region (black), and the daily standard deviation ⟨σ⟩ in this quantity over
the same period (red). These data are smoothed by averaging over 45
consecutive days.

lossless and instantaneous. The solar data, from the MERRA-2 dataset
Molod et al. (2015), is in the form of the energy flux for each hour
of the day from 1980 to 2019 (see Supplementary Section S2). We
determine the daily incident energy per unit area by multiplying each
hourly energy flux by the number of seconds in an hour, and then
adding these values over a single day. This gives an average daily solar
energy per unit area that ranges between roughly 8–25 MJ/m2 from
the winter minimum to the summer maximum, with daily extrema
of 1.53 MJ/m2 and 32.1 MJ/m2 over the 40 years of data (Figure 1; 2).
For simplicity in our analysis, the data for February 29 in leap years are
dropped, so that our results are based on the 40-year period 1980–2019
in which all years consist of 365 days.

The average daily solar energy is roughly sinusoidal, with the
maximum at day 189 (July 7, roughly 2 weeks after the summer
solstice) and the minimum at day 357 (December 23, a few days after
the winter solstice). The standard deviation in the daily solar energy
also has a systematic time dependence that ranges between 1.5 and
5.5 MJ/m2, with maximal fluctuations occurring in the early spring.
Near thewinter solstice, themagnitude of the fluctuations is about 35%
of the mean value. On the minimum-insolation day, E ≈ 7.95 MJ/m2

and σ ≈ 2.79 MJ/m2. These numbers, which will play a central role in
our ensuing analysis, are based on averaging the daily energy data over
a 45-day window.

To illlustrate the influence of fluctuations on the daily insolation
data, Figure 2 shows the daily solar flux on the St. Louis region for
the single year 1980. For later convenience in our theoretical and
numerical modeling, the time origin has been shifted so that the year
begins on July 1. The basic feature of these data is that daily solar
fluctuations significantly perturb the average annual cycle. Around
the winter solstice, which is the most crucial time of the year for
the reliability of a combined solar generation and storage system, the
minimum solar insolation is roughly a factor 5 less than the average
maximumsolar insolation. If the storage system is nearly depleted near
the winter solstice, multiple overcast days can quickly lead to a system
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FIGURE 2
Insolation fluctuations. The black curve is smoothed 45-day average
daily energy per unit area on the St. Louis region, 1980–2019 and the
one standard deviation range is dashed. Also shown is the daily data for
1980 (blue) and a typical realization of our synthetic data (red). The
upper dashed blue line corresponds to the load with f = 1 (see text for
the definition of f) and the lower corresponds to f = 1.5. The difference
between the daily data and the dashed lines gives the daily energy
surplus/deficit for these two f values.

failure. Thus day-to-day fluctuations in solar flux play an important
role in determining the optimal tradeoff between generation and
storage.

2.2 Generation and storage costs

Our determination of the optimal system configuration is based
on two key costs: the cost Cg of the generation capacity to supply
the daily electrical energy load L at the winter solstice (based on the
average insolation on that day), and the cost Cs of energy storage to
cover 1 day of electrical load. This daily load of the St. Louis region
is1 roughly 4× 1014 J, or 1.1 KWh ×108 KWh. This corresponds to an
average power usage of 4.6 KWh ×106 kW.

It is conventional to express the cost of solar panels in dollar
per watt. Using the current solar panel cost of $1.50/W Energysage
(2020), the cost of generation is thus Cg ≈ $75 billion. This cost grows
roughly linearly with the area of the solar farm2. For 20% efficient
solar cells (close to the best that are currently available Solar Reviews
(2020), the required solar farmarea is 4× 1014 J/(0.20 J/m2 × 7.95 J/m2

1 This is obtained from the continental United States yearly electricity consumption
of 4 × 1012 kWh (https://www.statista.com/statistics/201794/us-electricity-
consumption-since-1975/), dividing by 365 to get consumption per day and
then by 100 (taking the St. Louis region to contain about 1% of the United
States population).

2 There is little economy of scale for a large solar farm [Renewable Energy World
(2015)]. While the cost per solar panel decreases as the number of installed
panels increases, there are additional costs associated with transmitting solar
power from the farm to end users. These transmission costs largely negate the
installation economy of scale; such costs do not exist for rooftop solar panels
for household use.

× 106 J/m2) ≈ 2.5 × 108 m2 ≡ A0. This roughly corresponds to a
16 km× 16 km square. The cost of a solar farm of area fA0, where f is
the normalized generation capacity, will therefore be f Cg . The excess
generation capacity, ( f− 1)L, is a fundamental metric of the generation
system. Using the current price of $1.25/m2 AG Web (2019) for rural
land in the region, the land cost of the solar farm is approximately $300
million; this is negligible compared to the solar panel costs and will be
ignored.

