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Abstract
We study the role of finiteness and fluctuations about average quantities for basic
structural properties of growing networks. We first determine the exact degree
distribution of finite networks by generating function approaches. The resulting
distributions exhibit an unusual finite-size scaling behaviour and they are also
sensitive to the initial conditions. We argue that fluctuations in the number of
nodes of degree k become Gaussian for fixed degree as the size of the network
diverges. We also characterize the fluctuations between different realizations
of the network in terms of higher moments of the degree distribution.

PACS numbers: 02.50.Cw, 05.40.−a, 05.50.+q, 87.18.Sn

1. Introduction

Networks such as the Internet and the World Wide Web do not grow in an orderly manner. For
example, the Web is created by the uncoordinated effort of millions of users and thus lacks an
engineered architecture. Although such networks are complex in structure [1, 2], their large
size is a simplifying feature, and for infinitely large networks the rate equation approach1

provides analytical predictions for basic network characteristics. Nevertheless, social and
technological networks are not large in a thermodynamic sense (e.g., the number of molecules
in a glass of water vastly exceeds the number of routers in the Internet). Thus fluctuations
in network properties can be expected to play a more prominent role than in thermodynamic
systems2. Additionally, extreme properties, such as the degree of the node with the most
links in a network [5, 6], the website with the most hyperlinks, or the wealth of the richest
person in a society are important characteristics of finite systems. The size dependence of
these properties or their distribution is difficult to treat within a rate equation approach.

In this paper, we examine the role of finiteness and the nature of fluctuations about
mean values for large, but finite growing networks. We shall focus primarily on the degree
distribution Nk(N), the number of nodes that are linked to k other nodes in a network of N links,

1 A short review of applications of the rate equation approach to network growth is given in [3].
2 It was also suggested that fluctuations can affect the growth of the Web itself (see, e.g., [4]).
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as well as related local structural characteristics. We shall argue that self-averaging holds for
the degree distribution, so that the random variables Nk(N) become sharply peaked about their
average values in the N →∞ limit. We shall also argue that the probability distribution for
the number of nodes of fixed degree, P(Nk,N), is generally a Gaussian, with fluctuations that
vanish as N →∞. On the other hand, higher moments of the degree distribution do not self
average. This loss of self-averaging ultimately stems from the power-law tail in the degree
distribution itself.

In the next section, we define the growing network model and briefly review the behaviour
of the average degree distribution in the thermodynamic N →∞ limit. We also discuss how
the average degree distribution can naturally be expected to attain a finite-size scaling form
for large but finite N. We then describe our general strategy for studying fluctuations in these
growing networks. In section 3, we outline our simulational approach and present data for the
average degree distribution. In the following two sections, we examine the role of finiteness
on the degree distribution, both within a continuous formulation based on the rate equations
(section 4), and an exact discrete approach (section 5). The former approach is the one that is
conventionally applied to study the kinetics of evolving systems, such as growing networks.
While this approach has the advantage of simplicity and it provides an accurate description
for the degree distribution in an appropriate degree range, it is quantitatively inaccurate in the
large degree limit. This is the domain where discreteness effects play an important role and
the exact discrete recursion relations for the evolution of the degree distribution are needed to
fully account its properties. In section 6, we discuss the implications of our results for higher
moments of the degree distribution and their associated fluctuations. Section 7 provides
conclusions and some perspectives. Calculational details are given in the appendices.

2. Statement of the problem

The growing networks considered in this work are built by adding nodes to the network one
at a time according to the rule that each new node attaches to a single previous node with a
rate proportional to Ak, where k is the degree of the target node. We investigate the class of
models in which Ak = k + λ, where λ > −1, but is otherwise arbitrary. The general situation
of −1 < λ <∞ corresponds to linear preferential attachment, but with an additive shift λ in
the rate. This model was originally introduced by Simon to account for the word frequency
distribution [7]. The case λ = 0 corresponds to the Barabási–Albert model [8], while the
limit λ→∞ corresponds to random attachment in which each node has an equal probability
of attracting a connection from the new node. Thus by varying λ, we can tune the relative
importance of popularity in the attachment rate.

Previous work on the structure of such networks was primarily concerned with the
configuration-averaged degree distribution 〈Nk(N)〉, where the angle brackets denote an
average over all realizations of the growth process for an ensemble of networks with the
same initial condition. Additionally, most studies focused on the tail region where k is much
smaller than any other scale in the system. For attachment rate Ak = k +λ, this average degree
distribution has a power-law tail [7, 9],

〈Nk(N)〉 = Nnk with nk ∝ k−(3+λ) (1)

as N →∞. In the specific case of Ak = k, the average degree distribution explicitly is [7–11]

〈Nk(N)〉 = Nnk with nk = 4

k(k + 1)(k + 2)
. (2)

For finite N, however, the degree distribution must eventually deviate from these
predictions because the maximal degree cannot exceed N. To establish the range of applicability
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of equation (1), we estimate the magnitude of the largest degree in the network, kmax by the
extreme statistics criterion

∑
k�kmax

〈Nk(N)〉 ≈ 1. This yields kmax ∝ N1/(2+λ). We, therefore,
anticipate that the average degree distribution will deviate from equation (1) when k becomes
of the order of kmax. The existence of a maximal degree also suggests that the average degree
distribution should attain a finite-size scaling form

〈Nk(N)〉 � NnkF(ξ) ξ = k/kmax. (3)

Some aspects of these finite-size corrections were recently studied in [12–15]. One basic result
of our work is that we can compute the scaling function explicitly. We find that this function
is peaked for k of the order of kmax and that it depends substantially on the initial condition. In
contrast, the small-degree tail of the distribution—the reason why such networks were dubbed
scale-free—is independent of N and the initial condition.

