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Abstract. We develop a cell position-space renormalisation group (PSRG) with which we 
study the scaling properties of isolated polymer chains. We model a chain by a self-avoiding 
walk constrained to a lattice. For rescaling factors b S 6, we calculate recursion relations 
analytically on the square lattice with several different choices for the PSRG weight function. 
We also calculate implicit cell-to-cell transformations in which a cell of size b is rescaled to a 
cell of size b‘. The results of these PSRGS improve both as b increases and as b/b’+ 1. In 
addition, we construct a true infinitesimal PSRG transformation, which appears to become 
exact as the dimensionality d approaches 1;  we obtain the closed-form expression for the 
correlation length exponent, U = (d  - l ) / (d  In d ) .  The Flory formula deviates from this 
already at first order in (d  - 1). 

We also develop a constant-fugacity Monte Carlo method which enables us to simu- 
late-in an unbiased way within the grand canonical ensemble-chains of up to lo3 bonds. 
With this method, we extend the PSRG to larger cells (b s 150) on the square lattice. Our 
numerical method provides high statistical accuracy for all cell sizes. However, in the range 
of b we study, the asymptotic behaviour of our results appears to depend on the choice of 
weight function. One weight function provides smooth behaviour as a function of b, and 
with it we extrapolate to find U = 0.756* 0.004. Further work is required to resolve the 
apparent anomalies in the results based on the other weight functions. 

1. Introduction 

The properties of a self-avoiding walk (SAW) in the asymptotic ‘scaling’ limit-when the 
number of steps N tends to infinity-has been the focus of extensive investigation (see 
e.g. de Gennes (1979) and references therein). Much of the motivation for these studies 
comes from an attempt to understand the statistical behaviour of long chain polymers, 
which may be modelled by SAWS. One of the most direct scaling properties of a polymer 
is the dependence of the mean end-to-end length on the number of monomers N in the 
chain. For large N, it is found that 

( ( N ) ~ ( R Z ( N ) ) 1 ’ 2 - ~ N Y ,  (1.1) 

where a is a constant of the order of the lattice spacing, and U is the exponent describing 

t A preliminary account of this work was given at the 43rd Statistical Mechanics Meeting at Rutgers 
University in May 1980, and a fuller account was presented at STATPHYS 14, Edmonton, Alberta, Canada 
in August 1980. 
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the power law divergence of this length. As a first approximation, one may neglect the 
excluded-volume interaction of the polymer chain, and obtain v = $ for all spatial 
dimensions d.  In a better approximation, Flory (1953) was able to account for the 
excluded volume by a mean-field-like approach. This gives, when generalised to 
arbitrary dimensionality d (Fisher 1969), 

v = 3 / (d  + 2). 

This remarkably simple formula-valid for 1 C d S 4 4 s  exact for both d = 1 and d = 4, 
and appears to be a very accurate approximation in d = 2 and 3. However, it disagrees 
with the E expansion for d = 4 - E ,  already at first order in E (de Gennes 1972). 
Furthermore, as we shall show in § 4, it does not agree with an E expansion in 1 + E  

dimensions either. 
Subsequent to Flory’s theory, there was considerable numerical work, both in d = 2 

and d = 3, to estimate the various critical exponents of the polymer problem. During 
this period, the Flory formula for v was thought to be exact, and the close agreement of 
the numerical estimates with equation (1.2) added further support to this belief. 
McKenzie (1976) gives an extensive review of these results. However, des Cloizeaux 
(1976) pointed out that the physical arguments leading to the Flory formula are not 
correct. This has led to renewed interest in obtaining accurate estimates for v in order 
to test the Flory theory quantitatively. For example, Le Guillou and Zinn-Justin (1977) 
have applied field theory to a continuum SAW model in d = 3 ,  and obtain v =  
0.588 f 0.001. Their work was the first to claim that the Flory value of v = 0.6 in d = 3 is 
incorrect. Recently, Cotton (1980) has re-analysed data from several recent experi- 
ments and obtains Y = 0.586* 0.004. Baumgartner (1980) has also presented evidence 
to confirm the ’non-classical’ value of v for the continuum model, by a Monte Carlo 
renormalisation group based on decimating along the chemical sequence (de Gennes 
1972). However, more extensive work based on this method now gives error bars for v 
which include the Flory value (Kremer et a1 1981). Thus, in three dimensions, it 
appears that v may be less than 0.6, although the issue does not seem completely 
resolved. 

On the other hand, a similar effort to obtain v accurately in two dimensions is just 
beginning. There have been some position-space renormalisation group (PSRG) studies 
of a qualitative nature, which employ simpler methods than those used in three 
dimensions. Shapiro (1978) was the first to apply a decimation procedure directly on 
the SAW configurations; while this method was a very useful conceptual advance, it is 
not very accurate numerically. Napi6rkowski e ta l ( l979)  considered a cell PSRG using 
the Niemeijer-van Leeuwen (1976) approach. From a second-order cumulant 
approximation requiring five parameters, they obtained v = 0.712 and 0.769, on the 
square and triangular lattices respectively. Kremer et a1 (1981) find v = 0.74* 0.01 
based on an extensive study using the Monte Carlo renormalisation method introduced 
by Baumgartner (1980). de Queiroz and Chaves (1980) have developed a cell PSRG 
based on the PSRG of Reynolds et a1 (1977) for percolation. For the small cell sizes they 
considered (involving rescaling factors b = 2, 3, 4), their results for the critical 
parameter, improved systematically as b increased. They extrapolated their results to 
obtain v 0.72-0.73. In three dimensions, however, the necessary systematic 
improvement at small b does not occur (Family 1981), indicating that such extrapola- 
tions from a few points may be quite risky. Nevertheless this extrapolation idea is very 
appealing. It has been successfully applied for both the king model (Friedman and 
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Felsteiner 1977) and for percolation (Reynolds et a1 1978, 1980). These extrapola- 
tions, however, require data over a fairly extensive range of b to achieve their accuracy. 
Very recently, Derrida (1981) has also applied extrapolation ideas to a ‘phenomenolo- 
gical’ renormalisation procedure on a square lattice with periodic boundary conditions, 
from which he claims that v = 0.7503 f 0.0002. However, in our opinion, the non- 
monotonicity of his results with free boundary conditions raises questions about 
systematic errors in his extrapolation. We discuss these questions with respect to our 
work in $7. Overall in d = 2 ,  however, there appears to be no consensus on the value of 
v ;  any deviation from the Flory value-if one exists-appears to be quite small. 

In this paper we develop a cell PSRG for an isolated polymer chain, which we then 
extend to large cells. Our approach therefore has the potential for the systematic 
improvement and the accuracy inherent in the large-cell technique. In § 2, we develop 
the basic ideas of our procedure. Although our basic method is similar to that of de 
Queiroz and Chaves (1980), we go substantially beyond their work by systematically 
considering many different weight functions, and by generalising the PSRG to large cells. 
In § 3 we define several physically plausible weight functions for the square lattice, and 
we discuss the nature of the approximations associated with them. With these weight 
functions we then calculate closed-form recursion relations for a cell-to-bond 
transformation with rescaling parameters b s 6. In § 4, the cell-to-bond 
transformations are used to construct implicit cell-to-cell transformations (Reynolds et 
a1 1978) with rescaling lengths b/b’. Our transformations yield progressively more 
accurate results both as b increases, and as b/b’ approaches 1. We also construct a true 
infinitesimal transformation by analytically continuing the cell-to-bond transformation 
to b + 1. This procedure givesp” = l /d ,  and v = (d - l ) / (d  In d). ‘These are reasonable 
approximations for d s 4, and we believe they may be exact for d = 1 + E .  