The cost to store 1 day of electrical energy load for
the St. Louis region at the current price of $200/KWh is
Cs = 1.1× 108 kWh×$200/kWh ≈ $22 billion Ziegler et al. (2019). It
is convenient to measure the capacity S of the storage system in units
of the daily electrical energy load in the St. Louis region. We define a
storage system of capacity S as one that can supply S days of electrical
load to this region. The cost of this storage system therefore is CsS/L.

Since roughly 60% of a 24-hour period is dark at the winter solstice
in the St. Louis region and total electrical energy use is roughly time
independent in the winter (US Energy Information Administration
(2020a); US Energy Information Administration (2020b)), there is a
baseline storage need of 60% of the daily load to cover the energy
use when it is dark. If there were no day-to-day fluctuations in the
solar flux, this baseline storage, together with the solar energy gathered
during the day by a solar farmof areaA0 could fully supply the regional
electrical energy needs during a 24-hour period at the solstice, and
thus throughout the year.

The existence of insolation fluctuations has several essential
consequences. First, the optimal area of the solar farm must be larger
than A0 and the storage capacity must be larger than the 60% of daily
energy use that is needed to deal with the regular diurnal fluctuations.
Second, we will see that it is impractical to achieve 100% reliability
with this combined solar generation and electrical storage system.
Thus it is necessary to balance the tradeoff between reliability and
cost. Establishing how generation capacity and storage combine to
achieve a given reliability, and understanding the tradeoff between
reliability and cost, are primary goals of this work. We will find that
the optimal cost system configuration is determined by the ratio of
storage to generation costs,Cs/Cg .The above numbers give roughly 0.3
for this ratio. Since storage costs are rapidly decreasing Ziegler et al.
(2019), we will explore the consequences of potential future storage
cost reductions by up to a factor of 7.

3 Synthetic data and simulation
methods

Because of the substantial day-to-day fluctuations in the solar flux,
the 40 years of available data are too sparse to determine the reliability
of a combined solar farm/storage system with statistical significance.
To formulate a generally applicable theory, we first construct
synthetic daily insolation data that faithfully incorporates the annual
trends, the daily fluctuations, and the day-to-day correlations that
are present in the solar flux data for the St. Louis region. The
simple and direct algorithm that we use to construct these data
allows us to readily generate time series for millions of years.
From these, we obtain statistically meaningful results about the
reliability and cost of a combined solar power generation and storage
system.

To construct the synthetic data, we require two additional features
beyond the average daily incident energy and its standard deviation:
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1) the distribution of energy for each day of the year, and 2) the day-
to-day energy correlations. The energy distributions away from the
winter solstice are irrelevant when f > 1 because there will be ample
solar energy plus stored energy tomeet the daily load on any given day
that is not near the solstice. It is only near the winter solstice that the
daily energy distributions become relevant. However, 40 years of data
are too sparse to accurately represent these distributions. To obtain
daily energy distribution data of reasonable quality, we aggregate these
distributions over symmetric time ranges of 15, 31, and 45 days around
the minimum solar-energy day (day 357). These distributions are
nearly the same for the three time ranges (Figure 3A); this justifies
using a universal shape for the daily energy distribution near the
winter solstice. For simplicity, we replace the actual and somewhat
triangular-shaped distribution by a uniform distribution whose width
is chosen to be the same as that of the data.

There are also day-to-day correlations in the energy flux that reflect
the well-known feature that the weather on consecutive days is more
likely to be similar than different Bucciarelli (1986). To quantify these
correlations, we start with the 40-year sequence of normalized daily
energies {rj ≡ Ej/⟨Ej⟩}, where Ej is the energy per unit area on the jth
day of the year and ⟨Ej⟩ is its average, with j ranging3 from 1 to 14,600
(40× 365). We first determine the length of strings of consecutive days
for which the ratios rj are either all greater than 1 or all less than 1.
We then obtain the probability distribution C(n) for the number of
consecutive days n where all the rj are greater than 1 or less than 1.

In the absence of correlations in the daily solar flux, the string
length distribution would decay in n as C(n) = (1/2)n. However, the
actual correlations decay as qn, with q ≈ 0.6157 over the range of 1–16
days (Figure 3B). Beyond 16 days, the correlations decay more slowly
still. However, the frequency of such long strings of 16 days or longer
is roughly once every 6 years. In generating our synthetic data, we
ignore these extremely rare events and use the simple exponential
decay C(n) ∝ qn for all n.

