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Abstract. We treat a percolation model with anisotropic bond occupation probabilities in 
order to study the crossover behaviour of the effective spatial dimension of the system. 
Previous position-space renormalisation group (PSRG) studies of this problem on the square 
lattice show a crossover from two-dimensional to pseudo-one-dimensional critical 
behaviour. To investigate the possible reasons for this surprising result, which is the 
opposite of the behaviour observed in thermal critical phenomena, we first develop 
alternative PSRG schemes. We study the predictions of these groups for asymptotically 
large rescaling parameters, where the approximations in the PSRG are thought to become 
negligible. From a consideration of the approximations involved, we are led to a decimation 
transformation that uses an anisotropic cluster. The results of this method indicate that 
anisotropic percolation is in the same universality class as isotropic percolation, in complete 
analogy with thermal critical phenoma. Our results indicate several peculiar features both 
of this problem and of the PSRG methods. 

1. Introduction 

The percolation problem has been pursued in recent years both for its direct relevance 
to various physical phenomena (e.g. the gelation transition - see de Gennes (1979), 
Coniglio et a1 (1979) and references therein), and for its correspondence with thermal 
critical, phenomena (Kasteleyn and Fortuin 1969). In the thermal context, the idea of 
crossover has played an important role in our understanding of phase transitions (see 
e.g. Riedel and Wegner (1969); Aharony (1976) and references therein). Thus it is 
natural also to consider crossover behaviour in percolation. In particular, we study 
crossover between different spatial dimensionalities d, by treating anisotropic bond 
percolation#. 

This model was first studied in d = 2 by Sykes and Essam (1963) who obtained the 
exact critical line. Temperley and Lieb (1971) later obtained the average number of 
clusters exactly along this critical line. More recently, Redner and Stanley (1979) have 
performed low-density series calculations for d = 2 and 3, and several exact calculations 
for all d. In addition, Ikeda (1979), Chaves et a1 (1979) and de Magalhles et a1 (1980) 
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$ Supported in part by grants from ARO and AFOSR. 
P De Gennes (1979) has suggested that an unusual anisotropic gel may be produced by cross-linking 
hydrophilic polymer chains in the water layer of the lamellar phase of lipid+water. 
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have studied this model on the square lattice by position-space renormalisation group 
(PSRG). 

The results of PSRG studies appear surprising. Ikeda (1979) constrained the 
anistropy to be fixed under rescaling, and thus obtained a one-parameter group. For 
large anisotropy, he found the exponent Y to be much smaller than the isotropic value of 
about 1.3. Both Chaves et a1 (1979) and de Magalhies eta1 (1980) used the method of 
Reynolds et a1 (1977,1980) with rescaling parameters L = 2,3 ,  and 4 and found that the 
isotropic fixed point is completely unstable. (Nevertheless, Chaves et a1 seem to give 
their results the interpretation that the isotropic fixed point still controls the critical 
behaviour of the anisotropic system.) 

The series results also seem surprising. Redner and Stanley (1979) obtained the 
exact result 4 l - d  = 1, for the exponent describing crossover from one- to d- (>I) 
dimensional behaviour. However, 42.+3, describing crossover from d = 2 to d = 3, was 
estimated by series to be about 1.75. This latter result is different from the value 
Y d = 2  = 2.4 expected in analogy with anisotropic thermal critical phenomena. Here Y d  is 
the percolation analogue of the d-dimensional susceptibility exponent. Moreover, 
recently it was shown exactly that for anisotropic percolation in any dimension 
~ $ ~ - ~ . . , ~ = y ~ - ~  (Redner and Coniglio 1980). Thus, we have a case of a carefully 
analysed low-density series pointing to an incorrect result. It appears that perhaps the 
anisotropic percolation problem itself may have features difficult to analyse by con- 
ventional methods. 

In order to put this in perspective, we recall that for the nearest-neighbour Ising 
ferromagnet on the square lattice, for arbitrary (finite) anisotropy, all the exponents are 
identical with the isotropic case. This follows from the exact calculation of the partition 
function (Onsager 1944), and from exact expressions for the two-spin correlation 
function for spins separated horizontally, vertically and diagonally (McCoy and Wu 
1973). In the language of renormalisation groups, the isotropic Ising fixed point is 
stable with respect to anisotropy. Moreover, scaling analysis (Abe 1970, Suzuki 1971) 
and momentum-space RG (Aharony 1976) agree with the exact results in the case of the 
two-dimensional Ising model, and yield analogous results in higher dimensions. We 
believe these arguments can be carried over to the present case of bond percolation by 
using the Potts mapping (Kasteleyen and Fortuin 1969). 