In § 5 we develop a Monte Carlo method to simulate a polymer chain at constant 
fugacity, in order to extend the PSRG to larger cells. Our procedure generates a 
collection of isolated chains of varying N, chosen in an unbiased fashion from the grand 
canonical ensemble. In this way we are able to study chains on the square lattice with up 
to lo3  bonds. Then, in § 6, we apply this method to calculate the recursion relations 
numerically, with high statistical accuracy, for cells of linear size up to b = 150. In § 7 we 
discuss the extrapolation of our b 6 150 results to b + CO. However, the extrapolation 
for v appears to depend on the choice of weight function defining the RG rule, at least in 
the range of b accessible in our study. We discuss several possible sources of this effect. 
One weight function, on a toroidal cell, appears to extrapolate smoothly to the 
asymptotic limit; from it we obtain v = 0.756* 0.004. Finally, in the appendices we 
present our closed-form recursion relations. 

2. Cell position-space renormalisation group 

To perform a PSRG calculation on a polymer chain, we study how the characteristic 
quantities describing a SAW change upon repeated length rescaling of the system. When 
these quantities remain invariant, the chain is ‘self-similar’ on all length scales, and this 
is a ‘fixed point’ of the rescaling transformation. The invariance of the correlation 
length, 6, at such a point implies that 6 = 0 or CO, and the latter fixed point corresponds to 
criticality. 

To carry out the length rescaling, we begin by dividing the lattice into cells which 
both cover the lattice and preserve the lattice symmetry. On the square lattice we 
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choose the b x b bond cell of the form shown on the top of figure l ( a )  (Reynolds et a1 
1977). Upon rescaling the lattice by a factor of b, each cell maps into two bonds, as 
shown on the bottom of the figure. In principle, an infinite number of parameters are 
required to describe exactly the chain and its behaviour under rescaling. It is clearly not 
possible to deal with this infinite parameter space, and somewhere there must be a 
truncation. We study an approximation in which we deal with only one parameter, a 
fugacity per monomer p ,  and we attempt to improve upon the accuracy inherent in this 
approximation by increasing the cell size. 

T 
i 

Figure 1. ( a )  Four b x b cells on the square lattice which rescale to four '1 X 1' cells. We 
show a segment of a typical SAW and its rescaled counterpart using the corner rule. This 
SAW must enter and leave each cell at a corner (heavy dot). (b)  Another SAW, which is not 
properly rescaled with the corner rule. A more general weight function is required to handle 
this walk. 

A basic step in this renormalisation procedure is choosing which polymer 
configurations should contribute to a renormalised bond. The formulation of this rule 
defines the weight function of the PSRG. In the truncated parameter space we choose, 
each choice of weight function results in a somewhat different approximation. In the 
next section we propose several possible weight functions, and discuss the properties 
and results associated with each. In every case, we map a single SAW within a cell into a 
rescaled bond if the walk traverses the cell-i.e. gets from one edge to the opposite edge 
of the cell. 

For a given choice of weight function, we calculate the recursion relation as follows. 
The fugacity per monomer, p ,  results in a statistical weight p N  for an N-step SAW. The 
sum of the weights over all traversing configurations defines a grand partition function 
(Shapiro 1978, de Queiroz and Chaves 1980, Redner and Reynolds 198l>, 

(2 . la)  

where aN is the total number of N-step SAWS that traverse the cell. We impose the 
condition that this partition function is the same on the original and rescaled levels. 
Thus 

3" = Z(P) .  (2.lb) 
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Hence we obtain a relationship between p and the rescaled fugacity p ’ .  If we rescale to a 
cell with b = 1, then % ’ ( p ’ )  is simply p ‘ ,  and the recursion relation has the form 

N P ’  = C a N p  
N 

(2.lc) 

Equation ( 2 . 1 ~ )  has two trivial, stable fixed points at p* = 0, C O ;  these 6 = 0 fixed 
points correspond respectively to no chain present, and to a densely packed chain that 
visits every site of the lattice. In addition to these, for every weight function we have 
studied there is also one unstable fixed point. This fixed point corresponds to a system 
with 5 = oo-a polymer chain at criticality. The value p* is the fugacity at which the 
associated weight for a traversing chain is itself p*-and there exists on average only 
one of these. Thus at p* (and for N sufficiently large), on average an N-step SAW spawns 
just one ( N  + 1)-step SAW. In this situation (the fugacity of the next step) x (the average 
number of choices for the next step) = 1. The ‘average number of choices for the next 
step’ is just the effective lattice coordination number k ;  hence k = l / p * .  

To obtain the exponent v of equation (l.l),  we note that [ ( p ) ~ ( R ~ ( p ) ) ” ~ -  
( p  -pJ” .  Thus (Niemeijer and van Leeuwen 1976) 

v = In blln A,, ( 2 . 2 ~ )  

where the eigenvalue A, is given by 

A, E dp’/dpl,*. (2.2b) 

Thus far, our discussion has been for general b. For the smallest cell (b = 2), 
however, the PSRG calculations require minimal effort. The results of such calculations 
(de Queiroz and Chaves 1980, Family 1980) give reasonably good estimates for p* and 
v (see table 1). This is a very desirable feature of the small-cell PSRG approach. 

In principle, one can obtain improved accuracy by using a larger cluster of cells, and 
appropriately enlarging the parameter space to include additional fugacities for longer- 
range links joining further-neighbour monomers (see e.g. Napi6rkowski et a1 1979). 
These additional parameters are required to maintain the proper intercell correlations 
upon rescaling. This approach is undesirable because the number of parameters 
quickly becomes very large. To improve the accuracy of the small-cell calculation, but 
still maintain the simplicity of the one-parameter approach, we will consider larger cells. 
This idea was applied to the Ising model by Friedman and Felsteiner (1977), who used 
Monte Carlo techniques to calculate the recursion relation for a two-cell cluster. For 
b s 15, they found that the estimates for the critical exponents systematically improved 
for increasing b. Similarly, Reynolds et a1 (1978, 1980) developed a cell PSRG for 
percolation, in which they treated b s 500. The extrapolation of these finite-cell results 
yields estimates for critical parameters which are of somewhat greater accuracy than 
those of series expansions and direct MC simulations. Moreover, Reynolds et a1 (1980) 
give a heuristic argument that the errors due to the approximation in the PSRG for 
percolation should vanish in the large-cell limit. 

In our current approach for the polymer chain, we account for the configurations 
within the cell to a good approximation, but treat the connection of chains between cells 
only very approximately. While it seems that this should introduce an error propor- 
tional to the surface-to-volume ratio of the cell, it is not clear that this is literally the 
case. Nevertheless the results of our closed-form PSRG with small cells indicate a trend 
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Table 1. Results of the small-cell PSRG for the various weight functions. ‘2-cell’ and ‘3-cell’ 
refer to clusters of two and three adjacent cells. The best known value for p *  is p * =  
0.000 015 (Sykes et a1 1972). 

b 2 3 4 5 6 

0.4656’i 0.4468t 0.4348t 0.4264 0.4202 
0.7153t 0.7187f 0.7217t 0.7241 0.7258 

Corner P *  

Corner p *  0.4656 0.4422 0.4294 
2-cell v 0.7153 0.7225 0.7260 

Corner p *  0.4656 0.4i06 
3-cell V 0.7153 0.7241 

Centre e* 0.4253 
0.7450 

0.4072 
0.7514 

Equal P* 0.4656 0.4394 0.4251 0.4161 0.4100 
averaging v 0.7153 0.7283 0.7352 0.7393 0.7421 

e* 0.4656 0.4385 0.4240 0.4149 0.4088 
0.7153 0.7303 0.7377 0.7421 0.7449 T-matrix 

T-matrix p *  0.4656 0.4380 0.4231 
2-cell v 0.7153 0.7288 0.7355 

T-matrix p *  0.4656 0.4378 
3-cell v 0.7153 0.7283 

Torus P* 0.3660 0.3707 0.3725 0.3734 
V 0.6897 0.7050 0.7122 0.7165 

f Also obtained by de Queiroz and Chaves (1980), but their results for b = 4 are in error in 
the third decimal place. 

toward the ‘correct’ asymptotic limit. Therefore one of our interests is to test whether a 
large-cell PSRG for polymer chains continues this desirable behaviour, thereby permit- 
ting accurate estimates of critical exponents. 

