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Abstract.  We investigate the dynamics of a greedy forager that moves by 
random walking in an environment where each site initially contains one unit 
of food. Upon encountering a food-containing site, the forager eats all the food 
there and can subsequently hop an additional S steps without food before 
starving to death. Upon encountering an empty site, the forager goes hungry 
and comes one time unit closer to starvation. We investigate the new feature 
of forager greed; if the forager has a choice between hopping to an empty site 
or to a food-containing site in its nearest neighborhood, it hops preferentially 
towards food. If the neighboring sites all contain food or are all empty, the 
forager hops equiprobably to one of these neighbors. Paradoxically, the lifetime 
of the forager can depend non-monotonically on greed, and the sense of the non-
monotonicity is opposite in one and two dimensions. Even more unexpectedly, 
the forager lifetime in one dimension is substantially enhanced when the greed 
is negative; here the forager tends to avoid food in its local neighborhood. We 
also determine the average amount of food consumed at the instant when 
the forager starves. We present analytic, heuristic, and numerical results to 
elucidate these intriguing phenomena.
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1. Introduction

A classic approach to account for the phenomenon of foraging is to posit that a forager 
has perfect knowledge of its environment and adopts an optimum strategy to exploit 
environmental resources[1–7]. In this class of models, the motion of the forager is 
treated in an implicit way, and the rate at which resources are consumed is specified a 
priori as deterministic and spatially homogeneous [8–10]. A complementary approach 
is based on employing a simple or a generalized random walk to find resources. Here, 
the search eciency is quantified by the time to reach a specified target. A wide range 
of models have been investigated, including Lévy walks [11], intermittent walks [12–15] 
and persistent random walks [16]. Each of these examples have been shown to minimize 
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this search time under specified conditions. However, these models typically do not 
consider consumption explicitly.

Recently, an alternative description of foraging dynamics was developed in which 
the forager has no knowledge of its environment and no intelligence—the starving ran-
dom walk [17, 18]. In this model, the forager is unaected by the presence or absence 
of food and always performs an unbiased random walk. When a forager lands on a 
food-containing site, all the food at this site is consumed. Upon eating, a forager is 
fully sated and can subsequently hop S additional steps without encountering food 
before it starves. However, if the forager lands on an empty site, the forager goes hun-
gry and comes one time unit closer to starvation. Because there is no replenishment of 
resources, the local environment of the forager is gradually depleted by consumption. 
Thus its ultimate fate is to starve to death.

Basic questions for this starving random walk are: What is the dependence of (a) 
the total amount of food N  consumed at the instant of starvation and (b) the average 
lifetime T  of the forager on fundamental parameters—the metabolic capacity S and 
the spatial dimension d? It was previously found4 that N  grows as 

√
S  for d = 1 and as 

Sα with α ≈ 1.8 in the ecologically relevant case of d = 2. Correspondingly, the mean 
lifetime T  grows linearly with S for d = 1, as Sβ with β ≈ 1.9 in d = 2, and as exp(Sω) 
for d � 3, with ω ≈ 1/2 in d = 3, and with ω a gradually increasing function of d for 
d > 3 [17, 18]. A complete understanding of the dependence of the food consumed at 
starvation and the lifetime on S and d has not yet been reached.

2. Model and preview of results

In this work, we investigate a natural extension of the starving random walk to the 
situation where the forager possesses a minimal level of environmental awareness at 
the nearest-neighbor level (a preliminary account of these results were given in [19]). 
Namely, whenever the nearest neighborhood of a forager contains both empty and full 
(food-containing) sites, the forager preferentially moves toward one of the full sites 
(figure 1). We will also investigate the opposite situation in which the forager tends 
to avoid food. We refer to the local propensity to move towards or away from food as 
‘greed’, which is quantified by a greediness parameter G, with −1 � G � 1. Positive 
values of G correspond to a forager that moves preferentially towards food in its nearest 
neighborhood, while for G < 0, the forager tends to avoid food.

In one dimension, we implement greed as follows: when one neighbor of the forager 
contains food while the other neighbor is empty, the forager moves towards the food 
with probability (figure 1).

p = (1 +G)/2. (1a)
When the neighboring sites are both empty or both full, then the forager hops equi-
probably to the right or to the left. For two and higher dimensions, when there are k 

4 Because the exponents α and β are close to 2, it is natural to speculate that N  and T  both grow as S2, but 
modified by logarithmic corrections. However, simulations are unable to distinguish this possibility from a power 
law with exponent 1.8 (α) and 1.9 (β).

https://doi.org/10.1088/1742-5468/aa7dfc
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neighboring sites that contain food and z − k empty sites (with z the lattice coordina-
tion number), the forager chooses one of the full sites with probability

p = (1 +G)/
[
(z − k)(1−G) + k(1 +G)

]
. (1b)

As the walker moves, it creates a depleted region in which food at all sites along its 
trajectory has been consumed (figure 2). We term this region as the ‘desert’. The desert 
enlarges each time the forager comes to the perimeter and hops to a food-containing 
site. Greed modifies the motion of the forager only when it is at the desert perimeter. 
As the desert grows, the forager typically spends longer time periods wandering in the 
desert without food. Eventually the forager wanders for S steps without encountering 
food and dies of starvation.

Our implementation of this local greediness represents a particularly simple feed-
back between the state of the environment and the forager motion. Other classic 
examples of such feedback include the run and tumble model of chemotaxis [20–22], in 
which a bacterium eectively swims up a continuous concentration gradient of nour-
ishment, and infotaxis models [23, 24], in which a forager finds a target by moving up 
an information gradient. In classic chemotaxsis models, the concentration of nutrients 
is fixed and unaected by forager consumption. In contrast, our modeling explicitly 
incorporates resource depletion; a related type of resource depletion also occurs in auto-
chemotaxis [25–27].

Our goal is to determine how greed aects the dependence of the average forager 
lifetime T  on its capacity S. Naively, one might expect that greed is ‘good’5 and always 
increases the forager lifetime. Unexpectedly, we find that greed can be either good 
or bad, depending on S and d (figure 3). Specifically, the forager lifetime varies non- 
monotonically with greediness when S is large, with opposite senses of the non-mono-
tonicity in d = 1 and d = 2.

While positive greed seems biologically more relevant, the extension to negative 
greed, where the forager is food averse, leads to surprising features. By construction, a 
forager with negative greed preferentially hops away from food when at the boundary 
of a desert. Naively, one might anticipate that this tendency would decrease the forager 
lifetime. However, for the one-dimensional ‘Eden’ initial condition, where all sites ini-
tially contain one unit of food, the forager lifetime grows dramatically as G decreases 
toward −1 (or equivalently p close to 0) (figure 3(a)). This growth in the lifetime stops 
at a critical value of G that is slightly larger than −1; below this point the lifetime 
again decreases as G → −1, as it must.

Figure 1. Motion of a greedy forager (×). Solid and open circles indicate food and 
empty sites, respectively. Arrow widths indicate relative hopping probabilities.

5 As quoted by Michael Douglas in his role as Gordon Gekko in the movie Wall Street.

https://doi.org/10.1088/1742-5468/aa7dfc
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We begin, in section 3, by deriving general first-passage properties for a greedy 
forager in one dimension that moves as a random walk in the desert interior, but is 
biased either toward or away from food, when the forager is at the desert edge. We then 
investigate the greedy forager problem in the simpler case of a one-dimensional semi-
infinite geometry (section 4), where we derive the exact lifetime. Next, we investigate 
the forager lifetime for the Eden initial condition in one dimension (section 5). We first 
present a heuristic argument for the non-monotonic dependence of lifetime on greedi-
ness and then develop a rigorous approach for this dependence. We also treat the case 
of a forager with negative greediness. In section 6 we study greedy forager dynamics in 
two dimensions.

3. First-passage formalism

The dynamics of the greedy forager is governed by the probability that it reaches food 
in S steps or less from the last time of its last meal. This quantity is just the time int-
egral of the first-passage probability to reach food up to time S. Because the motion of 
a greedy forager is dierent at the boundary of the desert than in the interior, we must 
extend the first-passage formalism developed in [17, 18] to account for this boundary 
perturbation. In this section, we summarize these boundary-perturbed first-passage 
properties for a greedy forager that will be used in the following sections.

