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Abstract. The generating functions and mean displacements of various two-dimensional 
directed self-avoiding walk models are calculated exactly by a simple transfer-matrix 
approach. Asymptotically, we find ( R I I N )  - (R&)'12 - N, and (R? L N  ) ' I2  - N'12 , where N 
is the number of steps in the walk, and 11 and 1 refer to projections of the displacement 
parallel and perpendicular to the preferred axis of the walk respectively. Some general 
properties of directed self-avoiding walks for arbitrary dimensions are discussed as well. 

Consider a self-avoiding walk (SAW) which is restricted not to step in several particular 
directions. Such a directed SAW model was apparently first studied by Fisher and 
Sykes (1959) in order to derive rigorous bounds for the connective constant of isotropic 
SAWS. More recently, it has been realised that introducing a global bias in geometrical 
models leads to novel anisotropic critical behaviour (see e.g. Kinzel 1983, and refer- 
ences therein). Examples include directed percolation, directed lattice animals, and 
directed SAWS. 

The latter model is the simplest of the three, but it has received little theoretical 
attention, perhaps because it is so simple. A directed SAW can be decomposed as a 
forward walk along the preferred direction, and as a random walk perpendicular to 
this direction. Accordingly, the mean longitudinal displacement, (Rll,), should vary 
linearly with N, while the root-mean-square perpendicular displacement, (R :,)'", 
should vary as (see e.g. Nadal et al 1982). Very recently, however, Chakrabarti 
and Manna (1983) have claimed on the basis of series expansions that the mean 
end-to-end distance of a directed SAW varies as Nu with v = 0.86, in contrast to the 
anisotropic behaviour mentioned above. In this letter, we calculate the generating 
functions and mean displacements exactly for a number of two-dimensional directed 
SAW models, and verify that the anisotropic behaviour is correct. In addition, we 
derive some .exact properties for directed SAWS valid for all spatial dimensions. While 
our results are relatively straightforward, they may be of some pedagogical value, as 
well as serving to correct the result of Chakrabarti and Manna (1983). 

We begin by considering directed SAWS on the square lattice. A two-choice model 
may be defined in which only steps upward or to the right are allowed with associated 
fugacities x and y resEectively (figure l(a)). This model is trivial as each step makes 
a projection of +1/J2 on the (1,l) diagonal, and a projectig of *l/J2 (randomly) 
perpendicular to the diagonal. Therefore ( R l l N )  equals N/J2, while (R equals 
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Figure 1. Directed SAW models. The fugacities associated with each step direction are 
also indicated. (a)  Two-choice square lattice, ( 6 )  three-choice square lattice, (c )  four-choice 
triangular lattice, ( d )  five-choice triangular lattice. 

(N/2)"'. Since vertical and horizontal steps occur independently, the generating 
function is 

1 and for x = y, the critical point occurs at xc = 3. 
The three-choice model, studied by Chakrabarti and Manna (1983), is considerably 

more interesting. This is a SAW restricted to step upward, to the right, or downward 
with associated fugacities y l ,  x and y2 respectively. In terms of the transfer matrix 

it may be readily verified that all configurations of three-choice directed SAWS of N 
steps are generated by 

Therefore the generating function is 

G ( x , y 1 , ~ 2 ) = ( 1 , 1 ,  l ) ( l + T + T Z +  . . . )  = ( l , l , l ) ( l - T ) - '  

This may be written alternatively as 

Here G I D  denotes the generating function for SAWS in one dimension with step 
fugacities y 1  and y2. This simple form shows that 

a"G(x, y l ,  ~ ~ ) / a ~ ~ l ~ = ~ =  ( G I ~ ) " + ' .  (6) 

That is, the theorem of Liu and Stanley (1973) for anisotropic systems holds to all 
orders for directed systems. One may therefore write the generating function for 
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directed SAWS in d dimensions (with one axis directed) in terms of the generating 
function for isotropic SAWS in (d - 1) dimensions in the same form as (5). Additionally, 
(4) is easily generalised to give the following generating function for directed SAWS 

in d dimensions with d - 1 axes directed: 

G ~ ( x ,  y i ,  YZ)  = (1 - y i y z ) / E ( l  - Y  i)(1 - Y Z ) - X ( ~  - 1)(1 - Y  i ~ z ) I .  (7) 

Some of the above results were obtained originally by Fisher and Sykes (1959). 
When x = y1 = y2, the generating function, equation (4), reduces to 

G ( x ) = ( ~ + x ) / ( ~ - ~ x - x ~ ) ~  1 UNX N 

N=O 

with a simple pole at x, = h- 1. The coefficients UN, the number of N-step directed 
SAWS, may be found by performing the contour integral 

(1 + x )  dx k+ (1 -2x -X2)x"+l (9) 

where the contour encloses only the pole at the origin. Evaluating the residues yields 