3. Closed-form recursion relations for small cells 

In this section, we present the various rules (weight functions) we have used for 
specifying a traversing SAW. These rules reflect the possible ways that one might 
intuitively define ‘getting across’ a cell. Each rule has qualitatively different charac- 
teristics, and we discuss the nature of the associated approximations and results. The 
recursion relations discussed in this section may be obtained from the appendices. 

3.1. Corner rule 

To make contact with other work, we first consider the weight function which is used by 
de Queiroz and Chaves (1980) and Family (1980), and then extend their results. We fix 
the starting point of the SAW to be a corner (e.g. lower-left) of the cell. Walks which 
leave the cell via the right edge rescale to a horizontal step, whereas walks leaving by the 
top edge rescale to a vertical step. 
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We note that the results obtained from rescaling the 2 X 2 cell ( b  = 2) are quite good 
for the amount of effort required, and the results improve for larger b. The recursion 
relations for b = 3 are still relatively simple to calculate by hand, but for b > 3 these 
calculations are prohibitively timelconsuming. We have therefore written a computer 
program to enumerate all traversing walks, and thus extend our closed-form PSRG 
calculation to b = 6. Our results are summarised in the first line of table 1. 

We obtain reasonable estimates for the critical parameters. Moreover, the depen- 
dence of these parameters on b is such that a rough visual extrapolation to b + 03 (see 
e.g. figure 4) yields estimates for p" and v which are even closer to their best known 
values. 

3.2. Centre rule 

In this rule, we fix the starting point of the SAW to be in the middle of one cell edge 
(restricting ourselves to cells in which b is odd). Only those SAWS which reach the 
opposite edge of the cell are counted as traversing. For a given cell size, the results for 
this rule give an even better approximation to the values of pE and Y than the corner rule 
(fourth line of table 1). 

3.3. Multiple cells and equal averaging 

The above two weight functions nevertheless impose several rather significant approxi- 
mations on the one-parameter PSRG. First, the starting point of the SAW is fixed in the 
cell. Thus, it is very unlikely that a traversing SAW in one cell will terminate at the 
starting point for a SAW in the next cell. Second, there exist certain configurations-e.g. 
walks which leave the cell either by the same edge or the edge adjacent to the one by 
which the walk entered-which can contribute to an infinitely long chain, but which do 
not traverse according to the corner or centre rules. Therefore particular classes of 
SAWS cannot be properly rescaled within this approximation (see figure l(b)). 

To estimate the magnitude of these approximations, we treat multiple-cell clusters 
by the corner rule. We renormalise a cluster of two neighbouring b X b cells into a 
two-step walk if a SAW traverses both cells. The 'mismatching' of two traversing SAWS 

across adjacent b x b cells may be estimated from the difference between the results of 
the one-cell and two-cell clusters. Comparing these two results, we see that bothp" and 
v change by small but significant amounts (second line of table 1). A three-cell cluster 
also shows this behaviour (third line of table 1). Thus it appears that properly 
interconnecting walks between cells may be important for obtaining the correct critical 
exponents. 

To avoid the arbitrariness associated with fixing the starting point, and the resulting 
problem of connecting SAWS between cells, we average over the possible starting points 
of the SAW (line 5 of table 1). However, because the starting points are not equivalent, a 
transfer-matrix formalism appears to be a more natural procedure. (A similar transfer- 
matrix formalism has also been used in the context of 'phenomenological' renor- 
malisation by Derrida (1981).) 

3.4. Transfer matrix 

We calculate the statistical weight Tii(p) for all SAWS which start at the ith position at 
one edge of the cell, and exit at the j th position at the opposite edge (see figure 2). These 
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Figure 2. A typical traversing SAW which contributes to the ijth element of the T-matrix 
recursion relation. 

partial contributions to 3 ( p )  define the b x b transfer matrix, T(p) .  The largest 
eigenvalue of this matrix (a polynomial in p )  is a recursion relation reflecting a weighted 
average over all possible starting points, such that the same relative weight is present at 
the far edge of the cell. Pictorially, the T-matrix corresponds to starting the SAW in the 
‘current’ cell at the point where the SAW in the ‘previous’ cell has terminated, and 
repeating this process for an ensemble of SAWS. As b increases, the T-matrix eigen- 
vector at p *  differs increasinglyfrom thevector, (1,1, . , , , l), which wouldlead to equal 
averaging. There is a corresponding increase in the difference of the estimates for Y by 
the two methods. The results are shown in line 6 of table 1. 

Although the T-matrix explicitly addresses the problem introduced by the arbi- 
trariness in the choice of the origin, this procedure is less readily extended to large cells 
than the other rules. A simpler procedure is to wrap the cell onto a torus. Such a cell is 
translationally invariant, and all starting points are equivalent. 

3.5. Toroidal cell 

Our weight function on the torus renormalises all SAWS which attain a winding number 
of *1 with respect to the (arbitrary) starting point of the chain (see figure 3).  This may 
be achieved in four independent ways; hence 3 : ’ ( p f ) = 4 p ’ .  Since there are more 
traversing configurations here than on our cells with free boundaries, we are able to 
calculate closed-form recursion relations only for b G 5 .  We note that at given b, 
estimates for p *  are better, but estimates for v are worse than those from the rules 
treated above. However, extrapolation of the toroidal small-cell results to b + 00 yields 
estimates fairly consistent with those from the other rules (see figure 4). 

The translational invariance of the toroidal cell removes the problem of inter- 
connecting walks between cells. This construction also enables us to treat a larger class 
of walks than we could before. In terms of a block rescaling picture, however, a tbroidal 
cell amounts to allowing various blocks to ‘slide’ (see figure 5 ) .  This sliding leads to 

Figure 3. A traversing SAW on a toroidal cell, which has wound once around the torus 
vertically with respect to the arbitrary starting point which is indicated by the heavy dot. 
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Figure 4. Plots of y , ( b )  against l / l n  b for closed-form cell-to-bond transformations (lower 
horizontal scales), and plots of y,(b/b')  against In b/b'  for cell-to-cell transformations 
(upper horizontal scales), for the corner and toroidal weight functions. Cell-to-bond: 
torus, 0 corner; cell-to-cell: 0 torus, 0 corner. 

- 6 -  

Figure 5. 'Sliding' of toroidal cells in the block rescaling picture. The toroidal cells may be 
thought of as blocks that slide, so that a chain (shown schematically) must traverse a distance 
b within each cell. This treats a larger class of SAWS than we could with free boundary 
conditions. However, there is a new approximation: cells no longer cover the lattice, and 
they can overlap. 

approximations of an entirely different nature from those introduced by the previous 
rules. For example, different blocks may now overlap. 

To summarise, for cells with free boundaries there are two primary approximations: 
(1) properly interconnecting traversing walks between cells, and (2) properly treating 
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other configurations which do not traverse, but contribute to an infinite walk nonethe- 
less. The toroidal cell partially alleviates these problems, but only at the expense of 
introducing new approximations. The sliding cells no longer cover the lattice, and cells 
can overlap. We shall return to these points in Q 7, where we find that in extending the 
PSRG to larger cells the approximation used can strongly influence the numerical results. 