Consider a random walk that is either at x = 1 or x = L− 1 in the interval [0, L]. 
Let fL(t) denote the probability that an isotropic random walk first reaches either 
edge of the interval at time step t with this initial condition. Throughout, all lengths 
are expressed in dimensionless form in units of the lattice spacing a. Now consider a 
greedy forager at the edge of the interval. It hops toward food with probability p and 
away from food with probability 1− p. In the interior of the interval the forager hops 
symmetrically. We define FL(t) as the probability that this greedy random walk, which 

Figure 2. (a) Illustration of the desert in one dimension and (b) its growth in 
two dimensions. Black circles: sites in the desert interior, blue circles: sites on the 
desert perimeter, green dots: food. At perimeter sites, the forager is biased to move 
toward food, for G > 0, or away from food, for G < 0.

https://doi.org/10.1088/1742-5468/aa7dfc
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starts at either x = 1 or x = L− 1, first reaches either x = 0 or x = L at the t  th step. 
These two first-passage probabilities are related by the convolution

FL(t) = p δt,1 + (1− p)
∑

t′�t−1

fL−2(t
′)FL(t− t′ − 1).

 (2)

The first term accounts for a forager reaching food in a single step. The second term 
accounts for the forager hopping to the interior of the interval. In the latter case, the 
walker starts at x = 2 or x = L− 2 and hops symmetrically until it again reaches either 
x = 1 or x = L− 1. Thus the relevant first-passage probability is that for an unbiased 
random walk that starts at x = 2 or x = L− 2 in the interval [1, L− 1]. Once the walker 
first reaches either x = 1 or x = L− 1, the process renews and the subsequent propaga-
tion involves FL. Since one time unit is used in the first hop to the right, the walker 
must reach the boundary in the remaining time t− t′ − 1 steps.

To solve equation (2), we employ the generating functions

f̃L(z) =
∑
t�1

fL(t) z
t, F̃L(z) =

∑
t�1

FL(t) z
t.

to reduce this equation to F̃L(z) = pz + (1− p) z f̃L−2(z) F̃L(z), with solution

F̃L(z) =
pz

1− (1− p) z f̃L−2(z)
. (3)

We also exploit first-passage ideas to write formal expressions for two basic observ-
ables: (a) the average amount of food N  consumed when the forager starves, and (b) 
the average forager lifetime T . To compute these two quantities, we first define the 
probability Vk that the forager has visited k distinct sites at the instant of starvation; 
this is the same as the probability that the forager has eaten k times at the instant of 
starvation. We can express this probability in the form

Vk =
[
1−Fk(S)

] k−1∏
j=1

Fj(S). (4)

Figure 3. Our primary result: Simulation data (discrete points) for the non-
monotonic dependence of the scaled average forager lifetime T /S on greediness 
G = 2p− 1 in: (a) one and (b) two dimensions. Error bars are smaller than symbol 
sizes throughout. Also shown is the analytical prediction for the lifetime; note that 
the numerical evaluation of (31b) becomes increasingly unstable as G → 1.

https://doi.org/10.1088/1742-5468/aa7dfc
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Here Fk(S) is the probability that the forager eats before it starves in a desert of k 
sites, which can be interpreted as the probability that the forager successfully escapes a 
desert of k sites when it starts one site away from the edge. Thus to create a desert of 
k sites, the forager must successively escape a desert of 1, 2, 3, . . . , k − 1 sites and then 
fail to escape a desert of k sites. (Note that by definition Fk(S) = 1.) In turn, Fk(S) is 
given by

Fk(S) =
S∑

t=0

Fk(t), (5)

where Fk(t) is the greedy-forager first-passage probability introduced just above equa-
tion (2). While we tacitly assume a finite interval length, we will also adapt the formal-
ism above to the case of a semi-infinite interval in the next section.

The average amount of food consumed by the forager at the instant of starvation 
and the average forager lifetime can now be expressed simply in terms of the distribu-
tion of the number of distinct sites visited at starvation (see also [17, 18]):

N =
∑
k�0

kVk, (6a)

T =
∑
k�0

[ k−1∑
j=1

τj
]
Vk + S, (6b)

where τj = τj(S) is the average time for a forager to successfully escape a desert of 
length j by eating a unit of food at the desert edge before starvation is reached. This 
escape time τj may be expressed in terms of the first-passage probability Fj(t) of the 
greedy forager by

τj =

∑S
t=0 t Fj(t)∑S
t=0 Fj(t)

. (7)

In the following sections, we will use these general formulae to compute N  and T  
for both the semi-infinite- and finite-desert geometries.

4. One dimension: semi-infinite desert geometry

4.1. Heuristic approach

In this geometry, all sites with x � 0 initially contain food, all sites with x � 1 are 
empty, and the forager begins in a fully sated state at x = 1. When the forager is 
extremely greedy, corresponding to p → 1, and also for large S, a typical trajectory 
consists of segments where the forager moves ballistically into the food-containing 
region, interspersed by diusive segments in the desert (figure 4). As long as the 
diusive trajectory segment lasts less than S steps, the forager returns to the food/
desert interface and another cycle of consumption and subsequent diusion in the 
desert begins anew.

https://doi.org/10.1088/1742-5468/aa7dfc
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We now exploit this picture of alternating ballistic and diusive segments to esti-
mate the average forager lifetime. In a typical trajectory, a ballistic segment of m con-
secutive steps towards food followed by a step away from food occurs with probability 
pm(1− p). The average time for such a ballistic segment is

tb =
∑
m�1

mpm (1− p) =
p

1− p
.

 (8a)

The diusive segment must return to food within S steps for the forager to survive. 
Since we are primarily interested in the limit where S is large, we may use, without 
loss of accuracy, continuum expressions to describe the diusive segments. In this con-
tinuum limit, the return probability R is the integral of the first-passage probability 
for a forager with diusivity D that starts at x = 1 to reach x = 0 within time S [30]:

R =

∫ S

0

dt
e−1/4Dt

√
4πDt3

= erfc(1/
√
4DS),

where erfc(·) is the complementary error function. Again in the continuum limit, the aver-

age number of such successful returns is 〈r〉 =
∑

r�1 rRr(1−R) = R/(1−R) �
√
πS/2 

for S → ∞, where the asymptotics of the error function gives the final result, and we 

take the diusion coecient D = 1
2
 to correspond to our discrete random-walk simula-

tions. For a forager that does return within S steps, the average return time tr is

tr =
1

R

∫ S

0

dt t
1√

4πDt3
e−1/4Dt,

=

√
2S
π

e−1/2S

erfc(1/
√
2S)

− 1 �
√

2S
π

− 1.

 (8b)

Here and henceforth the symbol ≃ means asymptotically exact as S → ∞
The total trajectory therefore consists of 〈r〉 =

√
πS/2 elements, each of which are 

comprised of a ballistic and a diusive segment. Thus the forager eats p
1−p

 units of food 
during each element and the time for each element equals tb + tr. There is also the final 

Figure 4. Space-time trajectory of a greedy forager with lifetime 271 steps for 
p = 0.9 and S = 100 (corresponding to 1− p = 1/

√
S ) in one dimension. Here, the 

forager quickly carves out a desert whose length precludes reaching the far side at 
x = 0; thus the far side is irrelevant.

https://doi.org/10.1088/1742-5468/aa7dfc
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and fatal diusive segment of exactly S steps. Consequently, the food consumed by the 
forager and its lifetime, which we respectively write as NSI and TSI (with the subscript 
SI denoting the semi-infinite system) respectively, are (figure 5)

NSI �
p

1− p

√
πS
2
, (9a)

TSI � 〈r〉(tb + tr) + S =
2p− 1

1− p

√
πS
2

+ 2S. (9b)

For the lifetime, there are two distinct limiting cases:

 •	 Weak greed ( 1
1−p

<
√
S ): Lifetime linear in S.

 •	 Strong greed ( 1
1−p

>
√
S ): Lifetime proportional to 

√
S . However, the amplitude 

of 
√
S  is proportional to 1

1−p
 so that the sublinear term is actually larger than S.