Therefore, we have a situation in which neither series expansions nor PSRG gives a 
satisfactory result. In particular, the latter seems to yield an incorrect direction for the 
crossover. To address this point we present several PSRG treatments. Careful analysis 
indicates that the isotropic fixed point is in fact stable, and that the direction of the 
crossover is the same as in the thermal case. First we examine the cell PSRG method of 
Reynolds et a1 (1977), and show that this procedure is inadequate for describing 
anisotropic percolation. We therefore formulate alternative PSRG methods, and 
indicate how it is possible systematically to improve upon these approximations. 
Finally, we present a decimation procedure based on an anisotropic cluster, which 
predicts RG flows consistent with the thermal case. Our recursion relations are 
presented in appendix 1. 

2. Position-space renormalisation group in two dimensions 

In the following, we treat anisotropic bond percolation on the square lattice, with 
horizontal and vertical bonds occupied with probabilities a and b, respectively. 
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2.1. Cell PSRG 

In the cell PSRG scheme of Reynolds et a1 (1977), one considers an L x L cell (cf figure 
l(a)) ,  and obtains renormalised probabilities a‘ and b’ by the criteria that configura- 
tions with horizontally or vertically spanning paths contribute to a’ and b’ respectively. 

For example, in the case of L = 2 we have 

U’  = a4+4a3(1 - a)+4a2(1 - a)’b +2a2(1 - ~)’(1- b )  ~ f ( a ,  b) ,  
(1) 

b ’ = f ( b ,  a) .  

This leads to the flow diagram shown in figure l(b).  Some unexpected features of 
this diagram are: (1) the isotropic fixed point A at (a, b )  = (3, $) is unstable in all 
directions, and ( 2 )  the two one-dimensional fixed points, that should appear at ( 1 , O )  
and (0, l), are each split into three fixed points, Di, D2, D3 and E l ,  E2,  E3 respectively.? 
Notice further that by symmetry (a - b )  and by duality (a  ++ 1 - b )  the phase diagram of 
figure l ( b )  is symmetric about the two diagonals of the square. 

Let us consider first the properties near the isotropic fixed point A .  For rescaling 
parameters L = 2 ,  3 we have calculated the matrix of derivatives 

T;1’@ ( A )  = (aa”LlA ( 2 )  

i These features remain unchanged even if the cell is placed on a cylinder or a torus to impose periodic 
boundary conditions. 
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in order to calculate the recursion relations linearised about A.  Here a, p denote a or b. 
For L = 2 we obtain 

whose normalised eigenvectors are = (1/&)[:] and $2 = (l/&)[-;]; the eigenvalues 
are AI(A) = ? and Az(A) = 9 respectively. Thus, the corresponding scaling powers 
yi(A) =In  Ai/ln L are both positive, with values of 0.70 and 0.46 respectively. One 
might expect that the latter scaling power becomes negative as L + 03, so that the 
isotropic fixed point will ultimately become stable with respect to anisotropy (the $z 
direction). However, this scaling power appears to remain positive for any finite L. In 
particular, for L = 3, the scaling powers associated with the eigenvectors $1 and $2 are 
0.73 and 0.38, and a naive extrapolation against l / ln L yields y 2 ( A )  = 0.24 in the limit 
L+CO. 

Consider now the remaining non-trivial fixed points. The spurious fixed points arise 
from the nature of the system at (a, b )  = (1,O) and (0 , l ) .  These limits are not simple 
one-dimensional systems, but rather have the percolation characteristics of L 
independent parallel chains. Chaves et a1 (1979) and de MagalhHes et a1 (1980) noted 
that the ‘spurious’ fixed points, D2, D3 and E2, E3, converge to ( 1 , O )  and (0, 1) 
respectively as L + 03. However, no significance was attached to the unusual critical 
behaviour predicted by the flow diagram for any finite L. Moreover, we find that the 
scaling powers in the L + 00 limit appear to depend on how rapidly the spurious fixed 
points approach ( 1 , O )  and (0, 1). To understand this situation, we study in detail the RG 
properties for large L near the six ‘one-dimensional’ fixed points. We are able to do this 
because the full recursion relations (cf equation (1)) simplify greatly near these fixed 
points. For example, consider the equation for a ’ :  if we arrange the terms in ascending 
order in the number of a bonds, we have 

a ’ = a L ( l  -~)~*-~pL(b)+- * * + ~ ~ ’ - ~ ( 1  - u ) ~ P L ~ - L ( ~ ) + Q ( u ) ,  (3) 

where the Pi(b) are polynomials in b. Here Q ( a )  contains the contribution to the 
recursion relation due to all configurations with more than (L2 - L )  a bonds. (Thus no b 
bonds are required for connectivity across the configurations included in Q(a) ,  see for 
example equation (l).) Since Q ( a )  = aL2+L a 2 LZ-1 ( l - a ) + .  . . , we find 