It is now convenient to shift the time origin so that the year begins
on July 1. The solar energy E1 on July 1 (now day 1) is given by

E1 = ⟨E1⟩ +√3σ1 [rand (−1,1)] (1)

where rand(−1,1) is a uniformly distributed random number between
−1 and 1. The factor√3 ensures that the standard deviation that arises
from the uniform distribution matches that of the actual data, and σ1
the standard deviation on July 1 (see Figure 1).

To determine the solar energy on successive days j, we
define the indicator function Ij for j ≥ 1 as follows: For j = 1
I1 = 1− 2Θ[rand(0,1) − 0.5], where Θ is the Heaviside function. Thus
I1 equals +1 or −1, each with probability 1/2. For j > 1,

Ij = Ij−1{1− 2Θ [rand (0,1) − q]}. (2)

Thus Ij, which also takes the values ±1 only, has the same sign as Ij−1
with probability q. For each successive day j > 1, the solar energy Ej is
given by

Ej = ⟨Ej⟩ + Ij√3σj [rand (0,1)] , (3)

where σj the standard deviation on the jth day of the year. This
algorithm results in the deviation of the solar energy from the average

3 There is a small error in the correlation function because we drop the data for
the 10 leap days.

FIGURE 3
(A) The probability distribution P(E) for the daily energy per unit area over
symmetric time intervals around the minimum-energy day (day 357). (B)
Probability C(n) that the ratios rj ≡ Ej/⟨Ej⟩ are all greater than or all less
than 1 over n consecutive days. Also shown is the exponential best fit to
the data in the range n ≤ 13, C(n) ∝ qn, with q = 0.6157.

on the jth day, Ej − ⟨Ej⟩, having the same sign as Ej−1 − ⟨Ej−1⟩ with
probability q.

This persistent random-walk construction Weiss and Rubin
(1983); Weiss (1994) ensures that the string length distribution
asymptotically decays as qn, as in Figure 3B. The synthetic data
accurately mimic both the annual variation, as well as the day-to-day
fluctuations of the incident energy, as illustrated by a typical realization
of synthetic daily energies in Figure 2.

This approach serves our purposes better than the “Moving-
Average” models, “Auto-Regressive” models, or combinations thereof
that have often been used to model insolation data Inman et al.
(2013). These approaches begin with an uncorrelated random process
of a given distribution, and use it a starting point for building
correlated sequences of daily insolation values. However, there is no
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FIGURE 4
Schematic and not to scale dependence of the daily energy minus the
load near the winter solstice (blue curve), with three periods of below
average insolation (a,c,e) and two above-average periods (b,d). The
extent of the energy deficits and surpluses are shown by the blue and
red shaded areas. The green curve indicates the instantaneous storage
s(t) and the green dotted line indicates full storage.

guarantee that the daily insolation values have a physically reasonable
distribution. For example, if the input distribution is Gaussian,
then the insolation values on some days may be negative because
of the tails in the distribution. The present method guarantees a
physically reasonable distribution of insolation values. Furthermore,
it incorporates the daily variations of the width of the insolation
distribution. This is important because it is the width of the
distribution around the winter solstice that is crucial for the reliability
of the system.

With this computational approach, we generate millions of years
of synthetic insolation data over a two-dimensionalmesh of thousands
of ( f,S) values. We start with a full storage system, that is, s = S on July
1. For a given pair ( f,S), the stored energy sj on the jth day of the year
is a random variable that changes daily according to

sj+1 = sj +Ej − L, (4)

where L is the daily load, subject to the constraint that sj can never
exceed S (Figure 4). Since the model treats only the total energy in a
day, it does not include the diurnal variationmentioned in Section 2.2
that will require an additional constant storage requirement
of 0.6L.

The time evolution in the model defines a biased random-walk-
like process on the interval [0,S], in which the bias corresponds to
the difference between the daily insolation and the daily load, and
the day-to-day insolation fluctuations correspond to random noise.
System failure occurs whenever sj reaches zero. The failure probability
ɛ is defined as the fraction of simulated years for which failure occurs.

To obtain cost-optimized system configurations within the
simulations for a given value of ɛ, we set up a double mesh of the
normalized generation capacity values fi and the storage capacity
values Sj. We evaluate the system cost for each mesh point ( fi,Sj)
as Ci,j = CsSi/L+Cg fj, as well as the failure probability ɛi,j. Then we
find the pair (i, j) with the lowest Ci,j value subject to the constraint
that ɛi,j ≤ ɛ; fi and Sj define the optimized system configuration.

