
J. Phys. A: Math. Gen. 22 (1989) 887-902. Printed in the UK 

Scaling of the first-passage time and the survival probability on 
exact and quasi-exact self-similar structures 

B Kahng and S Redner 
Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 
02215, USA 

Received 27 June 1988, in final form 18 October 1988 

Abstract. We calculate the asymptotic behaviour of the moments of the first-passage time 
and survival probability for random walks on an exactly self-similar tree, and on a 
quasi-self-similar comb, by applying an exact decimation approach to the master equations. 
For the hierarchical comb, a transition from ordinary to anomalous diffusion occurs at 
R = 2, where R is the ratio of teeth length in successive iterations of the structure. In the 
anomalous regime ( R  > 2), the positive integer moments of the first-passage time, (P), 
scale as L'q, with! T~ = 1 + (2q - 1)ln R/ln 2, where L is the linear distance from input to 
output. The asymptotic behaviour of the survival probability is studied using both scaling 
theory and by a direct solution to the master equations. We find that the characteristic 
time, t*, in the asymptotic exponential decay of the survival probability, exp(-t/t*), scales 
as t* - L'*, with T* =In R2/ln 2, i.e. T* is distinct from 7 , .  However, substantial corrections 
to this asymptotic form for T* exist, and these are needed to account for the recent simulation 
data of Havlin and Matan. 

1. Introduction 

Anomalous diffusion in random systems has been the focus of considerable attention. 
(see, e.g., [l-31).  One very useful line of investigation is the study of random walks 
of deterministic self-similar structures [ 3-61. These systems have the advantage that 
they retain some of the features of diffusion on random structures, while being simple 
enough to permit analytical solutions of random walk processes. It is important, 
however, to determine which features of diffusion on deterministic structures carry 
over to more realistic models of random media. This leads us to investigate the 
similarities and differences between diffusion on exactly self-similar, and quasi-self- 
similar structures. A generic example of the latter case is the hierarchical comb (figure 
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Figure 1. The first three iterations of the hierarchical comb. Branching occurs only from 
the main backbone. 
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1) [7-91, in which there are side branches with a hierarchical distribution of lengths, 
R k  (k  = 1 ,2 , .  . .). Interest in this system has arisen because it mimics the backbone 
and dangling ends organisation of percolation clusters, and ultrametricity in spin 
glasses and related systems [lo-151. 

We study diffusion on an exactly self-similar hierarchical tree and a hierarchical 
comb in order to determine whether one, or more than one timescale characterises 
diffusion on these structures. For the tree, we find that a single timescale does account 
for the scaling properties of all the positive integer moments of the first-passage 
probability, as well as the characteristic time in the asymptotic exponential decay of 
the survival probability. However, the anisotropic nature of the comb leads to more 
than one timescale being needed to describe asymptotic properties. 

In § 2, we outline a direct enumeration approach [ 161 to compute the first-passage 
time, ( t ) .  For the hierarchical comb, the first-passage time exhibits a dynamical 
transition at R =2. For R <2, ( t ) -  L2, where L is the length of the backbone; i.e. 
normal diffusive behaviour occurs. However, when R > 2, anomalous diffusion arises, 
as ( t )  - L'1 where T~ = In 2R/ln 2. ?%is value of T~ arises from the anisotropic scaling 
of the comb, wherein the length of the side branch increases by R, while the linear 
chain increases by 2 at each successive iteration of the structure. In 00 3 and 4, we 
employ an exact decimation method to obtain the generating function for the first- 
passage probability on the hierarchical tree and on the hierarchical comb. Our approach 
should be applicable to any finitely ramified hierarchical structure [ 171. 