To study finite networks where fluctuations can be significant, we need a stochastic
approach rather than a deterministic rate equation formulation. For finite N, the state of a
network is generally characterized by the set N = {N1, N2, . . .} that occurs with probability
P(N). The network state N evolves by the following processes:

(N1, N2)→ (N1, N2 + 1) (N1, Nk,Nk+1)→ (N1 + 1, Nk − 1, Nk+1 + 1).

The first process corresponds to the new node attaching to an existing node of degree 1; in this
case, the number of nodes of degree 1 does not change while the number of nodes of degree
2 increases by 1. The second line accounts for the new node attaching to a node of degree
k > 1.

From these processes, it is straightforward, in principle, to write the master equation for
the joint probability distribution P(N). It turns out that correlation functions of a given order
are coupled only to correlation functions of the same and lower orders. Thus, we do not
need to invoke factorization (as in the kinetic theory) and we could, in principle, solve for
correlation functions recursively. However, this would provide much more information than
is of practical interest. Typically, we are interested in the degree distribution, or perhaps two-
body correlation functions of the form 〈NiNj 〉. Even though straightforward in principle,
it is difficult to compute even the two-point correlation functions 〈NiNj 〉 for general i
and j . In this work, we shall restrict ourselves to the specific (and simpler) examples of〈
N2

1

〉
, 〈N1N2〉 and

〈
N2

2

〉
. We will use these results to help characterize fluctuations in finite

networks.

3. Simulation method and data

To simulate a network with attachment rate Ak = k + λ efficiently, we exploit an equivalence
to the growing network with re-direction (GNR) [9]. In the GNR, a newly-introduced node n
selects an earlier ‘target’ node x uniformly. With probability 1−r , a link from n to x is created.
However, with probability r, the link is re-directed to the ancestor node y of node x (figure 1).
As discussed in [9], the GNR is equivalent to a growing network with the attachment rate
Ak = k + λ, with λ = r−1 − 2. Thus, for example, the GNR with r = 1/2 corresponds to
the growing network with linear preferential attachment, Ak = k. Simulation of the GNR
is extremely simple because the selection of the initial target node is purely random and the
ensuing re-direction step is local.

There is, however, an important subtlety about this equivalence that was not discussed
previously in [9]. Namely, the redirection process does not apply when a node has no ancestor.
By construction, every node that is added to the network does have a single ancestor, but some
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probability r

n

probability 1-r

y x

Figure 1. The re-direction process. The new node n selects a random target node x. With
probability 1− r a link is established to this target node (dashed), while with probability r the link
is established to y, the ancestor of x (solid).

primordial nodes may have none. For example, for the very natural ‘dimer’ initial condition
◦←−◦, the seed node on the left has no ancestor and the GNR construction for this node is
ambiguous. One way to resolve this dilemma is to adopt the ‘triangle’ initial condition in
which there are three nodes in a triangle with cyclic connections between nodes. This leads
to the correct attachment rate for each node for any value of λ. We therefore typically use
this initial state to generate degree distribution data. On the other hand, theoretical analysis is
simpler for the dimer initial condition. This state can also be simulated in a simple manner
(for the case λ = 0) by a slightly modified GNR construction in which direct attachment to
the seed node is not allowed. It is straightforward to check that this additional rule leads to
the correct attachment rates for all the nodes in the network.

Figure 2 shows the average degree distribution for attachment rates Ak = k and Ak = k+λ

with λ = −0.9 for the triangle initial condition. This latter value of λ gives results that are
representative for values of λ close to−1. The data exhibit a shoulder at k ≈ kmax that is much
more pronounced when λ < 0 (figure 2(b)). This shoulder is also at odds with the natural
expectation that the average degree distribution should exhibit a monotonic cutoff when k
becomes of the order of kmax. This shoulder turns into a clearly-resolved peak that exhibits
relatively good data collapse when the degree distribution is re-expressed in the scaling form
of equation (3) (figure 3). Conversely, the magnitude of the peak diminishes rapidly when λ

is positive and becomes imperceptible for λ � 0.5.
In the following two sections, we will attempt to understand this anomalous feature of the

degree distribution by studying the rate equations for the node degrees of finite networks.

4. Continuum formulation

We focus on the case of the linear attachment rate Ak = k and briefly quote corresponding
results for other attachment rates. In the continuum approach, N is treated as continuously
varying. Then the change in the average degree distribution satisfies the rate equation

d〈Nk(N)〉
dN

=
〈
(k − 1)Nk−1(N)− kNk(N)

2N

〉
+ δk,1. (4)

We assume the dimer initial state—two nodes connected by a single link so that Nk(N = 1) =
2δk,1.

Equations (4) are recursive and can be solved sequentially, starting with 〈N1〉. Explicit
results for 〈Nk〉, k � 4, are given in appendix A. These expressions show that the dominant
contribution in the N → ∞ limit is linear in N and this corresponds to the solution in
equation (2). Indeed, if we substitute 〈Nk(N)〉 = nkN into equations (4), we obtain the
recursion nk = nk−1(k − 1)/(k + 2), whose solution is equation (2). From the first few 〈Nk〉,
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Figure 2. Normalized degree distributions for the triangle initial condition for networks of
102, 103, . . . links (upper left to lower right), with 105 realizations for each N, for (a) Ak = k

(up to 106 links) and (b) Ak = k + λ, with λ = −0.9 (up to 105 links). In (a), the dashed line
is the asymptotic result nk = 4/[k(k + 1)(k + 2)]; the last three data sets were averaged over 3, 9
and 27 points, respectively. In (b), the last two data sets were averaged over 10 and 100 points,
respectively.