4 Generation/storage tradeoff

Due to fluctuations in daily insolation, even a systemwith f > 1will
be insufficient to supply the electrical load unless storage is included.
We will construct a theory to determine the range of possible mixes
of generation and storage that achieve a given reliability. We treat
only the constraints that arise from storage-capacity limitations and
not from power-delivery limitations. We also assume 100% efficient
storage, perfect power transmission across the region, and a constant
daily load.

The stylized time history of the insolation and stored energy near
the winter solstice (Figure 4) also illustrates the tradeoffs involved
in optimizing the combined system. In this figure, the energy deficit
during period a is larger than the surplus in the following period b.
Thus full storage on the jth day is only partially replenished in period
b. Conversely, while the storage is fully replenished in period d with a
large solar surplus, some of this surplus is wasted because of the limited
storage capacity (indicated by the cutoff in the red area). The optimal
storage system shouldmaximize the energy returned to storage during
surplus days near the winter solstice, while minimizing cost.

4.1 Stored energy distribution

For a solar farmof areaA0, insolation tends to replenish the storage
during most of the year; this time range corresponds to what we term
the strong-bias regime. Conversely, for an average day near the winter
solstice, the insolation roughly matches the load, so that the state of
the storage system change only slightly from day to day. We term
this time range as the weak-bias regime. In an optimal design, the
storage system should be nearly depleted through the winter solstice.
Otherwise, excess unused storage capacity exists that increases the
system cost without meaningfully increasing its reliability.

For each day of the year, there is a day-specific average distribution
of energy in the storage system. We will determine these daily
distributions over a period around the winter solstice. From these
distributions, we will determine how the annual failure probability
ɛ depends on f and S. Section 5 uses these relations to calculate the
necessary storage and generation capacity in a cost-optimized system
configuration.

To compute the stored energy distribution on a single day, we
first treat the idealized situation of a strong and time-independent
bias. Based on the biased random-walk picture described above, the
distribution of stored energy on the jth day of the year, Pj(s), attains
the steady-state form

Pj (s) =N (e
λjs − 1) , (5)

with normalization constant N = λj/(e
λjS − 1− λjS) ≈ λj e

−λjS that is
determined by requiring that P(s) integrates to 1. A salient feature of
Eq. 5 is that the decay constant in the exponential is different for each
day of the year. [Related approaches for this distribution were given in
Bucciarelli (1984); Bucciarelli (1986); Gordon (1987)].

To begin, we determine the decay constant λ for the case where the
bias is fixed. Then we incorporate the effect of a seasonal variation in
this bias, as well as the role of day-to-day correlations in the insolation,
to find the decay constants in the storage distribution for a range of
days about the winter solstice. From these results, we will compute the
annual failure probability.

Frontiers in Energy Research 05 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1098418
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Carlsson and Redner 10.3389/fenrg.2023.1098418

When the bias is constant, the stored energy after each day changes
by the average solar energy surplus (or deficit), ( f− 1)L, plus orminus a
uniform random variable in the range [−√3 f σ̃ L,√3 f σ̃ L] to account
for day-to-day fluctuations. Here σ̃ = σ/E is the ratio of the standard
deviation in the energy density to the energy density on any given day
(see Figure 1). Thus the governing equation for P(s) is

P (s) = 1
2√3 f σ̃ L

∫
s+

s−
P(s′) ds′, (6)

where s± = s− ( f − 1)L±√3 fσ̃L. This equation is satisfied by the
exponential form of Eq. 5, where the decay constant satisfies

sinh(λcb√3 fσ̃L)

λcb√3 fσ̃L
= exp[λcb ( f − 1)L] . (7)

Here we write the decay constant as λcb = λcb( f), with subscript cb
to emphasize that we specialize to the constant-bias case. Eq. 7 gives
the dimensionless quantity λcbL→ 2( f − 1)/( f2σ̃2) for f→ 1, while λcb
deviates slightly from linearity for larger f (Supplementary Figure S1
in Supplementary Section S3). Over the practical range of 1 < f < 1.5,
this dependence is accurately described by a linear interpolation
between λcb = 0 at f = 1 and λcbL ≈ 5.675 that arises by numerically
solving Eq. 7 at f = 1.5. Thus we infer λcbL = Γ ( f− 1), with Γ ≈ 11.35.
As we shall see, this linear interpolation allows us to construct an
analytical theory for the failure probability that incorporates both
seasonality and fluctuation effects.