4. Cell-to-cell and infinitesimal transformations 

In the process of extending the small-cell PSRG results to larger b, we also find 
transformations for which b + 1 (Wilson and Kogut 1974). One way we do this is with a 
‘cell-to-cell’ transformation (Reynolds et a1 1978). Through the cell-to-bond trans- 
formations described in § 3 above, we have the recursion relations p‘(b) = R (b : p ) .  
Similarly, for a cell of linear size b’ < b the recursion relation is p’(b’) = R (b’ : p ) .  These 
two relations have inverses, and so we may write an implicit transformation (Reynolds 
eta1 1978) 

(4.1) 

This relation gives the total statistical weight for a walk to traverse a cell of size b as a 
function of the statistical weight for a walk to traverse a cell of size b’. From equation 
(4.1), the correlation length exponent is 

v = ln(b/b’)/ln[A,(b)/Ap(b’)l, (4.2) 
where Ap(b) is the eigenvalue of the usual cell-to-bond transformation (with rescaling 
factor b), evaluated at the fixed point of the cell-to-cell transformation. 

Typical results of this transformation are shown in table 2. The results improve if 
either b/b‘ increases, or b/b’ + 1. In fact, the accuracy of the cell-to-cell transformation 
for b/b’ = ? is comparable to the usual cell-to-bond transformation (6’ = 1) with 
b -40-80. Although it would be worthwhile to extend the cell-to-cell transformation 
with MC to smaller b/b’, the statistical accuracy of our procedure is not sufficient to give 
results superior to the large-cell PSRG to be discussed in Q Q  6 and 7. 

However, we can calculate the cell-to-bond recursion relation in the limit b + 1 
analytically, yielding a true infinitesimal transformation (Shapiro 1978, 1980). To 
obtain this limit, we construct upper and lower bounds on the cell-to-bond recursion 
relation for general rescaling factor b and spatial dimension d. In the limit b + 1, the 
two bounds become identical, thereby yielding the infinitesimal transformation. To 
construct a lower bound, for example, it is easy to see that there is at least one N-step 
SAW which traverses a cell of linear size b for b s N d bd. Thus we define 

p’(b/b’) = R[b : R-l(b’:  p’(b’))] = R (b/b‘ : p’(b’)). 

Ird 

The upper bound for p ’ ,  on the other hand, depends on the weight function, although 
for all our weight functions pLpper approaches the same limit as b + 1. Consider, for 
example, the corner rule. The first few terms in the exact recursion relation include 1 
walk of b steps, b walks of b + 1 steps, and b2 walks of b + 2 steps. For longer walks, the 
self-avoiding constraint ensures that the number of N-step traversing SAWS does not 
continue this exponential growth. Thus an upper bound for the recursion relation is 

(4.36) 
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Table 2. Results of the cell-to-cell transformations for ( a )  the corner rule and ( b )  the 
toroidal rule. 

( a )  Corner rule. 

1 2 3 4 5 

2 P* 

3 P* 

4 P* 

5 P* 

6 P* 

1, 

V 

V 

V 

V 

0.4656 
0.7153 

0.4468 
0.7187 

0.4348 
0.7217 

0.4264 
0.7241 

0.4202 
0.7258 

0.4319 
0.7224 

0.4234 0.4160 
0.7260 0.7307 

0.4173 0.4112 0.4068 
0.7285 0.7330 0.7360 

0.4126 0.4075 Q.4038 0.4011 
0.7303 0.7346 0.7373 0.7389 

( b )  Toroidal rule. 

b’ 
b 1 2 3 4 

p *  0.3660 
V 0.6897 

p *  0.3707 0.3747 
V 0.7050 0.7329 

p* 0.3725 0.3751 0.3754 
4 V  0.7122 0.7363 0.7412 

p *  0.3734 0.3754 0.3757 0.3759 
5 V  0.7165 0.7383 0.7425 0.7443 

Letting b + 1, these bounds both become 

p’=p+(b-l)( l -pd)p lnp/(l-p).  (4.4) 

In addition to p *  = 0, CO, we find a fixed point at 

p *  = l /d ,  (452) 
with 

Y = (d - l ) / (d  In d) .  (4.5b) 

The results for p *  and U are quite reasonable. We obtain Y = 1.0, 0.721, 0.607 and 
0.541 for d = 1, 2, 3 and 4 respectively. This transformation is certainly not exact, 
probably containing the same approximations inherent in the finite-cell approach. 
However, this infinitesimal transformation exhibits a character similar to the Migdal- 
Kadanoff transformation (Shapiro 1978) which is exact as d + 1. Thus we believe that 
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equations (4.5) may become exact as d -* 1. For d = 1 +E,  the infinitesimal trans- 
formation yields, to a(€),  v = 1 - ~ / 2 .  The Flory formula, in contrast, gives v = 1 - ~ / 3 .  
Thus, just as in d = 4 - E (de Gennes 1972), the Flory formula appears to give too large a 
value for v. 

5. Constant-fugacity Monte Carlo method 

To continue on our primary course-extending our PSRG to large cells-we need 
another method to calculate the recursion relations. This is because the time required 
to calculate the coefficients UN in equation (2.1) increases as exp(bd). However, 
knowledge of the uN (i.e. the full recursion relation) is not necessary. We need 
information only in the vicinity of the critical fugacity, p * .  To this end, in this section we 
develop a MC method to simulate a single chain at constant fugacity. 

To begin, we note that the recursion relation, equation (2.lc), is a generating 
function for traversing SAWS. More generally, we may consider the generating function 
for all SAWS starting at the origin of an infinite lattice, 

( 5 . 1 ~ )  
N 

where cN is the number of all SAWS of N steps. 
In our MC procedure we calculate the value of the generating function at fugacity p 

by an exact enumeration process. We first construct, with a weight p ,  each one-step 
walk that fits on the lattice. We then add the next step to the existing SAWS also with a 
weight p .  Repeating this procedure, we build an ensemble of walks with an associated 
weight (probability if p < 1) p N  for each N-step walk. This process of building walks is 
quite similar to the methods employed by series to calculate cN, although series are 
generally limited to N < N,,, = 20, since 

(5.16) 

grows exponentially in N. Our weighting factor of pN helps balance this growth so that 
we are not forced to restrict ourselves to N < N,,,. Instead, we generate a subset of all 
isolated chains, in which N fluctuates and the polydispersion is controlled by the 
statistics of the grand canonical ensemble. 

For p less than the critical value p c  = 1/p, the total weight, cNp , of all N-step walks 
in the ensemble decreases exponentially with N (cf equation 5.1(b)). Thus the mean 
length of the SAWS in the ensemble is finite. At p c ,  the product of p c  times the mean 
number of possible next steps p, is unity. The number of walks now grows slowly-only 
as a power law in N-and walks of all length scales are represented. Above p c ,  the 
number of N-step walks grows exponentially with N. Thus the dominant contribution 
to any configurational property comes from the longer walks. In the limit p -* CO, these 
properties are determined by the longest possible SAWS only-i.e. those which visit 
every site in the lattice. These walks correspond to a completely ordered, zero- 
temperature phase (Redner and Reynolds 1981). 

Our numerical technique has several advantages over conventional MC methods, 
For example, on the square lattice, we are able to sample chains of approximately lo3 
bonds, free from any systematic bias, with only moderate use of computer time (1.73 
hours on an IBM 370/168 for lo5 complete enumerations at p *  for the periodic 
150x 150 square lattice). On the other hand, the conventional first-principle MC 

N y-1 
C N - p  N 

N 
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simulations (see e.g. Wall et a1 (1963) and references therein) can only sample chains of 
length approximately lo2 on the square lattice. With considerable technical refinement 
(see e.g. Wall et a1 1963, Alexandrowicz 1968), longer chains can be sampled, but only 
at the expense of introducing some systematic bias. Various dynamical MC methods 
have also been developed to study a single polymer chain (see e.g. Verdier and 
Stockmayer 1962, Wall and Mandel 1975, Lax and Brender 1977), but these methods 
also introduce statistical bias, depending on the dynamic processes chosen to allow the 
chain to evolve (Hilhorst and Deutsch 1975). Even the latest work we are aware of 
(Kremer et a1 1981) simulated chains with N S  lo2, though in a continuum. 