(aa’/aa)l,=l = (aa’/ab)l,=l= 0 (4a) 

and 

(aa’/aa)l,=o = (aa’/ab),,o = 0 

as well as 

U’l,=l = 1, a’l,=o = 0. ( 5 )  

By the symmetry of a’ =f(a, b ) ,  b’ =f(b, a) ,  the derivatives of b’ with respect to a and b 
evaluated at b = 1 and b = 0 are also equal to zero. This symmetry also gives b’ lb=l= 1 
and b ’ l b = O = O .  Thus the flow along any edge of the square is confined to that edge 
(figure 1). Moreover, 

TL(B) = TL(C) = TL(D1) = TL(E1) = 0 (6) 

for all L. In other words B, 12, D1 and El are infinite ‘sinks’ for all cell sizes. 
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Similar simplifications apply for points D2,D3 and E2, E3. Consider, for example, 
Dz.  Here b" = 0 and a" is given by the non-trivial solution of the recursion relation for 
L independent chains to percolate, 

a ' =  l - ( l - a y .  (7) 

The existence of the spurious fixed point predicted by equation (7) may be 
understood by the following argument which illustrates the approximation in the cell 
PSRG. Two adjacent 2 x 2 cells, each with two occupied a bonds (cf figure 2) renor- 
malise into two neighbouring occupied bonds. After a second rescaling, these renor- 
malise into a single occupied bond. However, the original bond configuration does not 
form a spanning configuration across the two cells. Thus our approximation overcounts 
intercell connections by including paths which are actually on different chains, over- 
estimating a' ,  hence giving rise to a fixed point 0 2  at a value a* < 1. Notice also that, 
due to the presence of Dz,  D1 is stable with respect to perturbations in a. By duality 
( a t )  1 - b ) ,  this situation occurs in the vertical direction also. Thus D1 is stable in all 
directions, and th's holds for all L. 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
L - -  --L- - -- 
Figure 2. Two adjacent 2 x 2 cells in which the bonds span across each cell, but not across 
both cells. 

From equation (7), it is easy to see that a" approaches unity (i.e. D2 + D l )  as the cell 
size increases. However, we are interested in how rapidly this occurs, and also in the 
behaviour of the flow diagram as L + 00. An analysis of this is presented in appendix 2. 
We find that although the spurious fixed points converge toward the correct one- 
dimensional limits, the scaling powers do not approach the expected values. The 
isotropic fixed point remains unstable for all L. Since the large-cell limit of this scheme 
can be interpreted as computing the connectivity properties exactly for a large but finite 
system, the 'backward' flows seem to indicate a peculiar feature of the anisotropic 
problem. It appears that a cell approach, which inherently has parallel one-dimensional 
chains as its extreme anisotropic limits, is not sufficiently sensitive on a global scale to 
give correct asymptotic behaviour. Before we discuss this difficulty in more detail, we 
first develop some alternative PSRG schemes. 

2.2. Decimation 

Turban (1979) noted that the usual decimation method which renormalises the square 
cluster of figure 3 ( a )  into the two-site cluster in figure 3 ( b )  is not appropriate for 
anisotropic percolation. This is because a renormalised bond cannot be interpreted as 
being either horizontal or vertical, and as a result the renormalised problem becomes 
isotropic. To overcome this difficulty, we propose a decimation scheme which takes the 
cluster of figure 3 ( c ) ,  and renormalises it to the cluster of figure 3 ( 4 ,  so that the 
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V- - -T - - -+ f  
I I I 
I I I 
I I I 

b + T 
I 
I I I 

I I 
I I I 
k----Jc---Jc 

I C !  Id1 

Figure 3. The four-site cluster ( a )  which rescales to the two-site cluster (6)  upon decima- 
tion. This is appropriate only for isotropic bond percolation. We show in (c) the nine-site, 
L = 2 cluster, and its renormalised counterpart in (d ) ,  that we use for a decimation treatment 
of anisotropic bond percolation. 

directionality of the bonds is preserved. This method avoids the problem of having 
connectivity of many chains in the extreme anisotropic limit, and mitigates some of the 
intercell connectivity problems discussed previously. It also allows for longer paths to 
contribute to connectivity than in the cell approach for the same rescaling parameter L. 
The resulting recursion relations for L = 2 are given in appendix 1, and the flow diagram 
is shown in figure 4. 

The global features of this diagram are somewhat different from those given by the 
cell PSRG. The isotropic fixed point A is now stable with respect to anisotropy, and only 
two pseudo-one-dimensional fixed points appear. The stability is now consistent with 
lattice-dimensionality crossover from the anisotropic system to the isotropic higher- 
dimensional system. The splitting of the one-dimensional fixed points, however, is still 

Figure 4. Renormalisation group flows based on the recursion relation for decimation of 
the, nine-site cluster of figure 3(c). 
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similar to what occurs in the cell PSRG. Furthermore, although the recursion relations 
for our decimation procedure (given in appendix 1) are symmetric under the exchange 
( a  c, b ) ,  duality arguments do not apply here. Thus, the symmetry ( a  ++ 1 - b )  is 
lacking. 