Seasonality causes the steady-state distribution of stored energy
to be slightly different for each successive day of the year; thus we
now write this distribution as Pj(s), with j indexing the individual day.
We first determine Pmin(s) on the minimum-insolation day, with λmin
the decay rate on this day. This decay rate would equal 0 when f→ 1
within the above constant-bias description. However, our simulations
show that the storage distribution still has a nearly exponential form
even when f = 1 (see Supplementary Section S4). Thus we need to
postulate a functional form for the decay constant on the minimum-
insolation day that interpolates smoothly between the limiting cases
of a value λ0, which we will determine when f = 1, and Γ( f− 1) when
f− 1 is not small. A simple form that satisfies these criteria is

λmin ( f) =
1
2
[Γ ( f − 1) +√(4λ2

0 + Γ2( f − 1)2] . (8)

We also need the steady-state storage distributions Pj(s) and their
associated decay rates λj( f) on a range of days around the minimum-
insolation day. To obtain these distributions, we use the fact that the
average daily generated solar energy Ej on days near the winter solstice
is well described by the quadratic Ej/L = f + f(j− jmin)

2/τ2, where jmin
is the day of minimum insolation and τ = 72 (in units of days) is
determined by fitting to the 40-year average insolation data. For each
day, the effect of the additional bias as one moves away from the
minimum-insolation day is equivalent to increasing f by f(j− j2min)/τ

2.
Thus the day-specific decay constant is

λj ( f) = λmin ( f) + f Γ (j− jmin)
2/τ2. (9)

Finally, we need to account for correlations in the daily insolation.
To include these effects, we perform stochastic simulations of a system
with constant bias f = 1.5 (taken to be typical of the high-f regime)
and constant σ̃ = 0.351. Logarithmic plots of P(s) obtained both with
andwithout correlations confirm the exponential behavior of P(s), and
show that including correlations reduces the decay parameter by 11%.
Thus we take Γ = (0.89) × (11.35/L) = 10.1/L.

4.2 The failure probability

From the distribution of storage for each day of the year, we now
determine the annual failure probability ɛ of the storage system. We
first estimate the failure probability ɛj on each day j, and then add these
daily failure probabilities over a time range that includes the winter
solstice, to obtain the annual failure probability.

The day-specific failure probability for the jth day of the year in the
strong-bias limit is

εj =
1

2√3 fσ̃jL
∫
δs

0
Pj (s) (δs− s)ds = Aj e

−λj( f)S. (10)

That is, we integrate the storage distribution Pj(s) over the energy
range δs = √3 fσ̃jL− ( f − 1)L, for which for the storage system can
be completely depleted within a single low-insolation day, multiplied
by the probability (δs− s)/2√3 fσ̃jL that starting with stored energy
s, a negative energy step actually depletes the storage system. The
expression forAj is written in the SMand λj( f) is the day-specific decay
constant in Eq. 9.

To calculate the annual failure probability ɛ, we the sum the
daily failure probabilities in Eq. 10 over the range of days where the
quadratic dependence of the decay rate in Eq. 9 applies, under the
assumption that these daily failure probabilities are all independent.
Because of the quadratic time dependence of λj( f) in Eq. 9, we convert
the sum over a finite range of days j around the insolation minimum
to the following Gaussian integral over an infinite time range (see
Supplementary Section S5 for details), in which days far from the
minimum give negligible contributions:

ε =∑
j
εj ≃ ∫

∞

−∞
A (t) e−λ(t, f)S dt

= B

√λmin ( f)S
e−λmin( f) S, (11)

where we replace the index j by the continuous time t, and B is defined
in Supplementary Section S5.

We now invert this expression to solve for the required storage
as a function of the reliability ɛ. In Supplementary Section S6, we
show that the following approximate expression accurately describes
the dependence of S on f and ɛ:

S ( f,ε) =
ln(ε0/ε)
λmin ( f)

=
2 ln(ε0/ε)

[Γ ( f − 1) +√(4λ2
0 + Γ2( f − 1)2]

, (12)

where ɛ0 is defined in Supplementary Section S6.
Eq. 12 illustrates the two key features of the tradeoff between

generation and storage capacities: 1) The storage S depends
logarithmically on ɛ; thus a small increase in storage capacity
substantially increases the combined system reliability. 2) A small
increase in f beyond 1 substantially decreases the required storage
capacity (Figure 5).
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FIGURE 5
Dependence of the storage S needed for a failure probability ɛ, on
generation capacity factor f. Circles indicate simulation data and the
curves give the theoretical result of Eq. 12. L is the daily load.