In 0 5, we compute the exponents T~ associated with the scaling of the higher 
moments of the first-passage time on the comb, (P). We find ( t q ) -  L'q, with T~ = 
1 + (2q - 1)ln R/ln 2, when R > 2. Thus there is a multifractality of the transit time 
moments, as T~ # q T , ,  but only of a relatively trivial character that arises from the 
anisotropic scaling of the comb. In PO 5 and 6, we also study the scaling behaviour 
of the survival probability, S ( t ) .  Asymptotically, S ( t )  decays as exp(-t/t*) on any 
finite graph, and for the comb we show that this characteristic time scales as t* - L'*, 
with T* = In R2/ln 2. However, there are non-negligible corrections to this result which 
depend on the iteration order of the comb. These corrections are needed in order to 
help understand the recent numerical simulations of Havlin and Matan [9,18]. The 
final section gives a brief summary and discussion. 

2. Enumeration for the first-passage time 

The mean first-passage time, ( t ) ,  can be calculated simply by using enumeration, 
together with renormalisation group ideas. Consider the zeroth-order hierarchical 
comb in the left-hand part of figure 1. A random walk starts at an input site at one 
end of the structure, and is absorbed at an output site at the opposite end. At each 
step, the walk moves to any of its nearest neighbours with equal probability. Let T, 
and T, be the times to move between nearest-neighbour sites on the x and y axes, 
respectively, and let ti be the mean first-passage time to reach the output starting from 
site i. Then the first-passage times obey the relations 

ti = T, + t 2  

t 2 = f ~ x + 3 ( ~ x + t l ) + f ( ~ y +  t3 )  

t 3  = Ty + t2. 
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Eliminating t 3 ,  ( 1  b )  can also be written as 

t 2 = f ( T , + t 1 ) + f T x +  T,. (1b’) 

The term T, can be interpreted as the waiting time associated with the presence of 
site 3 ,  so that the corresponding equation in the absence of the side branch is 
t 2 = $ ( T , + t l ) + & T x .  Since the walk begins at site 1, t l  coincides with the mean first- 
passage time for this structure and from (1) we find 

t 1 = ( t ) = 2 ( 2 T x +  T,). ( 2 )  

Now consider the first-order comb in which there are R sites on the longest side 
branch. The equations governing the first-passage times starting at any site are given 
in appendix 1. By decimating all the first-order sites to recover a renormalised 
zeroth-order structure, we can recast the transit time equations in a form analogous 
to ( l ) ,  namely, 

t i l ’  = T: + t 2  ( 3a )  

t :”=&(T:+ t l )+&TL+ Tb ( 3 b )  

T: = 2 ( 2  T, + Ty ) ( 4 0 )  

T & = 2 R T y .  ( 4 b )  

with 

The .mean first-passage time for this first-order comb is then given by t i ’ ) =  ( t ) l  = 
2(2TL+ Tb) and the mean first-passage time on the Nth order comb, ( t ) N ,  is 2(2TiN)+  
TI”). We compute ( t ) N  by ‘diagonalising’ this recursion relation. We define U 
T, + AT,, which obeys 

Tk+ AT: = 4[ T, +&( 1 + AR) Ty] .  ( 5 )  

Thus choosing A such that A =$(I + AR), i.e. A = ( 2 -  R) - ’ ,  yields U ’ =  4u. Then for N 
iterations, d N )  = 4 N ~ ,  while ( 4 b )  gives TIN’ = (2R)NT,.  Therefore the first-passage 
time for the Nth-order structure is 

( t ) N  =2(2T;”+ TIN’) 

= 2 [ 2 ~ ” ’  + ( 1  - 2A) Ti”] 

= 2 [ 2  x 4 N ~  + (1 - 2 A ) ( 2 R ) N T y ] .  (6 )  
This exhibits a dynamical transition at R = 2 .  When R < 2 ,  the first term dominates 
asymptotically, leading to one-dimensional diffusive behaviour, while for R > 2 ,  the 
second term dominates, leading to anomalous diffusion. The corresponding scaling 
exponent, T ~ ,  defined by ( t )  - L’1, where L is the length of the system, equals 2 when 
R < 2 ,  and equals In 2Rlln 2 when R > 2 .  