In addition, we calculate configurational properties in terms of a temperature-like 
variable, p ,  rather than in terms of N. This permits us to probe directly chain properties 
both above and below the phase transition. For example, we can find the mean 
end-to-end distance through 

(5.2) 

where c ~ , ~  is the number of N-step SAWS starting at the origin and terminating at a point 
a distance r away. (This type of measurement is appropriate for the region p < p c  where 
t ( p )  is finite.) 

We are, however, primarily interested in the regime p = p c ,  to study the scaling 
behaviour of a polymer chain. To complete a simulation of the generating function in a 
finite amount of time, we use a finite lattice. For p = pc ,  a characteristic length scale is 
then imposed by the linear size b of the system. This is the basis of finite-size scaling 
(Fisher 1971, Sur et a1 1976, Reynolds et a1 1978). These arguments lead to (see also 
Redner and Reynolds 1981) 

t 2 ( p )  = 1 r2CN,rpN/C C N , r p N  - ( p  - P c ) - ~ '  
N. r N ,  r 

where ( N [  pc(b ) ] )  is the average number of steps in the ensemble of SAWS at criticality. 
When we return to the PSRG in the next section, we will be interested in the 

generating function for traversing SAWS rather than the generating function for all 
SAWS. This difference requires only minor modifications in applying the MC procedure 
given above. Moreover, we will see that there is a close relation between ( N [ p , ( b ) ] )  for 
traversing SAWS and the eigenvalue of the renormalisation group transformation. This 
result enables us to connect the PSRG with finite-size scaling, and aids us in the 
extrapolation of our large-cell results to b + 00. 

6. Monte Carlo recursion relations for large cells 

Using the constant-fugacity MC method described in the previous section, we may 
evaluate the recursion relation at any given value of p .  We do this by building chains 
within a b x b cell, adding each step with a weight p .  Thereby we simulate a grand 
canonical ensemble of traversing SAWS at fugacity p .  Through many repetitions of this 
simulation process, we obtain numerically p ' (  p )  by counting the number of walks which 
traverse the cell. 

To locate the fixed point, p * ,  we begin with a zeroth 'guess', P O ,  and we make our 
next estimate, pl, depending on whether p ' ( p 0 )  is greater or less than po .  A trial and 
error search must be repeated many times in order to converge accurately top", and this 
is impractically slow for large cells. In figure 6 we see that for p < p *  (except for a small 
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c 

Figure 6. ( a )  Schematic plot of the recursion relation p ’ ( p )  for a large cell. This function 
varies rapidly near p * ,  and for b + CO it approaches the limiting form: p ’ (  p )  = 0 for p < p c  
(broken line), p‘( p , )  = pc ,  p ’ (  p )  = CO for p > p c ,  The schematic data point on the curve is 
derived from measurement of the average number of traversing walks per enumeration at 
fugacity po.  The error bar for p ’ ( p )  is determined by statistics. We determine an error bar 
for p by horizontally extending the error bars for p ’ ( p )  until they intersect the tangent at 
p ‘ ( p o ) .  The value of the slope to the curve at p *  (arrow) is the eigenvalue of the recursion 
relation. ( b )  A magnification of the behaviour near p *  to illustrate the homing procedure. 
Starting at po, we use the MC information to construct a parabolic approximation to the 
recursion relation. The intercept of this approximation (curve B) with the line p ’  = p yields 
p l .  From p l ,  we then iterate to p 2  (curve A). We terminate the homing when the 
uncertainty A p ’ ( p i )  is such that Ap, includes the next intercept, pi+l .  

range of p very close top*), very few SAWS survive to traverse the cell, and we gain little 
information on the location of p*. On the other hand, for p above p*, the number of 
traversing walks is so large that simulations at this fugacity are prohibitively time 
consuming. 

Instead, to locate p* quickly, we devised a ‘homing’ procedure that relies on the 
simple form of the recursion relation equation (2.1). The first and second derivatives of 

dp‘ldp = c NaNpN-’, d2p’/dp2 = N(N - l)uNpNe2, ( 6 . 1 ~ )  

are simply related to the averages, (N(p))  and (N(p)’), which we can calculate directly 

PI, 

N N 
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by our MC method. We find 

dp‘ldp = p ’ ( N ( p ) ) / p ,  d2p’/dp2 = p’ ( (N2)  - ( N ) 2 ) / p 2 .  (6.lb) 

Thus, in addition to finding p ‘  at p o ,  we also find p ’  in a small neighbourhood of p o :  

P ’ ( P )  = P ’ ~ P o ~ + ~ P - P o ~ ~ P ’ l d ~ / , o + I ~ ~ - P ~ ~ 2 d 2 P ’ l d P 2 1 , 0 +  * * * * (6.2) 

Starting with po ,  we iterate to p1 by solving equation (6.2) for the value of p at which 
p ’ ( p l )  =pl .  We obtain 

(6.3) 

Geometrically this solution corresponds to approximating p ’ (  p )  at po  by the parabola of 
equation (6.2), and finding the intersection of this curve with the line p ’  = p (see figure 
6(b)). 

We repeat this homing process until the difference between the ith guess, p i ,  and 
p ‘ ( p t - l )  is less than the statistical uncertainty in p ’ ( p i - l ) .  Typically, our initial estimates 
for p*  were correct to within two significant figures. The homing process then found p*  
to four significant figures with only three to four iterations. 

Having found p * ,  we determine v from the eigenvalue of the linearised recursion 
relation at p*  (cf equation (2.2)). This eigenvalue is simply the first derivative in 
equation (6,1), evaluated at p * ;  this may be directly measured in our MC. However, to 
calculate this quantity accurately is difficult, because dp’ldp is a rapidly varying 
function of p ,  and the statistical errors associated with it are relatively large (see figure 
7). From equation (6.lb), we see that the dispersion in A, will be the product of the 
errors for p ’  and ( N ( p ) ) .  

I I I > 
P* p+ P P- 

Figure 7. Comparison of A P  and ( N ( p ) )  in the vicinity of p * .  We measure ( N ( p , ) )  with pt 
chosen very near but distinct from p * ,  using the condition that the error bars for p :  exclude 
p*  (cf figure 6 ( b ) ) .  From the error bars for ( N ( p , ) )  we determine an error for the eigenvalue 
as indicated by Ah,. We then use a Taylor expansion to extrapolate linearly values of ( N (  p ) )  
to the estimated value of p * .  From the dispersion in these extrapolated values, we reduce 
the error bar to ah,. 
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On the other hand, we can measure ( N ( p ) )  with greater precision because it is a 
more slowly varying function of p .  With the same data, our error bar for ( N ( p ) )  is 4 to 
10 times smaller than the error bar for A,, depending on the cell examined. Moreover, 
at the fixed point 

Thus we focus on ( N ( p ) )  because of its greater statistical accuracy, and its direct 
connection with the critical exponent. 

To determine the errors in A,, we must consider both the statistical uncertainty in 
( N ( p ) ) ,  and the errors made in locating p * .  To this end, we calculate ( N ( p + ) )  and 
( N ( p - ) ) ,  with p +  > p *  and p -  < p *  chosen such that the statistical error in p'(pi) just 
excludes the possibility that either p +  or p -  = p * .  Clearly, the upper error bar of 
( N ( p + ) )  and the lower error bar of ( N ( p - ) )  are bounds on A, (figure 7). 