0 2 4 6
k/N

1/2

0.0

0.5

1.0

1.5

2.0

F(
k

/N
1/

2 )

10
2

10
3

10
4

10
5

10
6

Figure 3. The corresponding scaling function F(ξ) in equation (3) for the data in figure 2(a).

it is easy to see that the first correction to this leading behaviour is of the order of N−1/2.
Substituting 〈Nk(N)〉 = nkN + AkN

−1/2 into equations (4) and keeping the first two terms
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in each 〈Nk〉, we find Ak = 4/3. Continuing this procedure systematically, we arrive at the
expansion

〈Nk(N)〉 = nkN +
4

3

1

N1/2
− 3

2

k − 1

N
+

4

5

(k − 1)(k − 2)

N3/2

− 5

18

(k − 1)(k − 2)(k − 3)

N2
+

1

14

(k − 1)(k − 2)(k − 3)(k − 4)

N5/2
+ · · · . (5)

In general, the right-hand side contains k + 1 terms which can be written more succinctly as

〈Nk(N)〉 = nkN +
1

N1/2

k−1∑
j=0

�(k)

�(k − j)

(−1)jνj

Nj/2
. (6)

The coefficients νj = (2j + 4)/[j !(j + 3)] may be obtained by imposing the initial condition
Nk(1) = 2δk,1 as each 〈Nk〉 is computed; a simpler way of obtaining these coefficients will
be explained below. Note that expansion (5) is asymptotic because successive terms decrease
only when k 
 √N .

A more convenient way to solve equations (4) is in terms of the generating function

N (N, z) =
∞∑

k=1

〈Nk(N)〉zk. (7)

Multiplying equation (4) by zk and summing over k, the generating function satisfies the
following partial differential equation:(

2N
∂

∂N
+ z(1− z)

∂

∂z

)
N (N, z) = 2Nz. (8)

The initial condition is N (1, z) = 2z, corresponding to a starting point of two nodes and a
single connecting link.

We reduce equation (8) to a wave equation with constant coefficients by changing from
the variables (N, z) to (ln

√
N, ln[z/(1 − z)]). Then by introducing the rotated coordinates

x, y such that x + y = ln
√

N and x − y = ln[z/(1− z)], we recast the wave equation into

∂N (x, y)

∂x
= 2e3x+2y

ex + ey
(9)

whose general solution is

N (x, y) = e2x+2y − 2ex+3y + 2e4y ln(ex + ey) + G(y).

Finally, G(y) is found by imposing the initial condition N (1, z) = 2z. When N = 1, we have
x = −y, so that the initial condition becomes N (−y, y) = 2/(1 + e2y). Therefore

G(y) = 2

1 + e2y
− 1 + 2e2y − 2e4y ln(e−y + ey)

and finally

N (x, y) = e2y(e2x − 2ex+y + 2) +
1− e2y

1 + e2y
+ 2e4y ln

(
ex+y + e2y

1 + e2y

)
. (10)

Using e2y = (z−1− 1)
√

N and ex+y = √N , we re-express the generating function in terms of
the original variables

N (N, z) = (3− 2z−1)N + 2(z−1 − 1)
√

N +
1− (z−1 − 1)

√
N

1 + (z−1 − 1)
√

N

− 2(z−1 − 1)2N ln

(
1− z +

z√
N

)
. (11)
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We are primarily interested in the degree distribution for nodes whose degree is of the
order of kmax ≈

√
N . This part of the distribution can be extracted from the limiting behaviour

of the generating function N (N, z) as z → 1 from below. Since the interesting range is
k ≈ √N , it is convenient to write

z−1 = 1 +
s√
N

(12)

and keep s finite while taking N → ∞ limit. We simplify still further by eliminating the
contribution to the generating function from the power-law tail of nk in equation (2). For this
purpose we consider the modified generating function(

z2 ∂

∂z

)3

N =
∞∑

k=1

(k + 2)(k + 1)k〈Nk〉zk+3 (13)

which is constructed so that the derivatives multiply the degree distribution by just the right
factors to eliminate the power-law tail. The leading behaviour of this modified generating
function will therefore provide the scaling function F(ξ) of equation (3).

We now substitute equation (12) and the anticipated scaling form of equation (3) into the
right-hand side of equation (13) and replace the sum by an integral. This gives the Laplace
transform of the scaling function times a prefactor,

4N3/2
∫ ∞

0
dξF (ξ) e−ξs (14)

with ξ = k/N1/2. Using equation (11), we compute the derivative on the left-hand side of
equation (13). In the N →∞ limit, this derivative becomes 4N3/2J (s) with

J (s) = 1

1 + s
+

1

(1 + s)2
+

1

(1 + s)3
+

3

(1 + s)4
. (15)

This is just the Laplace transform of the scaling function. Inverting the Laplace transform
then yields

F(ξ) = (1 + ξ)

(
1 +

ξ2

2

)
e−ξ . (16)

Note that the coefficients νj in equation (6) can be obtained by expanding F in a Taylor series.
This is a much simpler approach than solving each 〈Nk(N)〉 directly.