We can obtain more information on the edges of the square, where we can study the 
properties of the linearised recursion relations at D2 asymptotically for large L (cf 
appendix 3). We find that the scaling power y 1  (corresponding to the larger eigenvalue) 
approaches the one-dimensional value of unity, and its right eigenvector? approaches 
[-A]. The scaling power y 2  goes to zero, making the eigenvector [ y ]  marginal in the 
asymptotic limit. Thus, if we were to compute an approximation to the crossover 
exponent by taking limL+m y2/y1, we would obtain zero. Therefore the decimation 
method also has difficulties in converging quantitatively to the correct L + M limit. 
However, the qualitative behaviour of the one-dimensional limit and the direction of 
the crossover are one consistent with our expectations from thermal critical 
phenomena. 

2.3. 

Because of these failures in the direct PSRG methods, it is of interest to consider a very 
different approach. For this reason we apply the PSRG of Niemeijer and van Leeuwen 
(1976) to the q-state Potts model, and then take the percolation limit of q + 1 
(Kasteleyn and Fortuin 1969). Clearly, it is a disadvantage that our intuition-based on 
direct configurational ideas of connectivity-is not applicable here. However, this 
disadvantage may be offset by using a formalism in which there is a partition function 
that may be left invariant under the RG. It is of interest also to see whether the apparent 
difficulties associated with anisotropic percolation are confined to the direct PRSG 
methods, or whether the difficulties reflect particular properties of the problem itself. 

Our results, however, are difficult to interpret. The first-order cumulant approxi- 
mation, with a weight function based on a proportionality rule plus connectivity on a 
2 x 2 cell$, results in a line of fixed points in place of a crossover line (cf figure 5(a) ) .  
Hence the behaviour is now not universal, with the exponents varying along the critical 
line. In spite of this behaviour, the cumulant expansion gives the reasonable results of 
p c  = 0.52 and v = 1.9 in the isotropic limit. A two-cell cluster RG with the same weight 
function, however, leads to a stable isotropic fixed point and no fixed line. 
Unfortunately, no fixed points appear that correspond to any one-dimensional limits (cf 
figure 5(b)). We do not fully understand why this is so: it may simply be due to the 
lowest-order approximation we used, or to the particular weight function. In this 
connection, we find that the first-order cumulant approach does not work well for the 
anisotropic q = 2 (Ising) case either. Thus it may well be that cell PSRGS fail to describe 
aniostropic systems adequately. 

PSRG on the q-state Potts model with q + 1 

2.4. Discussion of 8 2.1-2.3 

The various PSRG methods we have treated thus far all appear to fail. In the case of the 

t We consider the right eigenvectors here instead of the usual left eigenvectors, since we are interested in 
those vectors that lie tangent to the critical surface. 
$ Our rule reduces to the proportionality rule if there is no spanning path of one species; if there is one 
spanning species, then the cell is assigned that species, while if there are two spanning species, the cell has 
probability f of having one or the other of those species. 



862 H Nukanishi, P J Reynolds and S Redner 

Figure 5. ( a )  Renormalisation group flows obtained from the recursion relation using the 
first-order cumulant approximation with 2 X 2 cells in the q-state Potts model after the limit 
q .+ 1 has been taken. ( b )  Renormalisation group flows based on a two-cell cluster treatment 
of the q-state Potts model. 

cell PSRG, we have argued t tqt  the incorrect one-dimensional limits of multiple parallel 
paths are the essential cause of the spurious fixed points. Since this is a problem of 
overestimating connectivity over the distance scale of several cells, it persists even if the 
boundaries are artificially removed by imposition of periodic boundary conditions. In 
addition, although these spurious fixed points do converge to the ‘correct’ locations as 
L + 03, the convergence is so slow that the eigenvalues fail to approach the correct 
asymptotic limits (cf appendix 2). On the other hand, any finite cell approximation also 
underestimates connectivity, because it does not contain the long, contorted paths that 
are important for global connectivity. The overestimation previously mentioned and 
this underestimation are generally not related since they are caused by totally different 
effects?; nor are they likely to cancel. 