We can reduce these error bars further by using a procedure similar to that in 
equation (6.2). We deduce ( N ( p * ) )  using our best estimate for p *  from the homing 
procedure, together with ( N ( p ) )  calculated near p * .  Starting with the Taylor expansion 
for ( N ( p * ) ) ,  

and using the relation of d(N(p))/dp to the fluctuations in ( N ( p ) ) ,  

d(N(p))/dp = ((N(PI2> - (N(P)>2) /P ,  (6.5b) 

we estimate ( N ( p * ) )  by combining these expressions. Pictorially this amounts to 
constructing the tangent to the curve ( N ( p ) ) ,  and extending it to p *  (figure 7). This 
approximation to ( N ( p * ) )  becomes more accurate as p approaches p" ,  and the 
higher-order terms in equation ( 6 . 5 ~ )  become negligible. In actuality, we performed 
most of our runs sufficiently close top*  so that there was very good internal consistency 
between the various 'scaled' values of ( N (  p * ) ) ;  the internal consistency remained good 
even when we included preliminary data from simulations relatively far from p * .  Hence 
we advantageously combine the information from many runs to reduce our error bars 
on A,(b) by factors ranging from 2.5 to 12, depending on the quality of the internal 
consistency. In table 3 we give our estimates for A,(b) = ( N ( p * ( b ) ) )  for the corner, 
centre and toroidal weight functions. 

7. Extrapolation to b + 00 

For any finite cell of linear dimension b, the PSRG is only approximate. However, it 
appears possible that the error due to our approximations vanishes as b + CO (see e.g. 
Friedman and Felsteiner 1977, Reynolds et a1 1978, 1980). Thus the extrapolation of 
the sequence of finite-cell results should be better than the results obtained with the 
largest cell considered. 

To extrapolate the value of p * ( b ) ,  we assume finite-size scaling (Fisher 1971, Sur et 
a1 1976, Reynolds et a1 1978, 1980), from which 

( p * ( b )  - p , )  - b-"". (7.1) 
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Table 3. Results of the large-cell PSRG for: ( a )  the corner rule, ( b )  the centre rule and ( c )  
the toroidal rule. 

( a )  Corner rule. 

b 10 20 40 80 150 

No of realisations 5.0 4.0 2.0 1.0 2.49 
(X106) 

P* 
0.406 00 0.393 30 0.386 13 0.382 44 0.380 736 

10.000 28 io.000 09 io.000 12 *O.OOO 16 *O.OOO 080 

(N(P*) )  23.51*0.01 60.17*0.03 155.8+0.3 407.0*3 984.2 * 6 

0.729 26 0.731 16 0.730 72 0.729 28 0.727 04 
10.000 14 io.000 09 io.000 50 10.001 50 *0.001 10 V 

( b )  Centre rule. 

b 11 21 41 81 
~~ ~~ ~~ 

No of realisations 2.90 0.80 1.20 1.45 
( X l O 6 )  

P* 
0.391 69 0.385 37 0.382 13 0.380 45 

iO.000 26 *o.ooo 21 io.000 10 *O.OOO 06 

( N (  e*)) 23.80*0.01 59.6610.01 135.1*0.4 334.4*3 

0.756 51 0.757 48 0.756 94 0.756 05 
*o.ooo 12 *O.OOO 03 io.000 51 *o.ooo 22 V 

(c)  Toroidal rule. 

b 10 20 40 80 150 

No of realisations 3.52 2.95 1.20 1.50 1.35 
(X106) 

P* 
0.375 56 0.376 82 0.377 85 0.378 37 0.378 705 

*o.ooo 33 +O.OOO 16 10.doO 08 10.000 13 10.000 060 

“*I) 23.87*0.01 59.95i0.03 i50.2*0.3 373.oi2 859.0k4 

0.725 77 0.731 82 0.736 01 0.740 01 0.741 68 
io.000 11 rtO.000 08 *O.OOO 29 *O.OOO 70 *o.ooo 51 V 

For the three rules studied in the large-cell limit-corner, centre and toroidal-we have 
plotted our data of p * ( b )  against b-l’Yf, with a trial value of vt = a (figure 8). According 
to equation (7.1),  the points should fall asymptotically on a straight line with intercept p c  
at b-””t = 0. Extrapolation of the sequences p*(b)  for all three rules gives almost 
identical results. We estimate p c  = 0.3791 f 0.0001 on the square lattice, consistent 
with but not as accurate as the result p c  = 0.379 003 f 0.000 015 of Sykes er a1 (1972).  

(7 .2a)  

Next we extrapolate the scaling power y p  defined by 

yp s l o g  Ap/log b = v-’. 
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There is a difficulty, however, because both the corner and centre rules yield sequences 
of y,(b) that are non-monotonicin b, and thus extrapolation is not possible-at least not 
without additional values of y,(b) for still larger b. One possibility is that the 
non-monotonicity is from errors arising in approximations in the PSRG which persist 
asymptotically in the large-cell limit. Another possibility is that the results will in fact be 
correct asymptotically. Addressing the first possibility, one important approximation- 
identified in 8 3-is related to the fact that although we take into account walks within 
the cell to a good approximation, connections between cells are not treated as 
accurately. To quantify this ‘interfacing’ problem, we note that the probability that a 
traversing walk terminates at a particular lattice site is proportional to l /bd- ’ .  There- 
fore, if the starting point of the SAW is fixed, the probability that traversing SAWS in 
adjacent, independent cells join varies as l / b 2 d - 2 .  Hence the interfacing appears to 
become worse in the large-cell limit. 

However, we may test the asymptotic ialidity of the cell PSRG through an alternative 
and simpler approach by employing scaling arguments. If ( N ( p * ) ) -  b”” as b + 00 as 
expected from finite-size scaling, then the PSRG should work asymptotically, since this 
value of v found by scaling is precisely the same v as in the PSRG (since ( N ( p * ) )  = A,). 
The centre rule PSRG ‘sees’ a segment of a polymer chain of length b, confined within a 
strip of width b ;  the corner rule sees the SAW as a polymer confined to a wedge-shaped 
region with opening angle ~14, with one end of the chain at the apex of the wedge. Such 
confined polymer systems may be described by the scaling approach of Daoud and de 
Gennes (1977) and de Gennes (1979).  This approach indicates that the confining 
geometries do not affect the critical behaviour as b + CO, but rather both systems exhibit 
the behaviour of a polymer chain in the bulk-(N(p*)) - 6””. Thus both the corner and 
centre rule PSRGS should yield the correct v asymptotically. Apparently much larger 
values of b are still required with these rules. We are currently extending the 
transfer-matrix approach to large cells. This approach treats the interfacing much 
better, and we hope that the results based on this method will converge more rapidly. 
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On the toroidal cell, however, our data for y,(b) is monotonic and very smoothly 
behaved (see table 3 and figure 9). This supports the importance of interfacing 
properly, since the toroidal weight function does this better than the corner or centre 
rules. Extrapolating data for y, ( b )  now appears reasonable. We include a quadratic 
term in the extrapolation to help account for the curvature in the data over the whole 
range of b. Such a procedure, which neglects terms of O[l/(lnb)3], has been very 
successful in percolation (Eschbach et a1 1981, Reynolds 1980, Blote et al 1981). We 
write 

(7.2b) 

where the constants Ci represent the errors in y,(b) due to the finite-cell approximation. 
Equation (7.26) suggests that we extrapolate the sequence y,(b) against l / ln  b. 

y,(b) = y ,  ( b  = 00) + Cl/ln b +C2/(ln b)2  + . . . , 
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Figure 9. Plot of our estimates of y,(6) against l / ln  6 for the toroidal cell. The open circles 
are exact data, while the crosses are the Monte Carlo data; the errors are smaller than the 
size of the plotted points. The broken curve is the best quadratic fit to our data: 
y = 1.323 +0.138x -0.035x2, where x = l / ln  6. The inset shows the squared deviations of 
the quadratic fit as a function of the intercept. From this, we determine an error of 0.005 for 
y p .  Including statistical sources of error yields a total error of 0.007 for y p  indicated by the 
square bracket on the left edge of the figure. 

Asymptotically this should be a straight line with intercept y,(b = 00). We perform a 
least-squares fit of y,(b) to a parabola whose intercept (at l / ln  b = 0) is constrained to 
be y y .  The minimum of the summed squares of the deviations between the data and 
the fit (cf inset, figure 9) provides an estimate for the scaling power, ygu” ; the. sharpness 
of the parabola gives an indication of the quality of the fit. As a conservative estimate, 
we choose error bars on y, by the points at which the summed squared deviations are 
three times larger than at their minimum. Our analysis thus yields v = 0.756 f 0.003. 