4.2. Asymptotic solution

We now apply the formalism of section 3 to obtain asymptotic solutions for NSI and 
TSI, as well as their underlying distributions. In the semi-infinite geometry, each term in 
the product in the distribution of visited sites (4) is identical because the desert length 
is always (semi-)infinite. Thus the length subscripts for all quantities in section 3 can be 

dropped. From (4), the probability that k units of food have been eaten at the instant of 

starvation simplifies to Vk = Fk(S)
[
1−F(S)

]
. Thus the average amount of food eaten 

by the forager at the instant of starvation is

NSI =
∑
k

kVk =
F(S)

1−F(S)
. (10)

Figure 5. (a) Average food consumed N  at starvation for the case S = 104, and (b) 
average forager lifetime T  versus greediness G = 2p− 1 for S = 101, 102, and 103. 
In (a), the dashed curve is the prediction (9a), while the circles are the simulation 
results. In (b), the dashed curves are the continuum predictions (9b), while the 
solid curves are the exact expression (17).

https://doi.org/10.1088/1742-5468/aa7dfc
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To obtain F(S) we need the underlying first-passage probability (3). We start with 
the well-known expression for the generating function of the first-passage probability 

for the isotropic random walk in the semi-infinite geometry, f̃(z) = (1−
√
1− z2)/z 

[28], and substitute into equation (3) to give

F̃ (z) =
z

1 + 1−p
p

√
1− z2

.
 (11)

We deduce the long-time behavior of F (t) from the z → 1 behavior of F̃ (z), from 
which we can compute F(S), and finally the amount of food eaten by the forager when 
it starves, NSI, and its lifetime TSI. For large S, we obtain, both for p � 1/

√
S  and 

p � 1/
√
S  (details are given in appendix A),

NSI �
p

1− p

√
πS
2
, S → ∞. (12a)

To compute the average forager lifetime, we need the time τk for a forager to escape 
a desert of length k (equation (6b)). In the semi-infinite geometry, all these excursion 
times are identical, τk = τ , so that TSI = τNSI + S . The derivation of τ is also given in 
appendix A and the final result for the lifetime has two dierent forms depending on 
whether p � 1/

√
S  or vice versa

TSI �

{
2S + ( p2−4p+2)

p(1−p)

√
πS
2
, p � 1/

√
S,

1
2
pS2 + p

√
π
18
S3/2 + S, p � 1/

√
S.

 (12b)

4.3. Exact discrete solution

We now obtain the exact lifetime for any p and S by enumeration. As a preliminary, 
first consider small S. In the initial state, labeled a in figure 6, the forager is adjacent to 
the food. For S = 1, the system can evolve in only two ways: either the forager moves 
towards the food, which happens with probability p, or the forager moves away. In 
the former case, the forager eats and the process renews; that is, the system remains 
in the initial state. In the latter case, the forager necessarily dies after one more step. 
These evolution steps lead to the state space with two distinct states, a and b (figure 
6(a)). From this figure, the average lifetime starting from state a satisfies the backward 
Kolmogorov equation [30]

Figure 6. (a) State space of the semi-infinite system for S = 1. Top row: the 
initial state. Next row: states after the forager hops once. The subscript on the 
symbol  ×  denotes the number of time steps that the forager goes without food. (b) 
State space of the semi-infinite system for S = 2 and 3.

https://doi.org/10.1088/1742-5468/aa7dfc
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ta = p(1 + ta) + (1− p) · 2,

which gives T1 ≡ ta(S = 1) = (2− p)/(1− p). This same enumeration can straightfor-
wardly (but more tediously) extended to larger S. After one step, the states of the sys-
tem for S = 2 are identical to those for the case S = 1, but the states after two steps 
are distinct (figure 6(b)). The corresponding equations for the lifetime starting from any 
state are:

ta = p (1 + ta) + (1− p)(tb + 1),

tb =
1

2
(tc + 1) +

1

2
(td + 1),

tc = p(ta + 1) + (1− p),

td = 1.

Solving these equations, the lifetime starting from the initial state a for S = 2 is

T2 ≡ ta(2) =
2(3− 2p)

(1− p)(2− p)
. (13a)

The enumeration for S = 3 is the same as that for S = 2, except that the forager lives 
exactly one more time step before starving. Thus T3 = T2 + 1. Following this same 
approach, the lifetimes for the next few values of S are

T4 =
5(5− 5p+ p2)

(1− p)(8− 7p+ 2p2)
, T5 = T4 + 1, (13b)

T6 =
4(28− 35p+ 13p2 − 2p3)

(1− p)(16− 19p+ 10p2 − 2p3)
, T7 = T6 + 1. (13c)

We now systematize this enumeration for arbitrary S. We first split the set of all 
trajectories into two categories: (a) set P, which contains all paths that return to food 
before the forager starves and (b) set Q, which contains all paths where the forager 
starves. With this decomposition, the average lifetime for general S can be written as

T =
∑
p∈P

Pp (tp + T ) +
∑
q∈Q

Pq S. (14a)

Here Pp and Pq are the probabilities of paths p ∈ P and q ∈ Q, and tp is the time for 
the forager to return to food via path p. The time for all paths in Q that lead to star-
vation is simply S. Rearranging the above expression gives

T =

∑
Pptp +

∑
PqS

1−
∑

Pp

. (14b)

Since the union P ∪ Q gives all paths, we have 
∑

p Pp +
∑

q Pq = 1. We use this rela-
tion to simplify the second term in the numerator to give

T =

∑
Pptp

1−
∑

Pp

+ S. (14c)

To compute 
∑

Pp, we first note that the probability of a particular path depends 
only on: (i) its length, which we write as 2n+ 1, as a path that starts at x = 1 can reach 
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food at x = 0 only in an odd number of steps, and (ii) the number of times k that the 
path is adjacent to food. The probability of a single path therefore is

Pp =

(
1

2

)(2n−k)

(1− p)k p.

That is, the forager performs an unbiased random walk for the (2n− k) steps where the 
forager is not adjacent to food, and steps into the desert k times, each with probability 
1− p, when adjacent to food. In the final step, the forager reaches food with probability 
p (figure 7). The sum over all paths that return can be partitioned into sets of paths 
that are adjacent to the edge of the desert for exactly k steps. The number of paths of 
this type—of length 2n+ 1 with k adjacencies to the desert–is

A(n, k) =
(2n− k − 1)! k

(n− k)!n!
. (15)

The derivation of this result is given in appendix C.
Using this expression for the number of paths, we have

∑
Pp = p+ p

�S/2�∑
n=1

n∑
k=1

A(n, k)(1− p)k
(
1

2

)(2n−k)

. (16)

The prefactor p before the sum arises from the last segment of the path in which the 
forager consumes one unit of food. We also write the n = 0 term separately as it does 
not conform to the general expression inside the sum. Using equations (14c) and (15), 
the average lifetime for any S is given by

T =
p+ p

∑�S/2�
n=1

[
(2n+ 1)

∑n
k=1 A(n, k)(1− p)k

(
1
2

)(2n−k)
]

1− p− p
∑�S/2�

n=1

[∑n
k=1 A(n, k)(1− p)k

(
1
2

)(2n−k)
] + S. (17)

Figure 7. Illustration of paths that reach food in 2n+ 1 = 23 steps with dierent 
k, the number of times the path is adjacent to food (green strip). The indicated 
Catalan numbers show the number of possible paths given the constraint of hitting 
the edge of the desert exactly k times. The total number of solid-dashed, dotted, 
and solid paths are C10, C2C0C6, and (C0)11.
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The comparison between this exact lifetime and the continuum expression (12b) is given 
in figure 5(a). The continuum result is an excellent approximation for p > 0.8 for any S.

5. One dimension: finite desert geometry

We now turn to the geometry where each site initially contains food—the Eden initial 
condition—and the forager gradually carves out a finite-length desert. Unexpectedly, 
the average forager lifetime varies non-monotonically with (positive) greediness when 
S > S∗, with S∗ ≈ 45 (figure 8)—a little greed is bad for a suciently ‘rich’ forager, 
but extreme greed is good.