An important feature of the degree distribution is that it depends significantly on the
initial condition. For example, for the triangle initial condition, solving equation (8) subject
to N�

k (N = 3) = 3δk,2, or N�(3, z) = 3z2, yields

N�(N, z) = (3− 2z−1)N + 2(z−1 − 1)
√

3N + 3
(
1 + (z−1 − 1)

√
N/3

)−2 − 3

− 2(z−1 − 1)2N ln

(
1− z + z

√
3

N

)
. (17)

Repeating the steps used to deduce the scaling function (16) from equation (11), we now find

F�(ξ) =
(

1 + η +
η2

2
+

η4

4

)
e−η η ≡ ξ

√
3. (18)

Therefore, small differences in the initial condition translate to discrepancies of the order of√
N in the degree distribution of a finite network of N links. Thus, the properties of the nodes

with the largest degrees are quite sensitive to the first few growth steps of the network (see
also [6]).
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While this initial condition dependence is real, there is also a spurious aspect to this effect.
This may be illustrated by considering the linear trimer initial condition ◦—◦—◦. This is the
unique outcome of the dimer initial condition after one node has been added. These two initial
conditions should therefore lead to the same degree distribution. However, for the linear trimer
initial state (Nk(N = 2) = 2δk,1 + δk,2) the continuum approach gives the scaling function

F(ξ) =
(

1 + η +
η2

2
+

η3

4
+

η4

8

)
e−η η ≡ ξ

√
2

which is distinct from equation (16)! This anomaly highlights one basic limitation of the
continuum formulation.

Finally, we mention that parallel results can be obtained for the general case of the shifted
linear attachment rate, Ak = k + λ. The rate equation for the average degree distribution is

d〈Nk(N)〉
dN

=
〈
Ak−1Nk−1(N) − AkNk(N)

A

〉
+ δk,1

where A = ∑
AkNk =

∑
(k + λ)Nk . To compute A we use the sum rules

∑
kNk = 2N

(every link contributes twice to the total degree), as well as
∑

Nk = N +1 (for any three initial
condition) or

∑
Nk = N (for an initial condition that has the topology of a single cycle). To

simplify final formulae, we use the latter topology (specifically, the triangle initial condition)
so that A = (2 + λ)N .

Solving the above rate equations successively, we find that the first two terms in the
asymptotic series for 〈N�

k (N)〉 are〈
N�

k (N)
〉 ∼ nkN + n′kN

−(1+λ)/(2+λ) (19)

with

nk = (2 + λ)
�(3 + 2λ)

�(1 + λ)

�(k + λ)

�(k + 3 + 2λ)

n′k = −
2 + λ

3 + 2λ

3(3+2λ)/(2+λ)

�(1 + λ)

�(k + λ)

�(k)
.

The corresponding leading behaviours are nk ∝ k−(3+λ) and n′k ∝ kλ. Thus the two
contributions to the degree distribution in equation (19) are comparable when k ≈ N1/(2+λ).
This value coincides with the maximal degree kmax that is obtained by the extreme value
condition

∑
k�kmax

N/k3+λ ≈ 1. Once again, the degree distribution is described by a scaling
function in the dimensionless variable ξ = k/N1/(2+λ).

5. Discrete approach

We now turn to the discrete approach for the network evolution. That is, one link is introduced
at each discrete time step; this corresponds exactly to what occurs in the simulation. We again
focus on the case of the linear attachment rate Ak = k. We first treat in detail the case of nodes
of degree one and then extend our approach to nodes of higher degrees. Finally, we give a
scaling description for the degree distribution itself.

5.1. Nodes of degree one

The number of nodes of degree one, N1(N), is a random variable that changes according to

N1(N + 1) =




N1(N) prob.
N1

2N

N1(N) + 1 prob. 1− N1

2N

(20)
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after each node addition event. That is, with probability N1/2N , a newly-introduced node
attaches to a node of degree one; in this case, the number of nodes of degree one does not
change. Conversely, with probability (1−N1/2N), the new node attaches to a node of degree
greater than one and N1 thus increases by one. Therefore

〈N1(N + 1)〉 =
〈
N2

1 (N)

2N

〉
+

〈
N1(N) + 1− N2

1 (N)

2N
− N1(N)

2N

〉
from which

〈N1(N + 1)〉 = 1 +

(
1− 1

2N

)
〈N1(N)〉. (21)

We take the initial condition 〈N1(1)〉 = N1(1) = 2.
We solve this recursion in terms of the generating functionX1(w) =∑N�1〈N1(N)〉wN−1.

We, therefore, multiply equation (21) by NwN−1 and sum over N � 1 to convert this recursion
into the differential equation

dX1

dw
= 1

(1−w)2
+

1

2
X1 + w

dX1

dw
. (22)

Solving equation (22) subject to the initial condition X1(0) = 2 gives

X1(w) = 2

3

1

(1− w)2
+

4

3

1

(1−w)1/2
. (23)

Finally, we expand X1(w) in a Taylor series in w to obtain

〈N1(N)〉 = 2

3
N +

4

3
√

π

�
(
N − 1

2

)
�(N)

. (24)

The leading term is identical to that in the continuum approach (cf appendix A), but the
coefficient of the correction term is 4/(3

√
π) ≈ 0.7523, compared to 4/3 in the continuum

approach.
The discrete approach is also suited to analysing higher moments of the random variable

N1(N). The second moment
〈
N2

1 (N)
〉
plays an especially important role as we can then obtain

the variance σ 2
1 =

〈
N2

1 (N)
〉−〈N1(N)〉2 and thereby quantify fluctuations. From equation (20)

this second moment
〈
N2

1 (N)
〉

obeys the following recursion formula:

〈
N2

1 (N + 1)
〉 = 1 +

(
1− 1

N

) 〈
N2

1 (N)
〉
+

(
2− 1

2N

)
〈N1(N)〉. (25)