The decimation approach discussed in 8 2.2 is an attempt to overcome the intercell 
difficulties, since decimation uses no cells, but rather sums over the degrees of freedom 
associated with certain sites within a cluster. The resulting method has the correct 
direction of the dimensional crossover, as well as the correct one-dimensional limits. 
However, two spurious fixed points persist, which arise from underestimation of 
connectivity due to the large, contorted paths which are not included. For example, on 
the axis a = 1, we always have a fixed point b* > 0 for finite cell size. However, a = 1, 
b > 0 implies an infinite connectivity in both the a and b directions, however small b 
may be. Thus, the correct fixed point should be at b* = 0. This shows that neglecting 
the paths that go beyond the cluster is a severe approximation for a decimation scheme 
in the case of anisotropic percolation. Although the spurious fixed points coalesce with 
the pseudo-one-dimensional fixed points as L + 03, and although the direction of the 

t It is interesting to note, however, that for the cell PSRG of 5 2.1, these two ‘opposite’ effects are in fact 
related by duality (although they still do not cancel). This is reflected in the fact that the fixed points D2 and 
D3 are symmetric about the line a + b = 1 in figure l (b ) .  However, for decimation there is no duality, and the 
symmetry between Dz and D3 is broken. 
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crossover is correct, the limiting behaviour of the scaling powers is still not the correct 
one-dimensional limit. This latter situation is similar to that encountered in the cell 

In contrast, an entirely different approach based on the Potts model mapping leads 
to its own difficulties. Here, the inapplicability of the direct configurational ideas does 
not permit us to make any general comments; however, it does seem possible that 
conventional cell approaches are inadequate to describe the anisotropic system. 

PSRG. 

2.5. Anisotropic decimation 

In order to include some of the paths which were previously not included, we introduce 
an anisotropic cluster. In this case we find that -even for fixed L - taking the extreme 
anisotropic limit of the cluster provides sufficiently fast convergence that the limiting 
scaling powers are correct. For example, using a 2 x n  cluster with n even, and a 
rescaling parameter of L = 2 (cf figure 6 ( a ) ) ,  we find for the recursion relation on the 
a = 1 axis 

(8) * n + l  2 b * = [ l - ( 1 - b  ) ] 

or 

b* - l / n 2 .  

At the fixed point D2 (figure 6 ( b ) ) ,  we have 

Figure 6. ( a )  4 x 2, 15-site cluster used for anisotropic decimation. The resulting two-site 
cluster after rescaling is shown to the right. ( b )  The renormalisation group flows from the 
anisotropic decimation procedure. 
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Following arguments similar to those in appendix 3, it can be shown that 

( lob )  * n + l  
A 2  (ab'/ab)J a = l  = 2(n + 1)(1 -b*)"[l-(l - b  ) 1. 

b=b' 

Since b* - l /n2,  these results yield A 1  + 2 and h z +  2 as n + 00, and thus the associated 
scaling powers obey y l  + 1 and y2 + 1. By calculations similar to those in appendix 3, we 
also obtain 

x+ -2. (11) 
Both (right) eigenvectors collapse onto [y] asymptotically (i.e. as n + 00). Since the 
other eigendirection is associated with the eigenvector [A] at the fixed point D1, with 
ho = 2, we have 

q5 = lim yz/yo = 1. 
n-m 

Thus, this RG reproduces the correct crossover exponent 4 l + d ,  in addition to the 
features that were already correct in the isotropic decimation scheme. The recursion 
relations for n = 4 are given in appendix 1, and the resulting flow diagram is shown in 
figure 6 ( b ) .  

3. Three and higher dimensions 

Next, we consider systems of higher dimensionality. As an example, we treat the simple 
cubic lattice by the cell PSRG. Bonds in the x ,  y, and z directions are occupied with 
probabilities a, 6, and c respectively. Figure 7 ( a )  shows the 2 x 2 x 2 cell used, and the 
resulting recursion relations are given in appendix 1. We show a section of the flow 
diagram for b = c (thus b' = c') in figure 7 ( b ) .  

The similarities of this figure to figure l(b) for the square lattice are striking. The 
fixed point A now has the three-dimensional isotropic symmetry a = b = c, while E is 
the isotropic pseudo-two-dimensional fixed point. The fixed points Dz and D3 
represent the pseudo-one-dimensional fixed points that split off from the fixed point 
D1. A similar situation occurs for the fixed points F1 and Fz. According to the flow 
diagram, crossover between d = 1 and d = 3, as well as between d = 2 and d = 3, is in the 
direction of decreasing dimensionality, in the same manner as in the cell PRSG approach 
in two dimensions. 

