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Epidemic forecast follies
Check for updates

P. L. Krapivsky1,2 & S. Redner2

We introduce a simple multiplicative model to describe the temporal behavior and the ultimate
outcome of an epidemic. Our model accounts, in a minimalist way, for the competing influences of
imposing public-health restrictions when the epidemic is severe, and relaxing restrictions when the
epidemic is waning. Our primary results are that different instances of an epidemic with identical
starting points have disparate outcomes and each epidemic temporal history is strongly fluctuating.

Now that the most severe (we hope) manifestations of the Covid-19 epi-
demic have passed, one can’t help but realize thatmany of the early forecasts
of the Covid-19 epidemic toll were wildly inaccurate and inconsistent with
each other.Moreover, individual forecasts could change dramatically over a
period of few days. For the USA, in particular, the earliest estimates for the
Covid-19 epidemic death toll ranged from tens of thousands to many
millions, with the current death toll (as of September 2023) reported to be
1.175million out of a total of 108.5million cases (all data taken from ref. 1).
Perhaps even more striking are the huge fluctuations and the dramatically
different time courses in the daily death rate in different countries.

To illustrate these statements, Fig. 1 plots the reported daily death rates
for the six countries in the world with populations greater than 60 million
and with the largest total death rates. They are: USA (3.507 deaths/1000),
UK (3.339/1000), Brazil (3.275/1000), Italy (3.174/1000), Russia
(2.743/1000), and France (2.556/1000). For reference, the country with the
largest reported total death rate is Peru (6.582/1000), while the world
average is (0.887/1000). Formany reasons, the accuracy of thedatamay vary
widely from country to country so that some of the numbers reported in
ref. 1, such as the suspicious smoothness of the data for Russia, should be
interpreted with caution.

One of the many confounding features of Covid-19 is asymptomatic
transmission, in which the epidemic may be unknowingly spread by indi-
viduals who did not know that they were contagious. Partly because of this
feature, a wide variety of increasingly sophisticated multi-compartment
models were developed that build on the classic SIR and SIS models of
epidemic spread. These models typically attempted to faithfully account for
subpopulations in various stages of the disease and recovery, as well as the
transitions between these stages. Models of this type gave rise to complex
dynamical behaviors that could sometimesmirror reality in a specific setting
or over a limited time range. However, embellishments of SIR and SIS-type
models still seem to be incomplete because of the difficulty in simulta-
neously accounting for both the disease dynamics and its interaction with
social forces.

The discrepancy between the observed wildly varying features of
Covid-19 and supposedly deterministic outcomes of SIR and SIS models is
especially striking. In fact, the determinism of the SIR and SIS models is
actually illusory. The SIR model, for example, is an inherently stochastic

process2,3 that is characterized by the reproductive numberR0. This quantity
is defined as the average number of individuals to whom a single infected
individual transmits the infection before this single individual recovers. In
the supercritical regime, R0 > 1, it is possible that the outbreak may quickly
die out. This happy event occurs with probability R�1

0 if one individual was
initially infected. Otherwise, the infection quickly spreads, and the behavior
becomes effectively deterministic because the distribution of the epidemic
size becomesnarrow. In this case, a finite fraction c = c(R0) individuals catch
the disease, with c implicitly determined by the criterion cþ e�cR0 ¼ 14.

Conversely, if R0 < 1, the outbreak quickly dies out, so while the sub-
critical SIR process is still manifestly stochastic, it is not a threat to the
population at large. The interesting and the most strongly stochastic
behavior emerges in critical SIR and SIS models5–16. For the SIR model, in
particular, the distribution of the number of infected individuals has a
power-law tail. For a finite population of sizeN, the critical SIR model does
not lead to a pandemic, because the average number of individuals who
contract the disease scales as N1/3.

We argue here that significant forecasting uncertainties are an integral
feature of processes caused by the interplay between the dynamics of the
disease transmission and the social forces that arise in response to the
epidemic. Each attribute alone typically leads to either exponential growth
(due to disease transmission at early times) or to exponential decay (due to
effective mitigation strategies).Within ourmodel, the competition between
these two exponential processes leads to a dynamics that is extremely sen-
sitive to seemingly minor details.

While a variety of models have been proposed to incorporate these
competing effects and to understand how they give rise to significant
uncertainties in the outcome of an epidemic17–19, here we present a different
perspective to account for forecasting uncertainties. Our approach is based
on mimicking the inherent stochasticity in the development of epidemics
through a stochastic dynamics in the reproductive number R0. The basic
mechanism in our modeling is that R0 can sometimes decrease, due to the
imposition of public-health measures, such as social distancing, vaccina-
tions, etc., and sometimes increase, because of the relaxation of these
measures. Focusingonlyon thedynamics of the reproductivenumber serves
as a useful proxy for themyriad of influences that control the true epidemic
dynamics. The central variable in ourmodel is the number of newly infected
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individuals in each incubation period. Within this framework, we will
determine the duration of an epidemic, the time dependence of the number
of infected individuals, and the total numberof individuals infectedwhen an
epidemic finally ends. All three quantities exhibit huge fluctuations that are
reminiscent of the actual data.