The solution to this recursion is outlined in appendix B and the final result is

〈
N2

1 (N)
〉 = 4

9
N(N + 1)− 1

3
N +

16

9
√

π

�
(
N + 1

2

)
�(N)

− 4

3
√

π

�
(
N − 1

2

)
�(N)

+
35

9
δN,1. (26)

In the large N limit, we use Stirling’s formula to give, for the variance,

σ 2
1 =

N

9
− 20

9
√

π

1

N1/2
− 16

9
√

π

1

N
+ · · · . (27)

To obtain the entire probability distribution P(N1, N) one must solve

P(N1, N + 1) = N1

2N
P(N1, N) +

(
1− N1 − 1

2N

)
P(N1 − 1, N). (28)

By the Markov nature of the process, P(N1, N) should approach a Gaussian distribution in
the large N limit. Numerically, we indeed find a Gaussian distribution with a peak at 2N/3
and dispersion 1

3

√
N in agreement with our theoretical results for 〈N1(N)〉 and

〈
N2

1 (N)
〉
.
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5.2. Degree greater than one

For k � 2, the random variable Nk ≡ Nk(N) changes according to

Nk(N + 1) =




Nk − 1 prob.
kNk

2N

Nk + 1 prob.
(k − 1)Nk−1

2N

Nk prob. 1− (k − 1)Nk−1 + kNk

2N

(29)

at each node addition event. Again, because of the Markov nature of this process, we anticipate
that P(Nk,N) approaches a Gaussian distribution for every fixed degree k; therefore, we only
need to calculate 〈Nk(N)〉 and

〈
N2

k (N)
〉

to infer the asymptotic distribution. To determine
the first moment, we repeat the steps described in detail for k = 1 and obtain the recursion
formula

〈Nk(N + 1)〉 = 〈Nk(N)〉 +

〈
(k − 1)Nk−1(N)− kNk(N)

2N

〉
. (30)

The solution to this recursion is given in appendix C and explicit formulae for 〈Nk(N)〉 for
k � 5 are also quoted. Qualitatively, these results closely correspond to the asymptotic
series for 〈Nk(N)〉 in the continuum formulation (equation (5)) but with somewhat different
coefficients in the correction terms.

The determination of the second moment
〈
N2

k

〉
is more complicated because it is coupled

to 〈Nk−1Nk〉, which in turn is coupled to 〈Nk−2Nk〉, etc. However, we can still determine
〈
N2

k

〉
for small k (appendix D). From the structure of the rate equations, our general conclusion is
that σ 2

k =
〈
N2

k (N)
〉 − 〈Nk(N)〉2 = µkN . Therefore the distribution of Nk(N) approaches a

Gaussian for each k as N →∞.

5.3. Generating function approach

In close analogy with section 3, we now obtain the generating function for 〈Nk(N)〉, from
which the exact scaling function in equation (3) can be deduced. Since equation (30) involves
two discrete variables, k and N, it proves useful to introduce the two-variable generating
function

N (w, z) =
∞∑

N=1

∞∑
k=1

〈Nk(N)〉wN−1zk. (31)

The governing equation for N (w, z) that is obtained from equation (30) is(
2(1−w)

∂

∂w
+ z(1− z)

∂

∂z
− 2

)
N = 2z

(1− w)2
. (32)

This is similar to equation (8) and can be solved accordingly. We introduce the rotated
variables x, y such that

x + y = −1

2
ln(1−w) x − y = ln

z

1− z
(33)

to recast equation (32) into(
∂

∂x
− 2

)
N (x, y) = 2e5x+4y

ex + ey
. (34)

The general solution is

N (x, y) = e4x+4y − 2e3x+5y + 2e2x+6y ln(ex + ey) + e2xG(y)
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and the function G(y) is found from the initial condition N (w = 0, z) = 2z. When w = 0,
we have x = −y = 1

2 ln[z/(1− z)], and hence N (−y, y) = 2/(1 + e2y). Therefore

G(y) = 2e2y

1 + e2y
− e2y + 2e4y − 2e6y ln(e−y + ey)

and finally

N (x, y) = e4x+4y − 2e3x+5y − e2x+2y + 2e2x+4y + 2
e2x+2y

1 + e2y
+ 2 e2x+6y ln

(
ex+y + e2y

1 + e2y

)
. (35)

In terms of the original w, z variables,

N (w, z) = (3− 2z−1)

(1−w)2
− 1

1−w
+

2(z−1 − 1)

(1−w)3/2
+

2(1−w)−1/2

(z−1 − 1) + (1−w)1/2

− 2(z−1 − 1)2

(1− w)2
ln
[
1− z + z(1−w)1/2

]
. (36)

By expanding N (w, z), we can in principle determine all the 〈Nk(N)〉.

5.4. Scaling function

To extract the scaling function F(ξ) from the generating function N (w, z) we use the same
approach as in section 4. The details are given in appendix E and the final result is

F(ξ) = erfc

(
ξ

2

)
+

2ξ + ξ3

√
4π

e−ξ 2/4 (37)

where erfc(x) is the complementary error function. A similar result for a related network
model was found previously by Dorogovtsev et al [14]. Note that the exact form for F(ξ)

vanishes much more quickly than predicted by the continuum approach. When k �√N , the
continuum approach gives

〈Nk(N)〉cont. → 2√
N

e−k/
√

N (38)

while the exact average degree distribution has a Gaussian large-degree tail

〈Nk(N)〉exact → 2√
πN

e−k2/4N . (39)

The scaling function in equation (37) quantitatively accounts for the shoulder in the degree
distribution. In contrast, while the scaling function from the continuum approach does exhibit
a peak, it is both quantitatively and qualitatively inaccurate (figure 4).