In higher dimensions, the results look very similar. We use Monte Carlo techniques 
to obtain renormalised probabilities from a set of unrenormalised ones. In particular, 
to consider the crossover between d and (d - 1) dimensions, we need only study the 
cross section p1 = p z  = . . , = pd-l = p  (where subscripts refer to directions). This cross 
section can be represented by a unit square (p, p d ) ,  and the (d - 1)-dimensional fixed 
point appears on the p axis while the isotropic d-dimensional fixed point appears on the 
line p = p d .  We should thus study the stability of the (d - 1)-dimensional fixed point by 
looking at the directions of flows near it along the p axis (particularly the p d  projection). 
For example, in six dimensions with a 26-site cell, we find that out of 13,000 realisations 
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Figure 7. (a) The 2 x 2 x 2 cell used to study bond percolation on the simple cubic lattice. On 
the right we show the resulting cell after one rescaling. ( b )  The normalisation group flows 
based on the cell in (a). 

generated at p i  = p z  = p3 = p 4  = p 5  = 0.12, p6 = 0.01, only 101 percolate in the p6 
direction, giving p i  = 0.008 p6. Thus it appears that the six-dimensional isotropic 
fixed point is unstable, and crossover to pseudo-five-dimensional behaviour occurs. 
This method can be applied to arbitrary dimensions, and the global flows may be 
obtained in this way. 

These results may be understood in the same way as our above results in two 
dimensions: we overestimate p ’  due to the many parallel hyperplanes (thereby o;er- 
estimating the intercell connections). Nevertheless we also underestimate p’  due to the 
omission of long-range, contorted paths. In addition to these approximations, the 
nature of the infinite cluster(s) in high dimensions may be quite different from that in 
d = 2 or 3, even for the isotropic problem. For example, it is not known rigorously 
whether there is only one infinite cluster for large d (Newman and Schulman 1979, 
unpublished). This potential new feature may have important ramifications on the 
application of a PSRG approach. Thus more studies in this area will be required to 
understand the effect of anisotropy for large dimensionalities. 

4. Summary 

We have treated bond percolation with anisotropies in the bond occupation prob- 
abilities to study the crossover behaviour of the effective system dimensionality. 
Various PSRG approaches for the square lattice were developed, and attempts were 
made to explain the apparent crossover to lower dimensionality predicted by the cell 
PSRG approach. We present evidence that these results are not inconsistent with 
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anisotropic percolation for finite anisotropy belonging to the same universality class as 
the isotropic problem. This is because the incipient infinite connectivities in both 
horizontal and vertical directions - at a point on the critical line a + b = 1 - are quite 
sensitive to the approximations used in the cell PSRG approaches. Thus the approxima- 
tions need to be dealt with in a systematic way to see ultimately the universal behaviour. 
To this end, we proposed a decimation method on an anisotropic cluster. This 
procedure yields results fully consistent with thermal critical phenomena. 
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Appendix 1. Recursion relations 

For decimation using a 2 x 2 cluster, we find the recursion relations 

a’= a + a  (1-a)(6A6+36A5+88A4+107A3+68Az+24A1+4Ao) 6 5  

+ a 4 ( l  -a)’(15A6+86A5 + 190A4+ 199A3+ 112Az+ 3 6 A 1  + 6 A , )  

+ a 3( 1 - a)3(  18A6 + 9 2 A 5  + 170A4 + 1 5 6 A 3  + 8 0 A 2  + 2 4 A  1 + 4Ao)  

+a2(1  - a)4(9A6+34A5 +53A4+44A3 + 2 1 A 2 + 6 A 1  + A o )  

=fl(a, b) ,  (A l . l )  

6’ =fl(b, a ) ,  

where Ai denotes b‘(1 -b)6-‘. 
In the case of anisotropic decimation, the complete recursion relation for n = 4 ,  

L = 2 i s  

a’ = a”+ a 9 ( l  - a ) ( l O B I 2 +  120B~~+658B~~+2175B9+4820B8+7541B7+8546B6 

+7081B5+4270B4+ 1835B3+536B2+96B1+8Bo) 

+ a8(1  - a)’(45Bl2+ 540Bl l  + 2948B10+9621Bg+ 20 846B8 + 31 613B7 
+ 34 53686 

+ 27 541B5 + 16 016B4 + 6670B3 + 1902B2 + 336B1+28Bo) 

+a7(1 - a ) 3 ( 1 2 0 B 1 ~ +  1436B11 +7763Blo+24804B9+52 027B8+75 828B7 

+79 436B6+60 847B5+34 140B4+ 13 806B3+3852B2+672B1+56Bo) 

+a6(1-a)4(210B12+2488B11+ 13 161B,o+40 601B9+81492Bp+ 11 3354B7 

+113 519B6+83 483B5+45 25OB4+ 17 804B3+487OB2+84OB1+7OBo) 

+ a J ( l  -a)5(250Blz+2892B11+ 14683Blo+42959B9+81591B8+ 107758B7 

+ 103018B,j+72800B5+38192B4+ 14651B3+3936B2+672B1+56Bo) 
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+ a 4 ( l  - ~ ) ~ ( 2 0 0 B 1 2  + 2204B11+ 10445B10 + 28434B9 + 50667Bs + 63375B7 