Results
Systematic mitigation
In this section we investigate what we term as the systematic mitiga-
tion strategy. Here, increasingly stringent controls are imposed as
soon as an outbreak is detected, in which the reproductive number R0

exceeds 1, to reduce R0 to less than 1. The condition R0 = 1 defines the
peak of the epidemic because the number of newly infected individuals
reaches a maximum at this point. Once R0 becomes less than 1, pro-
gressively fewer individuals are infected after each incubation period
and the epidemic begins to disappear. The number of individuals that
become infected after R0 has been reduced to less than 1 decays
exponentially with time and constitute a small contribution to the
total number of infections.

Because society is a complicated, withmany competing social forces in
play, we posit that it is not possible to reduceR0 instantaneously, but rather,
the reduction happens gradually. We therefore assume that after each
successive incubation period R0 is decreased by a random number r whose
average value 〈r〉 is less than 1. Let us define Rk as the reproductive number
in the kth period. Then Rk is given by

Rk ¼ rk Rk�1 ¼ rk rk�1 . . . r2 r1 R0; ð1Þ

where rk is the value of the random variable r in the kth period. The typical
number of periods k until R0 reaches 1 is determined by R0 〈r〉

k = 1. In what
follows,we assume thatwhen the epidemic isfirst detected, the reproductive
number R0 = 2.5, and we take 〈r〉 = 0.95 for illustration. Using these values,

k ¼ lnð1=R0Þ
lnhri ¼ lnð1=2:5Þ

lnð0:95Þ ≈17:86

Thus the epidemic typically reaches its peak after 18 periods. However,
because of the inherent randomness in the mitigation, with R0 sometimes
decreasing by less than 0.95 and sometimes by more than 0.95 after each
incubation period, the true epidemic dynamics can be very different, as
illustrated in Fig. 2.

We simulate the systematicmitigation strategy by startingwith a single
infected individual and reproductive numberR0 = 2.5.We then choose a set
of random numbers r1, r2, r3,…, each of which are uniformly distributed
between0.9 and1, so that 〈r〉 = 0.95.Wefirstmeasure how long it takes until
Rk is reduced to 1, which signals the epidemic peak. We perform this same
measurement for 5 × 106 different choices of the set of random numbers
r1, r2,…, rk. As shown in Fig. 2a, the probability q(k) that the epidemic
reaches its peak in the kth period has a maximum at roughly k = 18 periods,
in agreement with the above naive estimate. If one is lucky, that is, if most of
the reduction factors ri are close to 0.9, the epidemic reaches its peak in as
little as 11 periods. If one is unlucky (many of the ri close to 1), the epidemic
can can continue to grow for more than 30 periods.

While the distribution of epidemic durations is fairly narrow, the total
number I of people whowere infected during the course of an epidemic can
varyby several orders ofmagnitude. Thenumberof people infected in thekth

Fig. 1 | Covid death rates. The reported daily Covid death rates (7-day moving average) for (a) the USA, (b) UK, (c) Brazil, (d) Italy, (e) Russia, and (f) France. These data
cover the period from Feb. 15, 2020 until July 29, 2023 and are all taken from ref. 1.
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period, Ik is given by Ik = Rk−1Ik−1. Thus according to the dynamics of the
reproductive number in (1), the total number of infected individuals is

I ¼ 1þ I1 þ I2 þ I3 þ I4 þ I5 . . .

¼ 1þ R0 þ R0R1 þ R0R1R2 þ R0R1R2R3 þ R0R1R2R3R4 þ . . .

¼ 1þ R0 þ r1R
2
0 þ r2 r

2
1 R

3
0 þ r3 r

2
2 r

3
1 R

4
0 þ r4 r

2
3 r

3
2 r

4
1 R

5
0 þ . . .

ð2aÞ

Thus the average number of infected individuals is

hIi ¼ 1þ R0 þ hriR2
0 þ hrihr2iR3

0 þ hrihr2ihr3iR4
0 þ hrihr2ihr3ihr4iR5

0 þ . . .

ð2bÞ
This expression converges because the kth term quickly decreases with k for
an arbitrary distribution of rwith support on [0, 1). It is important to point
out that the number of newly infected people at each incubation period is
based on the assumption that this number is small compared to the total
population size, so that the growth in the number of new infections is truly
exponential. As shown in Fig. 2b, while the most probable epidemic size is
≈104 (again starting with a single infected individual), there is a non-
vanishing probability that the outbreak size can be as small as a fewhundred
or greater than 107. This large disparity in outbreak sizes illustrates how
small changes in the way that the epidemic is mitigated can lead to huge
changes in the outbreak size.

More dramatically, suppose that the mitigation strategy is slightly less
effective and that the reproductive number is reduced at each period by a
uniform random variable that lies between [0.95, 1] rather than between
[0.9, 1]. Now the peak of the epidemic can occur between 22 and 55 periods,
withamostprobabledurationof36periods.However, the epidemic sizewhen
the peak of the epidemic is reached ranges between roughly 105 and 1012, with
a most probable size of roughly 7 × 107. The upper value is much larger than
theworld population and the finiteness of the population would now provide
the upper bound. Although the peak of this second epidemic occurs a factor 2
longer as the first one, it typically infects 7000 times more people! We
emphasize that the stochastic nature of the randomvariables rjplays adecisive
role. Very different behaviors emerge in the deterministic case20.