6. Higher moments and their fluctuation

We now turn to higher moments of the degree distribution, as well as the fluctuation in these
quantities between different realizations of the network. While the zeroth and first moments
of the degree distribution are simply related to the total number of links for any network
topology, the higher moments are not so simply characterized, but instead reflect the power-
law tail of the degree distribution.

We first compare the moments of the average degree distribution to appreciate the
difference between the continuum and exact descriptions. For the second moment, we use the
identity

∞∑
k=1

k(k + 1)〈Nk〉 ≡
(

z2 ∂

∂z

)2

N (N, z)

∣∣∣
z=1

. (40)
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Figure 4. Comparison between the scaling function F(ξ), with ξ = k/N1/2, in the continuum
approximation (equation (18), dashed curve) and in the discrete approach (equation (37), solid
curve). The circles give the simulation data of 106 realizations of a network with N = 104 links
for the dimer initial condition; these data coincide with the theoretical prediction.

Using N (N, z) from equation (11), together with the value of the first moment, we obtain, in
the continuum approximation,

〈k2〉cont. ≡
∞∑

k=1

k2〈Nk〉cont. = 2N ln N + 2N. (41)

On the other hand, using the exact discrete expression (36) we find(
z2 ∂

∂z

)2

N (w, z)

∣∣∣
z=1
= 4− 2 ln(1−w)

(1− w)2

which we then expand in a series in w to yield, for the second moment,

〈k2〉exact ≡
∞∑

k=1

k2〈Nk〉exact = 2NHN. (42)

Here HN =
∑

1�j�N j−1 is the harmonic number [16]. In the large N limit, therefore,

〈k2〉exact = 2N ln N + 2γN + 1− 1

6N
+ · · ·

where γ ∼= 0.577 2166 is Euler’s constant.
For higher moments, even the leading term given by the continuum approach is erroneous.

For example,

〈k3〉cont. = 24N3/2 − 6N ln N − 22N (43)

while the exact value is

〈k3〉exact = 32√
π

�
(
N + 3

2

)
�(N)

− 6NHN − 16N. (44)

More generally, the dependence of the moments on N stems from the power-law tail of the
degree distribution 〈Nk〉 ∝ N/k3. From this asymptotic distribution, a suitably normalized
set of measures for the mean degree

Mn =
( 〈kn〉
〈k0〉

)1/n

(45)
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Figure 5. Distribution of 〈k2〉 for 105 realizations of a growing network with N = 103 for
attachment rate Ak = k with the triangle initial condition. The raw data have been smoothed over
a 100-point range.

has the following N dependence:

Mn ∝




const. n < 2

ln N n = 2

N(n−2)/2 n > 2.

(46)

In a related vein, we also study the fluctuations in these moments between different
realizations of the network growth. That is, we record the value of 〈k2〉 for each realization of
the network to obtain the underlying distribution P(〈k2〉). A typical result is shown in figure 5.
Note that the distribution of 〈k2〉 is relatively broad with an exponential tail. The distributions
of higher moments are even broader, with each being dominated by the realizations with the
largest value of the corresponding moment.

7. Concluding remarks

We studied the role of finiteness on the degree distributions of growing networks with a node
attachment rate of the form Ak = k + λ. For finite networks, fluctuations are no longer
negligible and a stochastic approach is needed to analyse these properties. We found the
average degree distribution within an approximate continuum formulation and by an exact
discrete approach. The continuum approach has the advantage of being much simpler than the
discrete formulation, but does not provide a quantitatively accurate description of the large-k
tail of the degree distribution.

We also argued that the degree distribution Nk(N), when considered as the random
variable in k, exhibits self-averaging, i.e., the relative fluctuations in Nk(N) diminish as
N →∞. Moreover, the variance σ 2

k =
〈
N2

k

〉−〈Nk〉2 varies linearly with N, and the probability
distribution P(Nk,N) approaches a Gaussian. To support these assertions, we computed σ 2

k

for k = 1, 2. These partial results support our general hypothesis that fluctuations in Nk(N) are
Gaussian. Perhaps, the Van Kampen �-expansion [17] would prove to be a more appropriate
analysis tool to undertake a systematic study of fluctuations in growing networks.

Of course, the random variables Nk(N) should be Gaussian only for sufficiently small k,
namely, as long as 〈Nk〉 � 1, or equivalently, k 
 N1/(3+λ). On the other hand, fluctuations
become large and non-Gaussian when k ∝ N1/(3+λ). Determining the fluctuations in this degree
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range seems to be difficult, as one must study the master equation for the joint probability
distribution.

In this work, we limited ourselves to the degree distribution; this is perhaps the most
important and also the most easily analysable local structural characteristic of a network.
However, recent investigations of growing networks have increasingly focused on global
characteristics, such as the size distribution of connected components, see e.g., [18–21]. The
methods described in this paper should be applicable to probing fluctuations of the component
size distribution and other global network characteristics. This direction seems especially
exciting since the simplest growing network models that allow for a multiplicity of clusters
exhibit a very unusual infinite-order percolation transition [18–21]. Thus, one might anticipate
interesting giant fluctuations near the percolation transition of these models.
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Appendix A. The average degree distribution in the continuum formulation

Within the continuum framework, the average degree distribution is described by equations (4).
Successively solving these equations by elementary methods, we obtain 〈Nk(N)〉. For
k = 1, 2, 3 and 4 we obtain

〈N1(N)〉 = 2

3
N +

4

3

1

N1/2

〈N2(N)〉 = 1

6
N +

4

3

1

N1/2
− 3

2

1

N

〈N3(N)〉 = 1

15
N +

4

3

1

N1/2
− 3

1

N
+

8

5

1

N3/2

〈N4(N)〉 = 1

30
N +

4

3

1

N1/2
− 9

2

1

N
+

24

5

1

N3/2
− 5

3

1

N2
.