UN = [(JZ+ l)N+l + (-l)N+l(h- 1)N+1]/2, (10) 
a result which may also be obtained directly from the recursion relation uN = 

The generating function for the total number of horizontal bonds in the ensemble 

(11) 

2aN-1 -k UN-2. 

of all N-step directed SAWS, N h ( x ,  y l ,  y2), equals xaG(x, y l ,  y2)/ax. This gives 

Nh(x, Y 1 ,  y2) = x ( l  -YlY2)2/[(1 - Y l ) ( l  -Y2)-x (1 - Y l Y Z ) l 2 .  
For x = y 1  = y ~ ,  the Nth term in the series representation, Nh(x) = X N b ~ x N ,  is found 
to be 

b N  ={(JZ+ l)"'[NJZ- (JZ- 1)]+ (-l)N+l(h- l)"'[NJZ- (JZ+ 1)]}/4JZ. (12) 

Here bN is the number of horizontal steps in the ensemble of all N-step directed 
SAWS, Therefore the ratio b N / u N  equals (Rp,). As N +CO, we find 

(RllN)-(N- 1 ) / 2 + $ h  (13) 
which agrees with enumeration results to five decimal places by order seven. 

To find the mean-square displacement, we calculate the following generating 
function for the number of upward, downward and horizontal steps and their powers, 

(14) m x ,  Y11 Yz)-N2h(x, Y 1 ,  YZ)+(N"(X, Y 1 ,  Yz)-N&, y1, Y2)I2,  

R2(x) = (3x - x 2  - 6x3 - 2x4 -x' -x6) / (  1 - x ) ( l -  2~ - x ~ ) ~ .  

by taking the requisite derivatives of G(x, y l ,  y2). For x = y1 = y2, we obtain 

(15) 

Upon extracting the Nth term in the series representation and dividing each term by 
UN, we find the following asymptotic form for the mean-square displacement: 

(R$)-(N+1)2/4+(N+1)(7h-4)/8+5h/4. (16) 
Therefore as N + m ,  both ( R ~ I N )  and (RN) scale linearly with N. This disagrees 
with the results of Chakrabarti and Manna because they apparently did not perform 
systematic extrapolations. By order 14, a linear extrapolation of successive slopes of 
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the logarithm of the mean end-to-end displacement, (RN), against log N suggests a 
value v 3 0.95, and extrapolation based on 23 terms clearly converges to v = 1. 

On the triangular lattice, the two- and three-choice models are essentially the 
same as the corresponding square lattice models. A four-choice model may be defined 
with fugacities x l ,  x2, yl ,  y2 for the four possible step directions (figure l (c ) ) .  Defining 
the following transfer matrix, 

p 1  x1 x1 x1\ 
x 2  x2 \” Y l  Y 1  

Y 2  Y2 0 Y2 

and following (4), we obtain the generating function 

G(x1, X Z ,  y i ,  y2) = (1 -y lyz ) / [ ( l  -y1)(1 -yz)-(xi +xz)( l  - Y I Y Z ) ]  (18) 

which, for x1 = x z  = y 1  = y2,  has a simple pole at xc = ( f i - 3 ) / 4 .  From (18), we find 
for the number of N-step directed SAWS 

(19) U N  = [(I +J17)(3 ++Ji7)N+1 - (1 - f i > ( 3  - f i ) N + 1 1 / 2 N + 3 J 1 1  

and for the total number of steps to the right in all N-step walks 

bN ={(J17+3)”’[24+ 17N-J17(8-9N)]  
- ( - 1 ) N + 1 ( f i - 3 ) N + 1 [ 2 4 +  17N+fi(8-9N)]}/2N’317fi. (20) 

The ratio ~ N / U N  now equals 2 ( ~ ~ ~ , ) / J 3  on the triangular lattice. AS N + CO, we find 

(21) 

That is, (R1lN) scales linearly with N for large N. 
The five-choice model is potentially interesting because some vestiges of the 

excluded-volume interaction remain due to the possibility of forming closed loops. A 
T-matrix solution is therefore not possible, and we have therefore calculated series 
for ( R I I ~ )  and (R:N)1 /2 .  Extrapolation of the data shows rather convincingly that 
vI = $, and a value vi1 = 1. We believe that with more series terms, we would ultimately 
find vi1 = 1. 

- N ,  
and (R:N)1’2 - N”’. 

( & N )  - [N(1+ d 1 7 ) / 2 f i -  (10 + 2 d i ? ) / i 7 ] 4 / 2 .  

2 1 /2  In conclusion, directed SAWS have anisotropic behaviour with (RIIN)  - ( R N )  

Note added in proof. After this work was completed we learned that A Szpilka has also derived our results 
for three-choice directed SAWS on the square lattice and that J L Cardy has obtained U,(= 1 and uL = 4 
from a field-theoretic approach. 
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