5 Cost optimization

We now determine the optimal configuration of the combined
system by minimizing the cost function:

C = Cs
S ( f)
L
+Cg f. (13)

Here again Cg = $75 billion is the cost of a solar farm whose area A0 is
just sufficient to supply the daily electrical load L of the St. Louis region
during an average insolation day at the winter solstice, while Cs = $22
billion is the cost of a storage system that can supply 1 day of electrical
load for the region. Asmentioned previously, the cost of the generation
system is assumed to be linear in its area, so the cost of a solar farm of
area fA0 will be Cg f. Similarly, a storage system that supplies an energy
S will have a cost CsS/L, under the assumption that the cost of storage
is also linear in its capacity.

To find the optimal parameters ( f*,S*) in the minimum cost
configuration, we set dC/d f = 0 to give

dS ( f)
d f
|
f*,S*
= −L

Cg

Cs
. (14)

Thus the optimal system configuration depends only on the ratio of
storage to generation cost, Cs/Cg , once ɛ is specified. (The relation
between the ratio Cs/Cg and conventional measures of storage and
generation costs is given in Supplementary Section S7). The details
of this minimization are given in Supplementary Section S8, from
which the optimal solar farm size is determined from

f* = 1+
2λ0

Γ

Cs/(Cgr0) − 1

√2Cs/(Cgr0) − 1
, (15)

where the dimensionless parameter r0 is given by

r0 =
2λ2

0L
Γ ln(ε0/ε)

. (16)

The optimal storage value S* is then obtained by substituting f* in
Eq. 12.

FIGURE 6
(A) Optimal storage value S* and generation capacity f*, as functions of
cost ratio Cs/Cg. (B) Ratio R of storage cost to excess generation cost,
and the system cost C, as functions of Cs/Cg. In both panels, circles are
simulation points, while solid lines are the theoretical predictions of
Eqs 12, 15.

Here, and in what follows, we use ɛ = 0.03 (failure about once
every 33 years) because this value roughly corresponds to the accepted
standard of a load loss of 1 day per 10 years FERC (2011). For this value
of ɛ, r0 = 0.038. If the cost ratio Cs/Cg , which currently is roughly 0.3,
were to become less than 0.038, then Eq. 15 gives f* < 1 and indeed f*
would not be defined if Cs/Cg became less than 0.019. In this regime,
our theory no longer applies, but is also unlikely to be reached by
reductions in storage cost in the foreseeable future.

Our theoretical predictions for ( f*,S*) agree well with simulation
results shown in Figure 6. Over the range of cost ratios shown, S*
varies from 1 to 7 days, while f* varies from near 1 to 1.4. To gain
insight into the dependences of ( f*,S*) on system parameters, it is
helpful to focus on the limits of expensive and inexpensive storage.

5.1 Expensive storage limit

We define this limit as Cs/(Cgr0) ≫ 1, where (15) reduces to

f* ≃ 1+
λ0

Γ
√

2Cs

Cgr0
= 1+√

ln(ε0/ε)
ΓL

Cs

Cg
. (17a)

When storage is expensive, the combined system favors generation
over storage. Consequently, f becomes large, so that we can drop the
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λ0 term in Eq. 12 to give

S* ≃
ln(ε0/ε)

Γ( f* − 1)
= √

ln(ε0/ε)L
Γ

Cg

Cs
. (17b)

Thus f* and S* have inverse dependences on the cost ratio Cg/Cs.
Combining Eq.17a and Eq. 17b, the ratio R of the total storage cost to
the excess generation capacity cost is particularly simple:

R ≡
CsS

*/L

Cg ( f
* − 1)
= 1. (18)

As shown in Figure 6, this ratio is already close to 1 when Cs/Cg
exceeds 0.2.

From Eq. 13 to Eq. 18, we may write the total system cost in the
equivalent forms

C = Cg + 2Cs
S*

L
= Cg + 2Cg ( f* − 1)

= Cg + 2√
ln(ε0/ε)CgCs

ΓL
. (19)

The first term in each of these forms is the “bare” cost of the
generation system that would be adequate in the absence of insolation
fluctuations. The second term represents the additional system cost
that is needed to mitigate the effect of fluctuations. For ɛ = 0.03 and
Cs/Cg in the range [0.1,0.3], this additional cost is roughly 50%–80%
of Cg or $40–$60 Billion. Eq. 19 also shows that the additional system
cost due to fluctuations increases only as√ln(1/ε). Thus, for example,
to reduce ɛ from0.03 to 0.003, the additional cost needs to be increased
by less than 15%.