+ 57877B6 + 39384Bs + 20046B4+ 7514B3 + 1 9 8 6 B ~  + 336Bl + 28Bo) 

+a3(l-a)7(100B1~+1000B1~+4256B10+ 10 632B9+17 718B8+21 012B7 

+ 18 38OB6 + 12 080Bs + 5982B4 + 2196B3 + 572B2 +96B1+ 8Bo) 

+ a z ( l  -a)'(25B12 +200B11+744Blo+ 1700B9+2657Bs+3000B7+2524B6 

+ 1608Bs+777B4+280B,+72Bz+ 12B1 +Bo) 

s fz (a ,  b), (A1.2) 

b'=fz(b,  a ) ,  

where B, denotes b'(1 --b)12-'. 

relations 
For the cell PSRG in three dimensions, using the 2 x 2 X 2 cell we obtain the recursion 

U '  = a 8 +  8a7(1 - U )  + 28a6(1 - U)' + 56aS( 1 - 

+ 2a4( 1 - ~ ) ~ ( 6 8  CZ2 + 1 36CZ1 + 136 C12 + 66 Cz0 + 264C1 + 66 Coz 

+ 124c10+ 124col+54Coo)+8~~(1-~)~(48Cz~+96Czi+96Ciz 

+40C20+ 168Cll +4OCo2 +64Clo+ 6401 + 24Coo) +4a2(1 

x ( 1 6 C 2 2  + 3 2 Cz 1 + 3 2 C12 + 8 C z o  + 40 C11+ 8 C o z  

+ 12c10+ 12Co1+4Coo) 

(A1.3) 

Appendix 2. Large-L behaviour of the cell PSRG 

To study the L + CO behaviour of the pseudo-one-dimensional fixed points found in the 
cell PSRG approach, let us define r = 1 - U * .  Then equation (7) becomes 

(A2.1) 

By considering the graph of the right-hand side of (A2. l), it is easy to show that r + 0 as 
L + CO. However, we are interested in how fast this occurs. Thus, let us first suppose 
r + O  faster than 1 /L  (or Lr+O). If we then expand the quantity of brackets on the 
right-hand side of (A2.1), we have 

r = [I -(I  - 

1 - (1 - T I L  = ~ r +  L(L - 1)r2/2 + I 
CLLr. 

+ (-l)L--lrL 

Note that, because of our assumption that Lr + 0, 

CL+ 1 as L+co. 
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From (A2.1) ,  this would then imply 

+ 1  Lr 1 - 1 / L  

which is a contradiction to our assumption Lr + 0. Thus we deduce that r goes to zero 
no faster than 1/L. We write 

r = U/L)(1 /4K)L (A2 .2 )  

and consider the asymptotic behaviour of 4(L) .  Since r does not go to zero faster than 
1 / L ,  4 ( L )  is bounded. Hence, assuming no pathological oscillations, +(L) must 
converge to some number ~ ( c o ) .  Then, we have rl’L-+ 1 as well as 1 - ( 1 -  r ) L +  
1 -exp [-1/4(m)]. Equating these, we obtain ~ ( c o )  = 0. We conclude therefore that 
Lq5 (L )  -+ CO, but 4 ( L )  + 0 as L -+ CO. Furthermore, by rewriting (A2.1)  and (A2.2)  as 

L ~ ( L ) [ I  - ( I  -r)L]L-exp {In L + l n  ~ ( L ) - L  exp [ - I / ~ ( L ) ] } +  1 

and by noting that In L + In 4 ( L )  = In L4 ( L )  is still dominated by In L (because Lqb ( L )  -+ 

CO), we can finally obtain 

( A 2 . 3 )  d ( L ) -  l /( ln L-ln In L).  

Thus the asymptotic behaviour of the fixed point is 

a* -  1 -(In L-ln In L) /L .  ( A 2 . 4 )  

To obtain similar expressions for the asymptotic scaling powers, we consider D2 and 
calculate the matrix 

where 

A 1 = (da’/da)l~, = L2( 1 - a *)/ (1  - U * “ ) U  *L-’ 

(A2 .5 )  

(A2 .6 )  

and 

x = (aa’ /ab) /Dz .  (A2.7)  

At D2 we find that the relevant eigenvalue A is associated with the (right) eigenvector 
[A], and the irrelevant eigenvalue A 2  (=O) with the direction [AT;x] (cf figure l (b)) .  For 
L = 2 ,  A l =  1.53, leading to a scaling power y l  =0.612. For L = 3 ,  A l =  1.95 and 
y1 = 0.608. The asymptotic expression for y1 is given by 

y1 - 1 - (In 4(L)/ln L )  - 1/(4(L)  In L )  - 2 In In L/ln L + 0 as L -+ CO. ( A 2 . 8 )  

However, this scaling power is associated with the eigenvector along the b = 0 axis at the 
fixed point D2, and this ought to approach the one-dimensional value of l / v d = l  = 1 as 
D2 approaches (1,O). 