To estimate the effect of the statistical error in the individual data points, we choose 
trial values ygp””””(b) from gaussian distributions centred at each measured value of 
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yp(b) ,  with standard deviations equal to the dispersion of the particular data points (cf 
table 3). We extrapolate the trial data set using the parabolic least-squares fit described 
above, and obtain an intercept ygpauSs(00). This extrapolation of gaussian sampled data 
points is repeated to obtain a distribution of intercepts. The width of this distribution is 
0.001, giving an estimate of the probable error in y p  due to the statistical uncertainties in 
the individual data points. Again being conservative, we add the two sources of 
error-the estimated systematic error and the statistical error-to yield a total 
uncertainty of f0.004. Actually, the statistical error of each data point is negligible, 
and it is the systematic error that one must be concerned with. Thus, within the 
approximation of a toroidal cell PSRG for b G 150, we estimate that v = 0.756 f 0.004. 
The Flory value v = 0.75 seems unlikely from the trend in our data (see figure 9). 
However, in the light of the non-monotonicity found with the other PSRG weight 
functions, we cannot exclude the possibility that the Flory value of v is correct. 

8. Concluding remarks 

We have developed and implemented a cell PSRG to study the scaling behaviour of a 
single polymer chain described by a lattice SAW. This PSRG is simple to execute in 
principle, and yields good approximations for the critical parameters of the SAW 
problem at the small-cell level. We have investigated ways in which we can improve 
upon this approximation. One direction is through cell-to-cell and infinitesimal trans- 
formations, in which the rescaling factor b + 1. The cell-to-cell method seems to be 
very accurate, but we can only extend the results to rescaling factor 4. In addition, we 
have derived a true infinitesimal transformation which gives the analytic expression 
v = (d  - l ) / ( d  In d ) .  For d = 1 + E ,  we believe that this PSRG may be exact; in this limit 
we find v = 1 - ~ / 2 ,  disagreeing with v = 1 - ~ / 3  for the Flory formula. 

We have also considered the opposite extreme-the large-cell limit-where the 
rescaling factor b -* CO. To calculate the recursion relations, we needed first to develop a 
new MC method, which simulates a grand canonical ensemble of single SAWS at constant 
fugacity. With this method, we were able to simulate chains of length up to lo3 on the 
square lattice efficiently. In contrast, conventional simulations are limited to N - lo2 
on the square lattice, and considerable technical refinements-which are not entirely 
free of statistical bias-are required to achieve larger N. 

In the large-cell limit we have found that our results were dependent on the weight 
function. We have argued that a good weight function must treat the ‘interfacing’ of 
SAWS between cells adequately. Based on an approximation using a toroidal cell, we 
estimate that v = 0.756 f 0.004. This value appears to exclude v = 0.75 predicted by 
Flory. However, more work is still necessary to settle the value of v in d = 2 definitively. 
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Appendix 1. Elements of the transfer-matrix recursion relations 

Tli. 

2 x 2 cell 

3 x 3 cell 

4 x 4 cell 

5 x 5 cell 

The transfer-matrix elements given here may be used to obtain all the non-toroidal 
recursion relations discussed in the text. For example, for the corner rule, p ' ( p )  = 

Tll(p) = T 4 4 ( p )  = p4+6p6 + 16p8+ 39p'0+61p'2+47p'4+ 8 ~ ' ~  

T12(p) = T34(p)  = 4p5 + 14p7 + 32p9 +42p1' + 36p13 + 1 3 ~ ' ~  

T 1 3 ( p )  = T24(p) = lop6 + 28p8+ 3 8 ~ "  + 39p1' + 27p14 + 4PI6 

T14(p) =20p7+36p9+48p"+48p'3+32p15 

Tz2(p )  = T 3 3 ( p )  = p4 + 12p6 + 27$+ 29p'O + 27p12 + 15p14 + P I 6  

T23(p) = 4 p 4 + 2 4 p 6 + 2 8 p 8 + 2 8 p ' 0 + 2 2 p ' 2 + 6 p 1 4  

~ ' , ( p ) =  ~ ~ ~ ( p ) = p ~ + 1 O p ~ + 4 O p ~ + 1 2 5 p ~ ~ + 4 0 0 ~ ~ ~ +  1 0 4 8 ~ ' ~  

+ 1 9 0 5 ~ ' ~  t 2 3 7 2 ~ "  + 1 8 3 9 ~ "  + 764pZ3 + 86pZ5 

~ ' , ( p ) =  T45(p)= 5p6+30p8+96p10+285p'2+693p'4+1269p'6 

+ 1741p"+ 1619p20+806p22+ 128pZ4 

T13( p )  = T35( p )  = 1 5p7 + 69p9 + 2 1 l p  l1 + 4 7 2 ~ ' ~  + 8 5 7 ~  l5 + 1 2 7 6 ~ ' ~  

+ 1 4 5 7 ~ "  + 1046~' '  +4O5pZ3 + 5 8 p Z 5  

~ ~ ~ ( p )  = T25(p) = 35p8+ 147p'0+352p12+679p'4+ 1143pI6+ 1 6 4 5 ~ "  

+ 1714p20+870p22+ 143pZ4 

T15(p) = 7Op9+224p" + 5 1 0 ~ ' ~  +956pI5 + 1586p17+ 2 2 2 4 ~ ~ '  

+ 2106~'' + 7 3 2 ~ ~ ~  + 1 0 4 ~ ~ ~  

~ ~ ~ ( p )  = ~ 4 ~ ( p )  =pS+20p7+75p9+207p11+452p13+841~15 

+ 1263p17+ 1340p19+811p21+ 188pz3 
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~ ’ ~ ( p )  = T34(p) = 5p6+ 50ps + 156p10+312p12 + 564pi4+ 8 9 5 ~ ’ ~  

+ 1 108p + 924p” + 4 18p” + 87pZ4 

~24(p) = 15p7 + 1 0 4 ~ ~  + 2 4 0 ~ ”  + 458p13 + 799p1’+ 1 2 0 4 ~ ’ ~  

1360p’9+894p21+ 2 2 8 ~ ’ ~  

~ ~ ~ ( p )  =p5+20p7+ 110p9+ 22Op’’+ 3 8 8 ~ ’ ~  +634p1’ 

+858pI7 +868p19+ 570p21+208p23+38p25 

6 x 6 cell 

Til(p) = T66(p) = p 6 +  15ps+85p10+335p12+ 1 2 3 7 ~ ’ ~ + 4 6 3 8 p ’ ~  

+15 860p1’+44 365pZ0+99 815pZ2+181 995pZ4+262414pz6 

+285 O86pz8+218 Ollp3O+1O4 879p3’+26 3 4 4 ~ ~ ~ +  1 7 7 0 ~ ~ ~  

T12(p)= T ~ ~ ( ~ ) = 6 p ~ + 5 5 p ~ + 2 4 0 p ~ ~ + 8 5 8 p ~ ~ + 3 1 0 3 p ~ ~ +  10 233p17 
+ 28 261p19 +65 1 9 3 ~ ”  + 125 0 3 9 ~ ’ ~  + 193 588p” + 228 299pZ7 

+190 671pZ9+101 648p3’+30 0 1 8 ~ ~ ~ + 3 3 2 6 p ~ ’  

T13(p) = T46(p) =21p8+145p’0+572p’2+2019p’4+6285p16+16 7 0 9 ~ ”  

+38 714pZ0+78 163pZ2+ 132 761pZ4+ 179 884pZ6+ 182 8 0 2 ~ ’ ~  

+ 130 266p30+59 746p3’+ 14 5 6 3 ~ ~ ~ + 9 3 5 p ~ ~  

T14(p)= ~3~(p)=56p9+334p11+1312p13+4028p15+10617p17+25 O74pl9 

+ 53 796p” + 101 8 5 3 ~ ’ ~  + 160 lOOp’’ + 193 465pZ7 + 168 6 8 . 5 ~ ’ ~  

+97 246p3’+33 3 0 1 ~ ~ ~ + 4 9 9 9 p ~ ’  