Eq. 19 also provides an explicit way to decide whether it is more
cost effective to invest in reducing the generation cost or the storage
cost. The quantity Cs(∂C/∂Cs) gives the sensitivity of the system cost
to a given fractional reduction in Cs, while Cg(∂C/∂Cg) plays a similar
role for Cg . From Eq. 19, we find

Cs (∂C/∂Cs)

Cg (∂C/∂Cg)
=
√ln(ε0/ε)CsCg/ΓL

Cg +√ln(ε0/ε)CsCg/ΓL
. (20)

This cost sensitivity ratio is about 0.3 when Cs/Cg = 0.3. Thus a 30%
reduction in storage cost has about the same impact as a 10% reduction
in generation cost.

5.2 Inexpensive storage limit

We define this limit by Cs/(Cgr0) − 1≪ 1. Expanding Eq. 15 and
the denominator of Eq. 12 to first order in this quantity, we obtain

f* ≃ 1+
2λ0

Γ
(

Cs

Cgr0
− 1) = 1−

2λ0

Γ
+

ln(ε0/ε)
λ0L

Cs

Cg
(21a)

S* =
2λ0L
Γ

Cg

Cs
(21b)

As Cs/Cg approaches r0, f*→ 1 while S* approaches a constant
value, so the excess system cost becomes dominated by the storage
cost, as shown in Figure 6.

Combining Eq. 21a and Eq. 21b, the total system cost is now

C ≃ Cg +
ln(ε0/ε)Cs

λ0L
. (22)

For Cs/Cg = 0.04, which is the smallest cost ratio value that we
simulated, the additional cost due to weather fluctuations, (C −Cg),
is roughly 1

4
Cg. Here, the additional system cost due to fluctuations

increases as the logarithm of the inverse failure probability. Thus to
reduce ɛ from 0.03 to 0.003 requires a significant increase in the
additional cost of about 30%.

The relative influence of cost reductions in storage versus
generation is similar to that in the expensive-storage limit. The cost
sensitivity ratio now becomes

Cs (∂C/∂Cs)

Cg (∂C/∂Cg)
=

ln(ε0/ε)
λ0L

Cs

Cg
, (23)

which is about 0.2 at Cs/Cg = 0.04. Thus a 50% reduction in storage
cost now has about the same impact as a 10% reduction in generation
cost. In both the limits of expensive and inexpensive storage, reducing
the generation cost has more impact on the overall cost than reducing
storage cost.

6 Discussion

We developed an analytic theory to determine the optimal mix of
solar generation and storage that minimizes the overall system cost
and achieves a given reliability. This system is specified by f*, the ratio
of the solar farm area to the area of a farm that fully supplies the
electrical load L for the St. Louis region on the average minimum
insolation day, and S* the capacity of the storage system, measured
in units of daily load. Our modeling extends the work of Bucciarelli
(1984); Bucciarelli (1986) and Gordon (1987) by including seasonal
insolation variations, a more realistic distribution of daily energies,
and day-to-day correlations in the insolation. Based on a quasi-steady-
state approximation for the fill level of the storage system, we obtained
the following key results.

• We have shown for the first time that in the presence of seasonal
variations, the failure probability decays nearly exponentially with
increasing storage and generation capacity (Eq. 11). Previous
work that found an exponential decay had ignored seasonal
variations Bucciarelli (1984); Bucciarelli (1986); Gordon (1987).
• Thestorage capacity required to achieve a given reliability (Eq. 12)

has a dependence on generation capacity that differs from both
the logarithmic dependence found in Gordon (1987) and the
exponential one found in Egido and Lorenzo (1992). Without
excess generation capacity ( f = 1), storage of almost a week of
load is required to achieve a failure probability ɛ less than
0.03 (Figure 5). The required storage decreases rapidly when
f increases from 1. We also find that the storage need is an
increasing function of daily insolation fluctuations, since they
reduce Γ in Eq. 12.
• The cost and configuration of the optimal generation/storage

system [Eqs. (19), (22), (17a, b), and (21)]. These formulas
are the first explicit formulas in the literature for the system
cost and configuration in terms of the storage and generation
costs.
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• A given percent reduction in the generation cost reduces the
system cost by three to five times more than the same percent
reduction in the storage cost (Eq. 20 and Eq. 23).