5.1. Heuristics

We first present a heuristic argument for both the food consumed at starvation N  and 
the lifetime T . Our argument predicts both the non-monotonic lifetime for positive 
greediness and a huge maximum in the lifetime for a negative greediness (figure 3(a)). 
In our approach, starvation proceeds in two stages6:

 (i) The forager first carves a critical-length desert by repeatedly reaching either edge 
of the desert within S time steps after food is consumed. The critical length Lc 
is such that a forager of capacity S typically starves when it attempts to cross a 
desert of length L > Lc. We define the time to create a critical-length desert as 
T(i) and the food consumed in this phase as N(i).

 (ii) Once the desert length reaches Lc, the forager likely starves if it attempts to cross 
the desert. That is, the far side is unreachable and thus is irrelevant. The time 
for this second stage, T(ii) is therefore just the mean lifetime TSI in a semi-infinite 
desert. Similarly, the amount of food consumed in this phase is NSI.

Figure 8. Simulation data for the average forager lifetime T  versus greediness 
G = 2p− 1 in one dimension. The survival times have been scaled by S so that all 
the data fit onto the same plot.

6 This argument represents both an extension and a simplification of the intuitive picture for the starvation  
process given in [18].
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To adapt the above argument to a greedy forager, we need the exit probabilities and 
exit times in a finite interval for the random walk that mimics the motion of the greedy 
forager—isotropic hopping in the desert interior and hopping towards food with prob-
ability p and away from food with probability 1− p at the desert edge; these quantities 
are derived in appendix B. When the forager starts a unit distance from food in a desert 
of length L, the average time to reach food is (equation (B.4))

t1 =
1− p

p
L+ 3− 2

p
. (18)

Notice that when 1− p � 1
L
, the mean time to reach food when starting at n = 1 

approaches 1, while for no greed, t1 = L− 1. By definition

N(i) = Lc, (19a)

while from (18), the time to reach the critical length Lc is

T(i) =
1− p

p

Lc(Lc + 1)

2
+
(
3− 2

p

)
Lc �

1− p

p

L2
c

2
. (19b)

For large S and hence large Lc, we have

N = N(i) +N(ii) = Lc +NSI,

T = T(i) + T(ii) �
1− p

p

L2
c

2
+ TSI.

 (20)

We now use the crossing time from equation (B.7) for an interval of length L � 1

t× ≈ 2

3
L2 +

4

3

L

p
, (21)

and set t× equal to S to give the critical desert length

Lc �

{√
3S/2 p � 1/

√
S,

3pS/4 p � 1/
√
S. (22)

We emphasize that dierent behaviors arise for p � 1/
√
S  and p � 1/

√
S . Using the 

expression for TSI in (12b) together with (20) and (22), we have, for p � 1/
√
S ,

N �
√

3S
2

+
p

1− p

√
πS
2
, (23a)

T � 1− p

p

3S
4

+ 2S − ( p2 − 4p+ 2)

p(1− p)

√
πS
2
, (23b)

while for p � 1/
√
S

N � 3

4
pS +

p

1− p

√
πS
2
, (24a)

T � 9

32
pS2 + S + p

√
π

18
S3/2. (24b)
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Two important consequences follow from the above expressions for T , as illustrated 
in figures 3 and 8:

 •	 Expanding equation (23b) for p = 1
2
+ ε with ε → 0 gives

T � 11

4
S +

(
12

√
πS
2

− 10S
)
ε.

 	 Thus the lifetime initially increases with ε for S < S∗ = 18π/25 and initially 
decreases otherwise. While the numerical value of S∗ should not be taken seri-
ously because of the crudeness of our argument, the important point is that S 
is a non-monotonic function of greediness for S > S∗ because the lifetime must 
eventually increase with greediness as G → 1.

 •	 At the crossover, where p ∼ 1/
√
S, equations (23b) and (24b) give the common 

lifetime T ∼ S3/2. A huge maximum! This maximum arises because the forager 
eats only when it absolutely must. Because desert is small for G ≈ −1 (see equa-
tion (24a)), the strategy of avoiding food until nearly S steps have elapsed is not 
that risky.

5.2. First-passage approach

We now determine the amount of food consumed at starvation, N , and the lifetime 
T  of a greedy forager by extending the approach of [17, 18] to account for greed. We 
start with the first-passage probability for pure diusion in the interval [0, L] and then 
compute the first-passage probability for greedy forager motion in this same interval. 
From this, we obtain the probability FL(S) that the greedy forager can escape a desert 
of length L, as well as the escape time time τL for this event. From these two quantities 
we finally determine N  and T .

The Laplace transform of the first-passage probability for diusion on [0, L] is [30]

f̃L(s) =
sinh

(√
s
D

)
+ sinh

(√
s
D
(L− 1)

)

cosh
√

s
D
L

= cosh

√
s

D
− tanh

√
sL2

4D
sinh

√
s

D
,

−→
s→0

1−
√

s

D
tanh

√
sL2

4D
+ · · · .

Substituting this expression in (3) and converting the generating function to a con-
tinuum Laplace transform by replacing z → 1− s, the Laplace transform of the first-
passage probability for greedy forager motion for s → 0 and L → ∞ is

F̃L(s) =

(
1 +

1− p

p

√
s

D
tanh

√
sL2

4D

)−1

. (25)

Note that this expression reproduces the discrete generating function F̃ (z) in equa-
tion (11) for L → ∞ with z → 1− s and D = 1/2. As in the semi-infinite geometry,  
we must separately examine the limits p � 1/

√
S  and p � 1/

√
S .
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5.3. The regime p � 1/
√
S

Since the Laplace variable s corresponds to 1/S for large S, the limit p � 1/
√
S  cor-

responds to 
√
s/p � 1. In this case equation (25) simplifies to

F̃L(s) � 1− 1− p

p

√
s

D
tanh

√
sL2

4D
+ · · · . (26)

Since FL(S) =
∫ S
0
FL(t) dt (see equation (5)), their Laplace transforms are related by 

F̃L(s) = F̃L(s)/s [31]. Taking the inverse Laplace transform, the probability that a 
greedy forager escapes an interval of length L within S steps is

FL(S) � 1− 1− p

p

1

2πi
√
D

∫

C

ds esS
1√
s
tanh

√
sL2

4D
, (27a)

where the vertical segment of the Bromwich contour C lies to the right of all poles of 
the integrand. These poles are located at sn = −Dπ2(2n+ 1)2/L2, with n ∈ N, so that

FL(S) � 1− 1− p

p

4

L

∞∑
n=0

e−DS[π(2n+1)]2/L2

. (27b)

The above represents the exact Laplace inversion of the asymptotic form for F̃L(s).
To compute the time τL for a greedy forager to escape an interval of length L, we 

use the fact that for large S we can replace the denominator in the definition (7) for τL, 
which is the probability for the forager to escape an interval of length L within a time 
S, by 1. We then use standard Laplace transform manipulations to give, for large S,

τ̃L(s) � −1

s

∂

∂s
F̃L(s). (28)

Since the s-dependent term in equation (26) for F̃L(s) has the prefactor (1− p)/p, we 
have the general relation

τ̃L(s) �
1− p

p
τ̃L(s; p =

1

2
) (29)

between the escape time for the greedy forager and for a pure random-walk forager. 
Here, the right-hand side is just the escape time for the case p = 1/2 (random walk). 
Thus we obtain the fundamental relation between the escape times

τL � 1− p

p
τL( p =

1

2
) =

1− p

p

∫ θ

0

duu
∞∑
j=0

4

(2j + 1)2

{
1− e−(2j+1)2/u2

[
1 +

(
2j + 1

u

)2
]}

.

 (30)
For the second line, we copy the expression for τL in [17, 18] for the case of no greed, 
and we express the final result in terms of the natural scaling variable θ = L/(π

√
DS).