Appendix B. Generating function for
〈
N 2

1 (N )
〉

To determine
〈
N2

1 (N)
〉
, we introduce the generating function Y1(w) =∑N�1

〈
N2

1 (N)
〉
wN−1.

This converts the recursion relation equation (25) into the differential equation for the
generating function

(1−w)
dY1

dw
= 1

(1−w)2
+

3

2
X1 + 2w

dX1

dw
(B1)

with X1(w) given by equation (23). Solving (B1) subject to the initial condition Y1(0) = 4
we obtain

Y1(w) = 8

9

1

(1−w)3
− 1

3

1

(1− w)2
+

8

9

1

(1− w)3/2
− 4

3

1

(1−w)1/2
+

35

9
. (B2)

Expanding this generating function in a Taylor series then yields the result for
〈
N2

1 (N)
〉
quoted

in equation (26).

Appendix C. Generating function for first moment

Here we solve the recursion formula (30) for 〈Nk(N)〉. We first introduce the generating
function Xk(w) =∑∞N=1〈Nk(N)〉wN−1 to eliminate the variable N and convert equation (30)
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into a differential equation that relates Xk and Xk−1. This equation is further simplified by
making the transformation

Xk(w) = (1−w)
k
2−1Uk(u) u = 1√

1−w
− 1. (C1)

The resulting equation is
dUk

du
= (k − 1)Uk−1 k � 2. (C2)

Rewriting our previous solution (23) as

U1(u) = 2
3u3 + 2u2 + 2u + 2 (C3)

one can solve equations (C2) subject to the initial condition Uk(u = 0) = 0 for k � 2. The
final result is

Uk(u) = 4uk+2

k(k + 1)(k + 2)
+

4uk+1

k(k + 1)
+

2uk

k
+ 2uk−1.

Using the binomial formula, we transform Xk(z) into the series

Xk(w) = 4

k(k + 1)(k + 2)

1

(1−w)2
+

4

3

1

(1−w)1/2

+ 2
k−1∑
a=1

(−1)a
a + 2

a + 3

(
k − 1

a

)
(1−w)(a−1)/2.

Expanding Xk(w) in a Taylor series in w we obtain 〈Nk(N)〉. The analytic expressions for
〈Nk(N)〉 with k � 5 are obtained by expanding Xk(w) in a Taylor series. This gives

〈N1(N)〉 = 2

3
N +

4

3
√

π

�
(
N − 1

2

)
�(N)

〈N2(N)〉 = 1

6
N +

4

3
√

π

�
(
N − 1

2

)
�(N)

− 3

2
δN,1

〈N3(N)〉 = 1

15
N +

4

3
√

π

�
(
N − 1

2

)
�(N)

− 3δN,1 − 4

5
√

π

�
(
N − 3

2

)
�(N)

〈N4(N)〉 = 1

30
N +

4

3
√

π

�
(
N − 1

2

)
�(N)

− 9

2
δN,1 − 12

5
√

π

�
(
N − 3

2

)
�(N)

− 5

3
δN,1 +

5

3
δN,2

〈N5(N)〉 = 2

105
N +

4

3
√

π

�
(
N − 1

2

)
�(N)

− 6δN,1 − 24

5
√

π

�
(
N − 3

2

)
�(N)

− 20

3
δN,1 +

20

3
δN,2 +

9

7
√

π

�
(
N − 5

2

)
�(N)

.

Generally, there are slightly different formulae for even

〈N2k(N)〉 = n2kN +
k∑

j=1

AkjδNj +
k−1∑
i=0

4(i + 1)

2i + 3

(
2k − 1

2i

)
�
(
N − 1

2 − i
)

�
(

1
2 − i

)
�(N)

and odd

〈N2k+1(N)〉 = n2k+1N +
k∑

j=1

BkjδNj +
k∑

i=0

4(i + 1)

2i + 3

(
2k

2i

)
�
(
N − 1

2 − i
)

�
(

1
2 − i

)
�(N)

indices. Here the nk are given by equations (2) and explicit expressions for the coefficients
Akj and Bkj could be found by expanding the polynomials in the generating functions X2k(w)

and X2k+1(w).
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Appendix D. Higher moments

Starting from equation (29), a straightforward computation yields〈
N2

k

〉 = (1− k

N

) 〈
N2

k

〉
+

k − 1

N
〈Nk−1Nk〉 +

〈
(k − 1)Nk−1 + kNk

2N

〉
(D1)

where the correlation function on the left-hand side is a function of N + 1 and those on the
right-hand side are functions of N. Obviously,

〈
N2

k

〉
is coupled with 〈Nk−1Nk〉. The recursion

relation for this correlation function reads (for k � 3)

〈Nk−1Nk〉 =
(

1− 2k − 1

2N

)
〈Nk−1Nk〉 +

k − 1

2N

〈
N2

k−1

〉
+

k − 2

2N
〈Nk−2Nk〉 − k − 1

2N
〈Nk−1〉.