A fundamental ingredient in our cost calculations is the ratio of the
cost Cg for a solar farm that can supply the daily load of the St. Louis
region on an average insolation day at the winter solstice, to the costCs
of storing 1 day of energy load.With current technology, this cost ratio,
Cs/Cg , is roughly 0.3. From Figure 6, the optimal configuration is then
given by ( f*,S*) ≈ (1.4,1.3), which implies an overall system cost of
1.4Cg + 1.3Cs + 0.6Cs ≈ $147 Billion (where the last term incorporates
the diurnal storage need), consistent with Tong et al. (2020). As the
storage cost decreases, the optimal generation capacity also decreases
until the limiting case of ( f*,S*) ≈ (1.0,5), with overall system cost ≈
$91 Billion, is reached after a 7-fold decrease in storage. If storage costs
are smaller still, the optimal value f* becomes less than one, a range
where our theory is not valid. Below we outline an approach to treat
the range f ≲ 1.

A system cost of roughly $100 Billion seems staggering. However,
we emphasize that the long-term cost of a solar/storage system is
likely cheaper than natural gas power generation. The construction
cost for the requisite 5 GW of natural gas generation for the St.
Louis region is roughly $4–5 Billion [EIA (2017), Proest (2021)].
Based on prices in the recent past, the fuel cost per year of operation
is about $2.5 Billion [Constellation (2020), EIA (2021)]. However,
gas prices have increased by a factor of three recently [Trading
Economics (2022)]. Thus, assuming a 20-year amortization, the cost
of natural gas generation will lie between $55 Billion, based on the
average gas price in the previous decade, and $155 Billion, using the
current price. The renewable-energy systems modeled here will be
cheaper if the gas price is at the upper end of the range. This finding
is consistent with that of Tong et al. (2020), while Jacobson et al.
(2015) and Jacobson et al. (2022) found renewable systems to be even
more cost-effective. Our estimates neglect maintenance costs, but we
anticipate that maintenance of solar/storage will be cheaper than that
of natural gas because the former has almost no moving parts. The
primary impediment to implementing a solar/storage system is its
huge upfront capital cost.

Within a 100% renewable system, costs can be reduced by
deploying a mix of solar and wind energy Shaner et al. (2018);
Heide et al. (2010). Tong et al. (2020) found that such a mix would
reduce costs by about 50% relative to solar-only generation. One
advantage of solar/wind generation is that the wind is typically
stronger when it is overcast, so an energy deficit in one mode of
generation would be offset by a surplus in the other.

If one is willing to forgo 100% renewable energy generation, a
solar/storage system could be augmented by natural gas “peaker”
plants that operate only during solar energy deficit periods near the
winter solstice. Because natural gas generation plants are relatively
cheap to build (as mentioned above), they are well suited to being run
for just a few days of the year. Thus consider a composite system that
consists of a solar farm of area fA0, with f ≲ 1, which is supplemented
by a 5 GW natural gas peaker plant.

In the absence of insolation fluctuations, the annual
energy deficit for such a solar farm is approximately (see
Supplementary Section S9).

D =
√2
π

365L(1− f)3/2 ≈ 164L (1− f)3/2. (24)

Assuming that the fluctuation contribution to the energy deficit is
constant, and using a daily fuel cost of $7 Million (the price over the
past decade), the cost of a combined solar/peaker generation plant,
amortized over the assumed lifespan of 20 years, is

C = 1
20

fCg + $7 M× [164L (1− f)3/2 + 10L]

→ $[α f + β (1− f)3/2] Billion, (25)

with α = 3.75 and β = 1.15. In the last line, we ignore the contribution
that is independent of f. The crucial ingredient is β/α ≈ 0.307, the
relative cost of natural gas to solar. With increasing β (increasing gas
price), the cost-optimal value of f will increase. However, regardless of
how expensive gas becomes, the cost-minimizing system will always
have f < 1—in other words, some use of peakers will be cost-effective.
The optimal combination of generation, storage, and peakers is a
question to be determined by future analyses. Our analytic results for
the failure probability and required storage will aid such efforts.

We developed our mathematical methods for the specific case
of the climate in the St Louis region. The same approach can be
applied to any geographic region. We expect the general aspects of
our findings, such as the nearly-exponential dependence of the failure
rate on the storage and excess generation capacities Eq. (11), to hold
generally. Different geographic regions will then differ primarily via
the parameter values, in two ways: 1) Variations in Cs/Cg . Regions
at higher latitudes have lower insolation at the winter solstice, which
increases Cg since more solar panel area is needed to satisfy the load.
The increased generation cost will shift the optimal system toward
more storage. 2) Variations in λ0, Γ, and τ. The variations in Γ are the
most straightforward. It will be smaller in regions with large relative
insolation fluctuations; since these fluctuations aremainly due to cloud
cover, Γ will be smaller in cloudy regions. This will lead to increased
storage and excess-generation capacity requirements. Broadly based
systematic studies based on the general formalism developed here will
further clarify the geographical variation of system configuration and
cost.
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