The eigenvector can also be computed for large L. We have 

X = (d /db ) [ ( l  -b)L’Go(a) + b ( 1  -b )LZ- lG~(a) l ,= ,* ,  b=o 

= -L2Go(a*)  + G l ( a * ) ,  (A2 .9 )  

where Go(a)  and G l ( a ) ,  the contributions to a’ with zero and one vertical bond 
respectively, are 

L L  G o ( a ) = l - ( 1 - a  ) , 
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G l ( a ) = [ L 2 -  ( L  - 1)2]Go(~)  +(L-  1)’[1-(1 - U  L ) L-2 ( 1  - 4 a L - a Z L ) ]  

- 4 ( L -  l ) a L ( l  - a L ) L - 2 [ a ( l  - u L - l ) / ( l  - U ) ] .  (A2.10)  

This yields, for large L, 

X-2A1,  (A2.11)  

and the normalised eigenvector is (2/&)[-!].  This is not the direction [ - ; I  of the exact 
critical line (Sykes and Essam 1963). Clearly, there is an unusual singularity for the cell 
PSRG at ( 1 , O )  as L + 03 where the three fixed points D1, D2, and D3 merge. 

Appendix 3. Large-L behaviour of decimation PSRG 

For the decimation scheme discussed in § 2.2, the recursion relation for U can be 
expressed for a general rescaling length L as 

(A3.2)  

(A3.3)  

Thus, the flows originating on the edges of the diagram (cf figure 4 )  are constrained to lie 
on the edge. It is also easy to show 

(A3.4)  L(L+1)-1 RL(L+1)- l (b)+L(L+ 1)a ] , = b = l  = 0. L(L+l)- l  (aa’/aa)l,=,=l = [ -a  

Thus 
TL(B) = T,(C) = 0 

for all L, and also 

(A3.5)  

(A3.6)  

This shows that both E and C are infinite sinks in all directions, while D1 is an infinite 
sink only in the b direction. In the a direction, we find that D1 has a scaling power y1 of 
unity for all L. In other words, D1 describes the one-dimensional behaviour correctly 
(as is easy to see since a’(b = 0) = a L ) .  

We now consider the non-trivial fixed point D2 on the edge a = 1. When a = 1, the 
recursion relation for b becomes 

b ’ = [ l - ( l - b ) L + l ] L .  (A3.7)  

By letting r = b*, we see that r + 0 as L + 03, and that we have the same problem as in 
appendix 2. Hence 

(A3.8) 

Next, we focus our attention on the linearised recursion relations at D2. We have 

b* - (In L -In In L) /L .  

(A3.9)  
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where A l  is the eigenvalue associated with the (right) eigenvector [X / (hz -Gf] ,  and A Z  with 
[:I. For all even L, it is straightforward but tedious to show that 

A l = L - C x i ( 2 - x i )  ( x i = [ l - ( l - b * ) i ] [ l  -(1 -b*)=+'-']), (A3.10) 
L 

A 2  = L(L + 1)(1- b*)=[ 1 - (1 - b*)L+l]L-l  (A3.11) 

and 

X = L ( L + l ) h L - L ( L - l ) h L + 2 L ( L - 1 ) ( 1 - h ) h L - ' ( 2 - h )  

-4(L- 1)(1 -b*)L+zhL-2[1 --(1 -b*)=]/b* 
+ 4( 1 - b*)=lZ+lh L-l[ 1 - (1 - b*)L/2]b* - 2Lh L-l (A3.12) 

where 
* L+1 L h L E [ l - ( l - b  ) 1 .  

For example, we find for the case L = 2  (figure 4), b*=0.152, A I =  1.83 and 
A Z  = 1.68, with the corresponding scalingpowers y1 = 0.87 and yz = 0.75. Both of these 
numbers are close to l / u d F l  = 1, and thus reasonable. However, we must consider 
these quantities as L + CO to find possible systematic improvement. An analysis similar 
to that in appendix 2 yields 

(A3.13) 

(A3.14) 

From (A3.12), clearlyX does not grow as fast as L In L. In fact, X grows no faster than 
2 In L. In addition A 1  dominates in ( A z - A l ) .  Thus we have 

(A3.15) 

y l  - 1 -In In L/ln L + 1, 

yz - 2 In In L/ln L + 0. 

IX/(Az - A  1)/ - 2(ln L)'/L 

and 

[X/ (Az - -']+[-;I. A 1) 

Therefore, while y 1  approaches the one-dimensional value of unity, its (right) 
eigenvector approaches [ - A ] ;  the scaling power yz, however, goes to zero in this 
decimation scheme, making the eigenvector [:I marginal in the asymptotic limit. 
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