We now use these results for FL and τL to determine N  and T  (see appendix D for 
details):

N = N ∗ 4(1− p)

p

∫ ∞

0

dθ exp

[
−2(1− p)

p

∑
n�0

E1

(
(2n+ 1)2

θ2

)]∑
n�0

e−(2n+1)2/θ2 ,

 

(31a)
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where N ∗ ≡ π
√
DS and E1(x) =

∫∞
1

dt e−xt/t is the exponential integral, and

T � S 1− p

p

∫ ∞

0

dθ Vθ

∫ θ

0

duu
∞∑
j=0

4

(2j + 1)2

{
1− e−(2j+1)2/u2

[
1 +

(
2j + 1

u

)2
]}

+ S.

 
(31b)

We emphasize that Vθ defined in equation (D.5) depends on p, so that the lifetime T  for 
the greedy forager does not merely equal the lifetime for the non-greedy forager times 
(1− p)/p. The above prediction for T  agrees with our numerical simulations when S 
is large (figure 3). It is worth mentioning, however that numerical evaluation of (31b), 
along with (D.5), is time consuming (multiple nested integrals and sums) and unstable, 
so that simulation results were more expeditious to obtain in the regime S � 106.

5.4. The negative greed regime p � 1/
√
S , G ≈ −1

In this regime, the hyperbolic function in equation (25) can be replaced by its argu-

ment, so that F̃L(s) simplifies to

F̃L(s) �
(
1 +

L

2pD
s

)−1

, (32)

while again F̃L(s) = F̃L(s)/s. Inverting the above Laplace transform gives

FL(S) � 1− e−2pDS/L, (33)

while equation (28) leads to τ̃L(s) � L/(2pDs). Taking the inverse Laplace transform of 
this quantity immediately gives

τL(S) �
∫ S

0

tFL(t) dt �
L

2pD
. (34)

Using the above expression for FL and τL, we find, for N  and T  (see appendix D):

N �
∞∑
n=1

n e−2pDS/n exp

[
−
∫ n

1

e−2pDS/k dk

]
, (35a)

T � 1

2pS

∞∑
n=1

n2 e−2pDS/n exp

[
−
∫ n

1

e−2pDS/k dk

]
. (35b)

The asymptotic evaluations of these sums and integrals are performed in appendix E, 
and the final results are

N �
√
2π

e

pS
ln( pS)

, (36a)

T �
√

π

2

1

e

pS2

[
ln( pS)

]2 + S. (36b)
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These expressions agree with the naive estimates (24a) and (24b) up to logarithmic cor-
rections. The comparison between the asymptotic prediction for T  in equation (36b), 
the complete form (E.10), and simulations is shown in figure 9(b). The asymptotic 
approximation becomes increasingly accurate, albeit very slowly, as S increases. To 
observe the true asymptotic behavior of greedy forager trajectories by simulations, it 
would be necessary to treat random walks with S � 106, a range that is practically 
inaccessible.

6. Greedy foraging in two dimensions

In the dimensions, the desert carved out by a long-lived starving random walker is typi-
cally quite ramified [17, 18]. This geometric complexity seems to preclude an analytic 
solution for the forager lifetime. Instead, we present simulations and heuristic argu-
ments to assess the influence of greed on the forager lifetime. Surprisingly, the role of 
positive greed in two dimensions is opposite to that in one dimension. For S > S∗, with 
S∗ ≈ 90, the lifetime again varies non-monotonically with greediness (figure 10), but 
with the opposite sense to the non monotonicity compared to one dimension. An addi-
tional perplexing feature, at first sight, is that a perfectly greedy forager has a smaller 
lifetime than a forager that is not as avaricious.

We can justify this latter feature by appealing to the recurrence of a random walk 
in two dimensions [28, 29]. Thus there will be many points where the forager trajec-
tory intersects itself, leading to closed loops. Suppose that a perfectly greedy forager is 
about to form a closed loop on the square lattice, as illustrated in figure 11(a). At this 
point, the forager has only two possible choices for its next step, both of which lead to 
food being consumed at the next step. One of these choices leads to the outside of the 
incipient closed loop and the other leads inside. If the latter choice is made, the forager 
is eectively self trapped by the ‘moat’ that has been created by the previous trajectory.

Once inside the moat, a perfectly greedy forager will always consume food in its 
nearest neighborhood. This consumption is interrupted when all the current neighbors 

Figure 9. Simulation data for the dependence of the scaled forager lifetime T /S 
on G = 2p− 1 in the negative greed regime for (a) G in the range [−1,−0.9] and 
(b) [−1,−0.998] for the case S = 106. Also shown in (b) is the full expression from 
equation (E.10) (solid curve), and the asymptotic result (36b) (dashed curve).
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of the forager are empty. When this happens, either the interior is mostly or completely 
depleted (the latter is shown in figure 11(c)). While the former case is more likely, 
the remaining food will be scarce and isolated. Thus the forager carves out and then 
becomes trapped inside a (perhaps slightly imperfect) desert. In this circumstance, the 
forager is likely to starve before it can escape.

Conversely, if the greediness is close to but less than 1, a forager has a non-zero 
probability to cross the moat whenever it is encountered and thereby reach food on 
the outside. This mechanism provides a way for the forager to escape the desert and 
survive longer than if it remained inside. This argument suggests that the forager life-
time must be a decreasing function of G as G → 1, as confirmed by simulations (figure 
10). Also in stark contrast to one dimension, there is no anomalous peak in the forager 
lifetime for negative greed, at least for S � 256.

7. Discussion

We investigated the dynamics of a greedy forager that either moves preferentially 
towards food or away from food within its nearest neighborhood. Such a myopic 

Figure 10. Average forager lifetime T  versus greediness G in two dimensions. The 
survival times have been scaled by S so that they all fit on the same plot.

Figure 11. A random-walk trajectory that leads to trapping of a perfectly greedy 
forager. (a) Forager (×) at the decision point. (b) Forager hops to the interior 
region (shaded). (c) Food in the interior is completely consumed, so that the 
forager may be trapped inside the newly created desert.
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greediness (or anti-greediness) represents a particularly simple mechanism by which the 
motion of a forager is aected by its environment. In spite of its naiveté, the greedy for-
ager model exhibits rich, unexpected phenomenology that oer theoretical challenges.

As in the starving random walk without greed, a greedy forager depletes its environ-
ment by consumption, and one basic issue is to determine the lifetime of the forager as 
a function of its metabolic capacity S and its greediness G, or equivalently, p, the bias 
that the forager experiences when at the edge of the desert. We determined the forager 
lifetime exactly in the semi-infinite one-dimensional geometry. Here, the lifetime grows 
monotonically with greed, as might be expected naively, but the dependence of the life-
time on S and p is non trivial. For suciently strong greed, the forager lifetime scales 
as T ∼

√
S/(1− p), while for weak greed the lifetime is linear in S.

In the finite desert geometry, we found the unexpected feature that the forager 
lifetime depends non-monotonically on greediness when the capacity of the forager is 
suciently large. Moreover, the sense of the non-monotonicity is dierent in one and 
two dimensions. In one dimension, a little greed is ‘bad’, while a lot of greed is ‘good’, 
where ‘bad’ and ‘good’ mean decreased and increased lifetime, respectively. We gave 
a heuristic argument based on simple first-passage ideas to understand this non-mono-
tonicity. In two dimensions, the opposite occurs, as a little greed is ‘good’, while being 
very greedy is ‘bad’. We can understand the latter case in a simple way in terms of the 
self trapping of a forager.

We generalized the first-passage approach of [17, 18] to derive an analytic expres-
sion for the average forager lifetime in one dimension that applies in the limit of large 
S. This approach shows that a small amount of greed is indeed detrimental for the 
lifetime of the forager in one dimension. Finally, we studied the intriguing case where a 
forager has negative greed, which means that it avoids food in its local neighborhood. 
Strikingly, the lifetime of a forager in one dimension exhibits a huge maximum when 
the greediness G is close to −1, or equivalently, p → 0. Using first-passage ideas, we 
argued that the maximum lifetime occurs at a value of p that scales as S−1/2 and that 
the lifetime at this maximum scales as S3/2.