(D2)

Fortunately, no higher-order correlation functions appear, and additionally the total index
decreases, i.e.,

〈
N2

k

〉
, whose total index is 2k, involves the correlation function 〈Nk−1Nk〉,

whose total index is 2k − 1. One therefore can determine all correlation functions by starting
from the smallest total index and then working up to larger indices. For example, the first
non-trivial correlation function

〈
N1N2

〉
whose total index equals three satisfies an equation

slightly different from the general form of equation (D2), namely,

〈N1N2〉 =
(

1− 3

2N

)
〈N1N2〉 +

1

2N

〈
N2

1

〉
+

(
1− 1

N

)
〈N2〉. (D3)

Note here that we already know
〈
N2

1

〉
.

We can solve for 〈N1N2〉using the generating function technique. We define the generating
function Z1(w) =∑N�1〈N1(N)N2(N)〉wN−1 which satisfies the differential equation

2(1−w)
dZ1

dw
= −Z1 + Y1 + 2w

dX2

dw
(D4)

with solution

Z1(w) = 2

9

1

(1−w)3
− 1

5

1

(1−w)2
+

5

9

1

(1−w)3/2
− 4

3

1

(1−w)1/2
− 47

15
(1−w)1/2 +

35

9
.

(D5)

Expanding Z1(w) in a power series in w we obtain

〈N1N2〉 = 1

9
N(N + 1)− 1

5
N +

10

9
√

π

�
(
N + 1

2

)
�(N)

− 4

3
√

π

�
(
N − 1

2

)
�(N)

+
47

30
√

π

�
(
N − 3

2

)
�(N)

+
35

9
δN,1.

Asymptotically, 〈N1N2〉 → 〈N1〉〈N2〉 as expected.
There are two correlation functions,

〈
N2

2

〉
and 〈N1N3〉, whose total index equals four. The

former satisfies equation (D1) with k = 2, i.e.,〈
N2

2

〉 = (1− 2

N

) 〈
N2

2

〉
+

〈
N1 + 2N2 + 2N1N2

2N

〉
from which we determine the generating function

Y2(w) = 1

18

1

(1−w)3
+

1

10

1

(1−w)2
+

2

9

1

(1− w)3/2

+
4

9

1

(1−w)1/2
− 94

15
(1− w)1/2 +

49

9
− 55

18
w.
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Expanding Y2(w) we obtain

〈
N2

2 (N)
〉 = 1

36
N(N + 1) +

1

10
N +

4

9
√

π

�
(
N + 1

2

)
�(N)

+
4

9
√

π

�
(
N − 1

2

)
�(N)

+
47

15
√

π

�
(
N − 3

2

)
�(N)

+
49

9
δN,1 − 55

18
δN,2.

In the large N limit, we find that variance grows linearly with N according to σ 2
2 ∼ 23

180N . It
appears that

σ 2
k → µkN as N →∞ (D6)

for all k, although we solved only the cases k = 1 and 2, where µ1 = 1
9 and µ2 = 23

180 .

Appendix E. Scaling function in the discrete approach

To extract the scaling function from the generating function N (w, z) we adapt the technique
employed in section 4 for discrete variables. We first write

z−1 = 1 + s
√

1−w (E1)

and keep s finite while taking the w → 1 limit. We again consider the modified generating
function (

z2 ∂

∂z

)3

N =
∞∑

N=1

∞∑
k=1

4NF

(
k√
N

)
wN−1zk+3. (E2)

On the right-hand side of this equation we have already replaced (k + 2)(k + 1)k〈Nk(N)〉 by
4NF(k/

√
N) as implied by equations (2) and (3).

Substituting the exact expression (36) for the generating function into the left-hand side
of equation (E2) and keeping only the dominant contribution gives

4(1−w)−5/2J (s) (E3)

with J (s) given by equation (15). To simplify the right-hand side of equation (E2) we substitute
equation (E1) and replace the sums by integrals. The dominant contribution in the w → 1
limit is

4(1−w)−5/2
∫ ∞

0
dξ e−ξs

∫ ∞
0

dηηF(ξη−1/2) e−η (E4)

where ξ = k
√

1−w and η = N(1 − w). Therefore the double integral in equation (E4)
is equal to J (s). The double integral can be interpreted as the Laplace transform ̂(s) =∫∞

0 dξ exp(−sξ)(ξ) of the function

(ξ) =
∫ ∞

0
dηηF(ξη−1/2) e−η. (E5)

We already know how to solve ̂(s) = J (s), so

(ξ) = (1 + ξ)

(
1 +

ξ2

2

)
e−ξ . (E6)

To determine F(ξ), we must solve the integral equation (E6) with (ξ) given by
equation (E5). To solve this integral equation, note that (ξ) is almost a Laplace transform
of function F. Indeed, if instead of η and F(ξη−1/2) we use ζ and G(ζ ) defined according to

ζ = η

ξ2
G(ζ ) = ζF (ζ−1/2) (E7)
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then we obtain (ξ) = p2Ĝ(p), with p = ξ2 being the Laplace variable and Ĝ(p) =∫∞
0 dζG(ζ ) exp(−pζ ). Re-writing the integral equation (E6) in terms of p gives

Ĝ(p) = (p−2 + p−3/2 + 1
2p−1 + 1

2p−1/2
)

exp(−√p).

Inverting this Laplace transform yields [22]

G(ζ ) = ζ erfc

(
1√
4ζ

)
+

2ζ + 1√
4πζ

e−1/4ζ (E8)

where erfc(x) = 2√
π

∫∞
x

dt exp(−t2) is the complementary error function. Since F(ξ) =
ξ2G(ξ−2), see equation (E7), we arrive at the scaled average degree distribution quoted in
equation (37).
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