Vacillating mitigation
During the acute period of the pandemic in 2020–2021, there was con-
siderable and even vitriolic debate about the efficacy of various mitigation
strategies, or even about the utility of any mitigation. If the epidemic is
severe, as quantified by the reproductive number Rk in the kth period being
substantially greater than 1, peoplemay bemore likely to accept restrictions
on their behaviors, such as isolating, masking, vaccinating, etc., to reduce
their risk of getting sick. These adaptations will reduce the reproductive
number. If, however, the reproductive number becomes less than 1, then
people will want to relax their vigilance and may also advocate for the
opening of various public venues, such as schools, theaters, stadiums, etc.
We model this tug-of-war between increased and decreased restrictions by

what we term as the vacillating mitigation strategy. This perspective of
treating the competition between epidemiology and social behavior was
previously treated inmore sophisticatedmodels21,22.We emphasize that our
modelmerely aproxy for the twocompeting influencesof epidemiology and
social behavior.

The two competing steps of the vacillating strategy are the following:
• Mitigation: if Rk > 1, decrease Rk by a factor r that is uniformly dis-

tributed in [a, 1], with a < 1.
• Relaxation: if Rk < 1, change Rk by a factor s that is uniformly dis-

tributed in [a, 3− 2a].

The first option is the same as in the systematicmitigation strategy.We
construct the second option by requiring that hsi ¼ 1þ 1

2 ð1� aÞ and hri ¼
1� 1

2 ð1� aÞ are symmetrically locatedabout 1.That is, the averagedecrease
in Rk in a mitigation step equals the average increase in Rk in the relaxation
step. This symmetrical construction seems appropriate to probe the long-
term influence of vacillation on the dynamics. If the vacillation strategy was
biased towards relaxation, R0 would remain greater than 1 and the entire
planet would be infected. If this strategy was biased towards mitigation, the
epidemic would be similar to that in systematic mitigation. Neither of these
cases is interesting from the viewpoint of probing long-time behaviors.

In this vacillating strategy, Rk varies between values greater than 1 and
values less than 1. This would lead to an eternal epidemic. To avoid this
unrealistic outcome, the other important feature of the relaxation step is that
the value of Rk could still decrease during a relaxation step because a < 1.
This possibility ensures that eventually less than one person will be infected
in the current incubation period. We now define this event as signaling the
end of the epidemic.

Figure 3a–d shows a few representative trajectories of the number of
people infected I(t) as a function of time (incubation periods) from the same
initial condition of a single infected person and R0 = 2.5. While there are
some qualitative differences between the trajectories of Fig. 1 and themodel
outcomes, the important points that are common to the real data and the
simulation results are the disparities in the individual trajectories and the
strongly fluctuating temporal behavior.

For the vacillating strategy and for the choice a = 0.9, the most likely
duration of the epidemic is roughly 400 periods (Fig. 4a), compared to 18
periods for the systematic strategy. The probability that the epidemic lasts
much longer than the most likely value decays exponentially with time. An
even more dramatic feature of the vacillating strategy is the number of
people that are ultimately infected. The most probable outcome is that
3 × 105 people are infected when the epidemic ends (Fig. 4b). However, the
size of the epidemic can range from 104 to 108. Compared to the systematic
mitigation strategy with a reduction factor uniformly in the range [0.9, 1],
the epidemic now lasts roughly 20 times longer and infects a factor 30more
individuals.

Discussion
This work should not be construed to mean that public-health measures
should be ignored. Indeed, the extremely rapid development of a vaccine

Fig. 2 | Systematic mitigation. a The probability
q(k) that the epidemic reaches its peak after k peri-
ods. b The probability p(I) that I people have been
infected when the epidemic reaches its peak (under
the assumption that the initial epidemic size is one
person).
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that is effective against Covid-19 is an outstanding triumph of modern
medical science. It should also be pointed out that some of the many fore-
casting models for Covid-19 were useful during the early stages of the
pandemic. However, when social influences with competing viewpoints
began to dictate individual and collective policy decisions, much of the
predictive power of forecasting models was lost.

We also emphasize that our simplisticmodel has little connection to
the actual epidemiological and social processes that determine the
spread of the epidemic and the changes in individual and collective
behaviors in response to the epidemic. Nevertheless, our model seems to
capture the tug of war between public-health mandates to control the
spread of the disease and the social forces that often advocate for a more
laissez-faire approach. Our main message is that there are huge uncer-
tainties in predicting the time course of an epidemic, its ultimate
duration, and the final outbreak size. This unpredictability seems to be
intrinsic to the dynamics of epidemics where epidemiological influences
occur in concert with social forces. In this setting, forecasting ambiguity
is unavoidable.

Data availability
All data needed to evaluate the conclusions are presented in the paper. This
data may be requested from the authors.
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