There are several open questions about the greedy forager model that deserve 
further study. First, what is dynamics of a greedy forager in two dimensions? Why is 
the dependence of lifetime on greed opposite to that of one dimension? Why is there 
no peak in the lifetime for a forager with very negative greed? What is the nature 
of the desert geometry for dierent values of greediness? Second, what is the life-
time of a greedy forager in greater than two dimensions? Simulations are of limited 
value because the lifetime is extremely long for non-negligible greed and memory 
and/or computation time constraints become prohibitive. What simulations can say 
is obvious—in going from no greed to a specified positive value of greediness, the 
increase in the forager lifetime is much greater in three dimensions than in two. In 
high dimensions, the mean-field argument given in [17, 18] still seems to apply; this 
predicts that the forager lifetime will grow as eS. In the limit of perfect greed, it is 
always possible to construct analogs of the two-dimensional cul-de-sac of figure 11, in 
which a forager can enter, get trapped, and subsequently starve. Thus the question 
of whether the forager lifetime depends non-monotonically on greed in greater than 
two dimensions is still open.
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Appendix A. Semi-infinite geometry

For fixed p, the large-S behavior of the generating function F̃ (z) in equation (11) may be 

conveniently computed in terms of the generating function for F  in F(S) =
∑S

t=0 F (t). 
The relation between these two generating functions is [31]

F̃(z) =
∞∑

S=0

F(S)zS =
g̃(F )

1− z
. (A.1)

Dierentiating with respect to z gives

∞∑
S=0

SF(S)zS = z
d

dz

(
F̃ (z)

1− z

)

∼
z→1

1

(1− z)2
− 1√

2

1− p

p

1

(1− z)3/2
− 1

(1− z)
+ . . .

 

(A.2)

We finally obtain the large-S behavior of F(S) by using a discrete Tauberian theorem 
[29, 32] to give

F(S) = 1− 1− p

p

√
2

πS
− 1

S
+ . . . (A.3a)

For p � 1/
√
S , we use the above expression for F(S) in equation (10) to give the result 

quoted in (12a).
When p → 0 is taken before S → ∞, we use the following limiting expression of 

F̃ (z) from equation (11),

lim
p→0

F̃ (z)

p
=

z√
1− z2

,

in (A.2) to give

lim
p→0

∑∞
S=0 SF(S)zS

p
∼
z→1

1

2
√
2

1

(1− z)5/2
,

so that

lim
p→0

F(S)
p

∼
S→∞

√
2S
π
. (A.3b)

Substituting the above results for F(S) in NSI = F(S)/
[
1−F(S)

]
, from equation (10), 

gives
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lim
p→0

NSI

p
�

√
πS
2
, S → ∞. (A.4)

Note that the result for NSI quoted in equation (12a) holds for both p � 1/
√
S  and 

p � 1/
√
S .

We now determine the escape time τ for S → ∞,

τ =

∑S
t=0 tF (t)∑S
t=0 F (t)

=

∑S
t=0 tF (t)

F(S)
≡ F (1)(S)

F(S)
. (A.5)

Following the same reasoning as given above, the generating function for F (1)(S) is
∞∑

S=0

F (1)(S)zS =
z

1− z
F̃ ′(z), (A.6)

which leads to, as z → 1,
∞∑

S=0

F (1)(S)zS =
1√
2

1− p

p

1

(1− z)3/2
− p2 − 4p+ 2

p2
1

1− z
+ . . . (A.7)

Using again a Tauberian theorem, the large-S behavior of A is

F (1)(S) = 2√
π

1− p

p

√
S − ( p2 − 4p+ 2)

p2
+ · · ·

so that

τ =
2√
π

1− p

p

√
S − ( p2 − 4p+ 2)

p2
+ · · · (A.8)

where we have also used equations (A.3a) and (A.5). Note that the subleading term 
in this expansion becomes important when p → 1. Substituting the expression for τ in 
TSI = τNSI + S gives the final result for the lifetime quoted in equation (12b).

If the limit p → 0 is taken before the large-S limit, the expression equation (A.3a) 
for F̃  has to be used in equation (A.6). This leads to, for p → 0,

∑∞
S=0 F (1)(S)zS

p
∼
z→1

3
√
2

4(1− z)5/2
,

and thus

F (1)(S)
p

∼
S→∞

√
2

9π
S3/2.

Using now equations (A.3b) and (A.5), we find

τ ∼
S→∞

1

3
S, (A.9)

which ultimately leads to equation (12b).
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Appendix B. Escape from an interval

We determine the first-passage properties of a random walk in a finite interval of 
length L whose hopping rules are the same as that of a greedy forager. That is, a walk 
in the interior hops equiprobably to the left and right, while a walk at either x = 1 or 

x = L− 1 hops to the edge of the interval with probability p and into the interior with 
with probability 1− p (figure B1). For this walk, we calculate the exit probabilities to 
each side of the interval, the time to exit either side of the interval, and the conditional 
exit time to exit by each edge of the interval. We use this information in section 5.1 
to argue that the lifetime of a forager with a suciently large capacity varies non-
monotonically with greediness.

Let En be the probability that the forager, which starts at site n, exits the interval 
via the left edge. The exit probabilities satisfy the backward equations

E1 = p+ qE2,

En =
1

2
En−1 +

1

2
En+1 2 � n � L− 2,

EL−1 = qEL−2.

 (B.1)

No boundary conditions are needed, as the distinct equations for n = 1 and n = L− 1 
fully determine the exit probabilities. As we shall see, En = 0 not at n = L, but at 
dierent value of n, and similarly for the point where En = 1. This same behavior could 
be recovered by imposing the radiation boundary condition at n = 0, L [29], but this 
procedure involves subtleties that are tangential to the point of the current derivation.

Since the deviation to random-walk motion occurs only at the boundaries, we 
attempt a solution that has the random-walk form in the interior of the interval: 
En = A+ Bn. This ansatz automatically solves the interior equations (2 � n � L− 2), 
while the boundary equations for n = 1 and n = L− 1 give

E1 = p+ qE2 −→ A+ B = p+ q(A+ 2B),

EL−1 = qEL−2 −→ A+ B(L− 1) = q
(
A+ B(L− 2)

)
,

from which A and B are

A =
p(L− 2) + 1

pL+ 2(1− 2p)
, B = − p

pL+ 2(1− 2p)
.

Thus the probability that a greedy random walk that starts at x = n exits via the left 
edge of the interval is

En = A+ Bn =
L− n+ 1

p
(1− 2p)

L+ 2
p
(1− 2p)

, (B.2)

while the exit probability via the right edge is 1− En. As might be expected for a per-
turbation that applies only at the boundary, the overall eect of greed on the exit prob-

ability is small: the exit probability changes from En = 1− n
L
 for p = 1

2
 to En = 1− n−1

L−2
 

for p = 1. That is, the eective interval length changes from L to L− 2 as p increases 

from 1
2
 to 1.
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Similarly, let tn be the average time for a greedy random walker to reach either edge 
of the interval when the walk starts at site n. These exit times satisfy the backward 
equations

t1 = p+ q(t2 + 1),

tn =
1

2
tn−1 +

1

2
tn+1 + 1 2 � n � L− 2,

tL−1 = p+ q(tL−2 + 1).

 (B.3)

Again, no boundary conditions are needed, as the equations for n = 1 and n = L− 1 are 
sucient to solve (B.3). We attempt a solution for these second-order equations that 
has the same form as in the case of no greed: tn = a+ bn+ cn2. Substituting this ansatz 
into (B.3) immediately gives c = −1, while the equations for t1 and tL−1 lead to the 
conditions

− 1 + a+ b = q(−4 + a+ 2b) + 1,

− (L− 1)2 + b(L− 1) + a = q
[
− (L− 2)2 + b(L− 2) + a

]
+ 1.

Solving these equations, the average exit time to either edge of the interval when 
starting from site n is

tn = n(L− n)− 2p− 1

p
(L− 2). (B.4)

This gives a parabolic dependence of tn on n that is shifted slightly downward compared 

to the case of no greed, as p ranges from 1
2
 to 1. Notice again that tn = 0 not at n = 0 

and n = L, but rather at points between n = 0 and 1 and between n = L− 1 and L 

for p > 1
2
. This overall shift leads to a tiny change in each tn, except when the forager 

starts one site away from the boundary. In this case, the average exit time reduces to 
the expression given in equation (18).