T15(p) = T26(p) = 126p’o+726p12+2496p14+6947p16+ 17 248p18+39 6 0 3 ~ ”  

+83 442pZ2+ 153 62Opz4+225 813pZ6+234 937pZ8+159 526p30 

+ 65 404p3’ + 13 2 5 2 ~ ~ ~  + 5 9 0 ~ ~ ~  

T16(p) =252p11+1200p’3+3904p15+10 56Opl7+25 828p19+58 7 1 2 ~ ”  

+ 121 868pZ3+217 436p2’+300 380pZ7+280 776pZ9+170 384p3’ 

+ 6 1 3 3 6 ~ ~ ~ +  10 180p3’ 

TZ2(p) = T55(p) = p6+ 30ps + 170p’0+608p12+2080p’4+6556p’6 

+ 17 952pi8+42 470pZ0+85 138p2’+ 140 14Opz4+ 178 9 1 6 ~ ’ ~  

+ 163 6O5pz8+96 883p30+32 8 9 0 ~ ~ ’ + 4 9 2 3 p ~ ~ +  1 4 4 ~ ~ ~  

TZ3(p)= T45(p) =6p7+90p9+404p’1+1373p13+4019p15+10 5 8 0 ~ ’ ~  
+ 25 0 8 8 ~ ’ ~  + 52 4 8 2 ~ ”  + 93 563pZ3 + 135 2 1 8 ~ ~ ~  + 148 l22pZ7 

+115 129pZ9+58 754p31+16741p33+1718p35 
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~ ' ~ ( p )  = T35(p) = 21p8 + 215p10+ 889p1'+ 26O5pl4+ 6771pI6+ 16 271p18 

+35 869p20+70218p22+116093p24+151 421pZ6+143 7 6 1 ~ ' ~  

+92 148p30+36 010p32+6865p34+292p36 

TZ5(p) = 56p9.+460p"+ 1606p13+4486p15+ 11 292pI7+26 4O6pl9 

+ 56 774p2'+ 107 6 7 0 ~ ' ~  + 167 480p2'+ 192 O72pz7+ 145 730p" 

+ 67 494p3' + 16 2 6 8 ~ ~ ~  + 1 2 8 8 ~ ~ '  

T33(p) = T 4 4 ( p )  =p6+30p8 + 240p'0+900p'2 +2481pI4 +6267pI6 
+ 14 841pI8+31 979pzo+60 519pZ2+96 258pZ4+ 121 433pZ6 

+ 114 4 4 9 ~ ' ~  +76 96Op3O + 33 895p3'+ 7 9 4 3 ~ ~ ~  + 459p36 

T34(p )  = 6p7+90p9+530p" + 1 5 8 2 ~ ' ~  +4036p'5+9712p17 

+21 848p1'+44 338p2'+77 86Opz3+112 528p2'+ 125 3 3 0 ~ ~ ~  

+ 100 57Opz9+55 210p3'+ 18 OOOp33+2428p3' 

Cluster of two adjacent 3 x 3 cells 

~ , , ( p )  = T33(p)  = p 6 +  15p8+85p'O+ 125p1'+ 113p'4+60p16+ 1 6 ~ ' ~  

~ " ( p )  = T23(p) = 6p7+55p9+ 114p"+ 109p'3+60p15+ 1 6 ~ ' ~  

T13( p) = 2 lp8 + 75p" + 129p '' + 11 3pI4 + 6 0 ~ ' ~  + 16p " 

T2,(p) = p 6 +  30p8 + 10Op1O+ 106~' '  +6Opl4+ 1 6 ~ ' ~  

Cluster of three adjacent 3 x 3 cells 

Tll(p) = T33(p) = p9+  36p1'+456p13 + 1 6 3 8 ~ "  +3175p17 +3833p1' 

+ 3178~"  + 1816p23+672p25 + 1 2 8 ~ ' ~  

T12(p) = T23(p) = 9 ~ ' ~ + 2 0 4 ~ "  + 1120p14+2591p'6+ 3 4 4 4 ~ ' ~  + 3 0 1 8 ~ ' ~  

+ 1784p2'+ 6 7 2 ~ ' ~  + 1 2 8 ~ ' ~  

T13(p) = 45p '' + 4 2 8 ~  l3 + 1 6 7 3 ~  '' + 3 1 6 0 ~ ' ~  + 3 8 3 4 ~  l9 + 3 1 7 8 ~ "  

+ 1816p23+672p25+ l28pZ7 

TZ2(p) =p9+72p1' +672p13+2044p15+ 3 0 6 6 ~ ' ~  +2858p" 

+ 1752p2'+672pZ3 + 128~'' 

Cluster of two adjacent 4 x 4 cells 

Tll(p) = T 4 4 ( p )  =p8+28p'0+280p'2+ 1 6 9 4 ~ ' ~ + 5 2 8 6 p ' ~ +  11 858p18+21 O65p2O 

+ 30 594p" + 35 622pZ4+ 31 496pZ6+ 19 118p28+6051p30+264p32 

Tlz(p) = T 3 4 ( p )  = 8p9+ 140p"+ 1043p13+3654p15+8579p'7+ 15 7 2 6 ~ "  
+23 319p2'+27 63Opz3+25 253p2'+ 16 503p27+6400p29+801p31 
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T 1 3 ( p )  = T 2 4 ( ~ ) = 3 6 p ~ ~ + 4 6 9 p ~ ~ + 2 0 4 3 ~ ~ ~ + 5 6 9 2 p ~ ~ +  11 9O4pl8+ 19 8 1 7 ~ ”  

+26 245pZ2+27 331pZ4+21 45Opz6+ 11 237pZ8+2786p3O+ 111p3’ 

T14(~) = 1 2 0 ~ ”  + 826p13 + 2 9 7 8 ~ ~ ~  +7866p17+ 16 298p1’+26 556pZ1+ 34 1 9 0 ~ ’ ~  

+34 552pZs+25 996pZ7+ 12 236p2’+ 1 8 7 8 ~ ~ ~  

TZ2(p)  = T33(p)  =p8+56p10+602p12+2548p’4+6213p16+ 11 620p1’+ 17 6 7 5 ~ ”  

+ 21 4 4 6 ~ ~ ~  + 20 194pZ4+ 14 O16pz6+ 6 2 8 0 ~ ’ ~  + 1271p30+47p3’ 

T 2 3 ( p )  = 8p’ +224p”+ 1 3 5 8 ~ ’ ~  +4118p1’ + 8 6 9 8 ~ ~ ~  + 14 750p1’+ 20 0 9 8 ~ ’ ~  

+21 522pZ3+ 17 566pZ5+ 10 038p27+3232p29+342p31. 

Appendix 2. Recursion relations on the toroidal cell 

2 x 2 cell 

pl = p2 +4p3 +2p4 

3 x 3 cell 

p1=p3+6p4+ 18p5+ 18p6+28p7+14p8+14p9 

4 x 4 cell 

pl=p4+8p5+32p6+88p7+ 134p8+278p9+336p10+564p1’+594p1‘+720p13 

+ 6 18p l4 + 4 0 2 ~ ’ ~  + 138p l6 

5 x 5 cell 

p 1  = p s  + 1 Op6 +*50p7 + 170p8 + 4 6 6 ~ ’  + 886p lo + 2062p + 3360p ’’ + 7 1 14p l3 

+ 10 576pT4+ 19 9O8pl5+27 O92pl6+44 628p17+53 19Opl8 

1-75 076p1’+71 136pZ0+78 108pZ1+50 664p2’+36 7 2 4 ~ ~ ~  

+ 11 980p24+4164p2s. 
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