Finally, and for completeness, we determine the conditional exit times, t±n , defined 
as the time to reach the left edge of the interval when starting from site n (for t−) 
and to the right edge (for t+), conditioned on the walker exiting only by the specified 
edge. We focus on t−n , because once t−n  is determined, we can obtain t+n  via t+n = t−L−n.  
The conditional exit times t−n  satisfy

u1 = qu2 + E1,

un =
1

2
un−1 +

1

2
un+1 + En 2 � n � L− 2,

uL−1 = quL−2 + EL−1,

 (B.5)

where un ≡ Ent
−
n, with En, the exit probability to the left edge, given by equation (B.2). 

Because equations (B.5) are second-order with an inhomogeneous term that is linear 

Figure B1. Hopping probabilities for a greedy forager inside a desert of length L.
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in n, the general solution is a cubic polynomial: un = a+ bn+ cn2 + dn3. Substituting 
this form into equation (B.5) for 2 � n � L− 2, we obtain the conditions c = −A and 
d = −B/3, where A and B are the coecient of En in equation (B.2). The remaining 
two coecients are determined by solving the equations for u1 and uL−1 and the final 
results for the coecients a, b, c, d in un are:

a =
2(L− 2)(1− 2p)

[
p2(L− 4)(L+ 3

p
(1− p)) + 3

]

3p3
[
L+ 2

p
(1− 2p)

]2 ,

b =
2p2

[
L(L2 − 6L+ 6) + 8

]
+ 6pL(L− 3) + 6L− 8p

3p2
[
L+ 2

p
(1− 2p)

]2 ,

c = −
L+ 1

p
(1− 2p)

L+ 2
p
(1− 2p)

,

d = −1

3

1

L+ 2
p
(1− 2p)

.

 

(B.6)

The conditional exit time to the left edge is then t−n = un/En, with un = a+ bn+ cn2 + dn3, 
and En given by equation (B.2). We are particularly interested in t−L−1

, the conditional 
time for a walk that starts at x = L− 1 to reach x = 0. From equations (B.2) and (B.6), 
the limiting behavior of this crossing time for large L is given by

t−L−1 ≡ t× � 2

3
L2 +

4

3

L

p
, (B.7)

which is equation (21).

Appendix C. Catalan triangle numbers

We define the number of paths of length 2n that are adjacent to food exactly k times 
as A(n, k). Let C(n) be the ordinary Catalan numbers, which are defined as number of 
paths that return to the origin in exactly 2n steps. These are given by

C(n) =
1

n+ 1

(
2n

n

)
 (C.1)

We can write the following convolution form that relates A(n, k) with the Catalan 
numbers:

A(n, k) =

{
C(n− 1) k = 1∑n−k

j=0 C( j)A(n− j − 1, k − 1) k � 2. (C.2)

This relation can be justified as follows. The number of paths for which the forager 
returns to the boundary exactly once, namely, at the very end of the trajectory, is given 
by the ordinary Catalan number. The number of paths where the forager returns k � 2 
times to the boundary can be split into the number of subpaths that return for the 
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first time to the boundary layer at time 2j, times the number of subpaths that return 

k − 1 times to the boundary layer in the remaining 2(n− j − 1) time steps. This gives 
the second line in the right-hand side of equation (C.2). We now define the generating 
functions for C(n) and A(n, k),

F (x) =
∞∑
n=0

C(n)xn, (C.3a)

G(x, y) =
∞∑
n=1

n∑
k=1

xnykA(n, k). (C.3b)

Multiplying the left-hand side of equation (C.2) by xnyk and summing over n and k with 
the constraint that k � n, we obtain

∞∑
n=1

n∑
k=1

xnykA(n, k) =
∞∑
n=1

xnyC(n− 1) +
∞∑
n=2

n∑
k=2

n−k∑
j=0

xnykC( j)A(n− j − 1, k − 1).

 
(C.4)

Expressing the above equation in terms of the generating function itself, we obtain 
G(x, y) = xyF (x) + xyF (x)G(x, y), from which the solution is

G(x, y) =
xyF (x)

1− xyF (x)
.

Since it is known that F (x) = 2/(1 +
√
1− 4x) [35], we obtain

G(x, y) =
2xy

1 +
√
1− 4x− 2xy (C.5)

To invert equation (C.4), we first expand it in a power series in y,

G(x, y) =
2xy

1 +
√
1− 4x− 2xy

=
y

(1−
√
1− 4x)/2x− y

=
∞∑
k=1

yk
[

2x

1−
√
1− 4x

]k

=
∞∑
k=1

yk

[
1−

∞∑
n=0

C(n)xn+1

]k

.

 

(C.6)

Numerically expanding the above expression in a double power series in x and y using 
Mathematica, we obtain

A(n, k) =
(2n− k − 1)!k

(n− k)!n!
. (C.7)

It is worth noting that the coecients A(n, k) are related to the Catalan triangle num-
bers [33, 34] C(n, k) by the variable change, n → n− 1, k → n− k.
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Appendix D. Distribution of N  and T

We may generally write the escape probability in a finite interval of length L in the 
form (see equation (27b) and (33))

FL(S) = 1− a(L,S), (D.1)
with a(L,S) � 1. We determine the behavior of 

∏n
k=2 Fk(S) for large n by considering

ln
n∏

k=2

Fk(S) =
n∑

k=2

ln
[
1− a(k)

]
� −

n∑
k=2

a(k). (D.2)

Thus Vn defined in equation (4) becomes

Vn � a(n) exp
[
−

n∑
k=2

a(k)
]
. (D.3)

We separately consider the regimes p � 1/
√
S  and p � 1/

√
S . For the former:

n∑
k=2

a(k) =
4(1− p)

p

n∑
k=2

1

k

∞∑
j=0

e−DS[π(2j+1)/k]2 ,

� 4(1− p)

p

∫ n

0

dk

k

∞∑
j=0

e−DS[π(2j+1)/k]2 ,

� 4(1− p)

p

∫ n/
√
S

0

dk

k

∞∑
j=0

e−D[π(2j+1)/k]2 ,

� 2(1− p)

p

∑
n�0

E1

(
(2n+ 1)2/θ2

)
,

 

(D.4)

where θ ≡ n/(π
√
DS) and E1(x) ≡

∫∞
1

dte−xt/t is the exponential integral. The distri-
bution of the scaled variable θ is thus

Vθ �
4(1− p)

pθ

∑
j�0

e−(2j+1)2/θ2 exp

[
−2(1− p)

p

∑
��0

E1

(
(2�+ 1)2

θ2

)]
. (D.5)

The average amount of food consumed by the forager at the instant of starvation is 
the first moment of this distribution (see (4)) and immediately leads to equation (31a).

For p � 1/
√
S , we may write

n∑
k=2

a(k) �
∫ n

1

e−2pDS/k dk, (D.6)

which leads to

Vn � e−2pDS/n exp

[
−
∫ n

1

e−2pDS/k
]
dk. (D.7)

Substituting this result in equation (6b) immediately gives equation (36b).
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Appendix E. N  and T  for extreme negative greed in 1d

We now specialize first-passage quantities to the case of extreme negative greed; 
that is, G → −1, or equivalently, p → 0. Here the enumeration of trajectories to 
determine the distribution of food consumed at the instant of starvation (Vn in 
equation (4)) greatly simplifies because the forager typically moves back to the 
interior whenever it comes to the edge of the desert. Consider the initial condi-
tion · · · • × • · · ·, which corresponds to the forager being placed at the origin and 
immediately eating the food at this site. Here  ×  denotes the forager and • a food-
containing site. Now consider the configuration • • ◦ × • • · · · immediately after the 
forager has eaten a second time; here ◦ denotes an empty site. For the forager to 
never eat again, it must necessarily bounce back and forth between the two empty 
sites S + 1 times. Because the forager is always at the interface between food and 
an empty site, each step occurs with probability 1− p. Thus the probability that 
it does not eat again before starving, which is the same as the probability that the 
forager eats exactly twice, is

V2 = (1− p)S+1,

while the probability for the forager to eat more than twice is

F2(S) = 1− (1− p)S+1.

Generally, Fk(S) was also defined as the probability that the forager eats before 
it starves in an interval of k empty sites (see (4)). Because the forager has already 
eaten k times to create this interval, it must eat more than k times to escape this 
interval.

Suppose now that the forager has eaten a third time. The configuration immediately 
afterward is · · · • • ◦ ◦ × • • · · ·. For the forager to not eat again, it must next hop to 
the center of the interval, which occurs with probability (1− p), after which the next 
step necessarily takes the forager back to the edge. To avoid eating, the forager must 
repeat this pattern of hopping to center and then back to the edge S + 1 times. The 
probability for such a path of t steps is (1− p)t/2. Thus starting from · · · • • ◦ ◦ × • • · · ·, 
the forager starves without again eating with probability (1− p)(S+1)/2. Consequently, 
the probability that the forager eats exactly three times is

V3 = F2(S) (1− p)(S+1)/2,

while the probability that the forager eats more than three times is

F2(S)F3(S) =
[
1− (1− p)S+1

][
1− (1− p)(S+1)/2

]
.

Immediately after eating the fourth time, the configuration is · · · • • ◦ ◦ ◦ × • • · · ·. 
To not eat again, the forager must next hop away from the edge, which occurs with 
probability (1− p). From the resulting state · · · • • ◦ ◦ × ◦ • • · · ·, the mean time to 
reach either site at the edge of the desert equals 2 (appendix B). For t � 1, the forager 
will be at the edge of the desert t/3 times, on average, so that the probability that the 
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forager will starve without eating again is (1− p)(S+1)/3. Thus the probability that the 
forager eats exactly four times before starving is7

V4 = F2(S)F3(S) (1− p)(S+1)/3.

Continuing this reasoning, the probability that the forager eats more than n− 1 times 
before starving is (after changing variables from S to z)

n−1∏
k=2

Fk(z) =
n−2∏
k=1

(1− z1/k), z ≡ (1− p)S+1, (E.1a)

where we shifted the index in the second product. Thus the probability for the forager 
to eat exactly n times before starving is

Vn =
n−1∏
k=2

Fk(z) z
1/(n−1). (E.1b)

To compute N  and T  in equations (31a) and (31b), we first investigate the nature 
of the function 

∏
Fn(z) in (E.1a). This function equals 1 for small n and sharply drops 

to 0 for suciently large n. Each term in the product equals (1− z1/k) and z is, in 
general, small. Naively, one might think that the point where 

∏
Fn crosses over from 

being nearly 1 to decaying would occur when z1/n = 1
2
, or n = ln z/ ln 1

2
. Numerically, 

however, 
∏

Fn is already vanishingly small at this value of n because each term in the 
product is only slightly dierent than its immediate predecessor. At the point where a 

term in the product is close to 1
2
, the product of all previous terms is already close to 

zero because there are many preceding terms that are also close to 1
2
.

An important consequence of this location of the crossover, is that z1/k ≡ e−a/k is 
small over the entire range where 

∏
Fn is non zero. Thus we may simplify 

∏
Fn by the 

following standard manipulations:

ln
n−1∏
k=2

Fk = ln
[ n−2∏
k=1

(1− e−a/k)
]
,

=
n−2∑
k=1

ln(1− e−a/k),

� −
∫ n

1

e−a/k dk = e−a − n e−a/n − a
[
E1(a)− E1(a/n)

]
,

 

(E.2)

where E1(·) is again the exponential integral. The above form is the explicit representa-
tion of the exponential factors in equations (35a) and (35b). We are interested in the 
regime where p is small, but p > 1/S , so that a forager is likely to carve out a desert of 
an appreciable size. In this case, we have

a = − ln(1− p)S+1 � pS. (E.3)

7 The factor (S + 1)/k that appears in the exponent should be modified by even-odd oscillations that will arise 
when S is either even or odd. Since we are interested in the limit of large S, even-odd eects should play  
a small role asymptotically, and we ignore them.
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Using the representation (E.2) for 
∏

Fn as well as z = e−a, the amount of food con-
sumed at the instant of starvation is

N =
∑
n�0

nVn �
∫ ∞

0

dnn e−a/n exp
{
e−a − n e−a/n − a

[
E1(a)− E1(a/n)

]}
,

=

∫ ∞

0

dn exp
{
lnn− a/n+ e−a − n e−a/n − a

[
E1(a)− E1(a/n)

]}
,

≡
∫ ∞

0

dn exp
[
f(n)

]
.

 

(E.4)

The function f(n) in (E.4) has a single peak whose width vanishes slowly as a → ∞. 
Thus we evaluate this integral by the Laplace method. Dierentiating f(n) in (E.4) 
with respect to n and setting the result to zero gives

f ′(n) =
1

n
+

a

n2
− e−a/n = 0. (E.5)

Numerically, we find that f is maximized at a value n∗ that grows slightly slower than 
linearly with a. The first natural hypothesis n∗ = a/ ln a, fails to make the terms in 
(E.5) balance. Thus we attempt a solution of the form n∗ � a(1 + ε)/ ln a, where ε � 1 
for large a, and look for a self-consistent solution for ε. Substituting in (E.5), we find 
that the leading behaviors of the second two terms in this equation are dominant and 
they balance when

n∗ � a

ln a

[
1 + 2

ln ln a

ln a

]
. (E.6)

To complete the evaluation of the integral (E.4), we also need the second derivative 
of f evaluated at n∗. To leading order, this is

f ′′(n∗) � − 1

(n∗)2
− 2a

(n∗)3
− a

(n∗)2
e−a/n∗ � −(ln a)4

a2
, (E.7)

where the dominant contribution comes only from the term (a/n2) e−a/n. Finally, we 
need f ∗ ≡ f(n∗). Here, we need to keep the first two terms in the asymptotic expansion 
of E1 to obtain, after some straightforward algebra

f ∗ = lnn∗ − a

n∗ − (n∗)2

a
e−a/n∗ � ln ln a− 1. (E.8)

Assembling all these elements gives

N �
∫ ∞

0

dn exp
[
f(n)

]
∼

√
2π

| f ′′|
e f∗ �

√
π

2

a2

e
(ln a)−2,

∼
√
2π

e

pS[
ln( pS)

] ,
 (E.9)

which is equation (36a) in the text.
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Similarly, the average forager lifetime is

T �
∑
n�0

n2

2p
Vn � 1

2p

∫ ∞

0

dn exp
[
g(n)

]
, (E.10)

with g(n) ≡ f(n) + lnn, and f(n) given in (E.4). Following the same steps as in the 
evaluation of N , we find the same maximizing value of n∗, and the same width of the 
peak, g′′(n∗) = f ′′(n∗), while g(n∗) now equals ln a− 1. Assembling everything gives

T � 1

2p

∫ ∞

0

dn exp
[
f(n)

]
+ S ∼ 1

2p

√
2π

| f ′′|
e f∗

+ S � 1

p

√
π

2

a2

e
(ln a)−2 + S,

∼
√

π

2

1

e

pS2

[
ln( pS)

]2 + S.

 

(E.11)

which is equation (36b) in the text.
We should note some caveats about these calculations for N  and T . Normally in 

applying the Laplace method, the contribution from the peak of the distribution, ef, 

is exponentially larger than the contribution of the width of the maximum, 1/
√

| f ′′|. 
This is not the case here, as the width contribution is almost of the same magnitude as 
that of the peak (for T ) or larger than the peak contribution (for N ). In addition, the 
integrals for N  and T  in equations (E.4) and (E.10), respectively, have peaks that are 
movable. To recast such integrals into a form where the Laplace method can be applied, 
one normally introduces a rescaled coordinate so as to fix the location of the maximum 
[36]. If the function in the exponent is algebraic, this rescaling is trivial. However, it 
does not seem possible to implement such a rescaling for our functions f(n) and g(n). 
Thus our results (E.9) and (E.11) have to be viewed with some suspicion. We checked, 
however, that the result (E.11) moves closer to the exact integral (E.10) as S increased 
far beyond the values that we can simulate, but the convergence is extremely slow.
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