Alternatively, generating function methods can be used to solve ( 4 )  directly. 
Introducing g ( z )  = 2”,=, T i N ’ z N  one finds from ( 4 )  that 

8 2  
g ( z )  =- l +  

1-42 (1 - 2 R z ) ( l - 4 ~ ) ‘  (7) 

For R < 2, the smallest singularity of g (  z )  is a simple pole at z = a, and this leads to 
( t ) N  - 4N. Conversely, for R > 2 the smallest singularity of g ( z )  is a simple pole at 
z = 1/2R,  leading to ( t ) N  - ( 2 R ) N .  At R = 2 ,  however, the confluence of the two 
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Figure 2. The first three iterations of the hierarchical tree. 

singularities leads to a second-order pole at z = i. Using this, together with the solution 
to (4b), we find ( t ) , = 2 ~ 4 ~ ( 4 N + 3 ) .  Since L=2,, this leads to (t),-8LZ1n L/ln2. 
Thus there is a logarithmic correction to the mean first-passage time in the marginal 
case R = 2 .  

For the hierarchical tree (cf figure 2), T, = Ty, so that from (4a), T: = 6T,. This 
immediately gives r1 = In 6/ln 2. We will rederive these results, as well as information 
about higher moments of the first-passage time, from an analysis of the master equations, 
in the next section. 

3. Diffusion on the hierarchical tree 

The first-passage probability for the hierarchical tree with an absorbing point at one 
end can be calculated by successive decimation of the discrete-time master equations. 
Let P i ( n )  be the probability for a random walker to be at site i on the nth step. Then 
for a zeroth-order tree, with site 4 being an absorber, the master equations are 

PI( n + 1) = $PZ( n )  

p3( n + 1) = $PZ( n )  
For a random walk initially at site 1, the corresponding master equations for the 
generating functions, P i ( z )  = C:=,, Pi(n)z”, are 

PI( z )  = U P , (  z )  + 1 

M Z )  = aPz(z) 

Pz( n + 1) = PI( n )  + P3( n )  

~ , ( n  + 1) =$,(n). 
(8) 

Pz( z )  = 3uP1( z )  + 3aP3( z )  

P4(Z) = aPz(z) 
(9) 

with a = f z .  Due to the absorbing boundary condition, P4( z )  also coincides with the 
generating function for the first-passage probability and solving for this quantity yields 

P 4 ( ~ ) = 3 ~ * / ( 1 - 6 ~ ~ ) .  (10) 

To compute the first-passage probability for the Nth-order tree, we first eliminate 
the occupation probabilities of the Nth-order sites from the master equations. This 
yields renormalised equations which are identical in form to the bare master equations 
for an ( N  - 1)th-order tree, except that a + a‘ = a’ / (  1 -6aZ), and the initial condition 
factor of unity in the equation for PiN-”(z) is replaced by (1 -3a2)/(1 -6a’). This 
procedure is illustrated in appendix 2 for the first-order tree. Iterating this procedure, 
the generating function of the first-passage probability on an Nth-order tree is 

P:”(Z) = 3 ( ~ ‘ ” ) ~ / [ 1 - 6 ( ~ ( ~ ) ) ~ ]  (1 l a )  
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where 
= ) 2 /[ 1 - 6( a(N-1))2] 

and a(O)-i  - 3z. Notice that a single-parameter renormalisation involving only a is 
sufficient to compute the first-passage probability exactly. 

from 
The kth moment of the first-passage time on an Nth-order tree is formally obtained 

2 = l  

or equivalently by computing the series expansion of P!,”(z) in powers E = 1 - z. 
Writing this power series as 

P~(z) = 1 + V I E  + ( T ~ E ~  +. . . (13) 
where we temporarily drop the superscript referring to the iteration order, and applying 
(12), we identify u1 = -( t), u2 = 4(( t2) -( t ) ) ,  etc. The scaling properties of these 
moments can be conveniently obtained from the transformation of the power-series 
expansion for a ( N )  upon iterating the tree. Thus writing 

a(N)=?- (N-1) 
3 p 4  

we then find from ( 1  1 b )  

We therefore infer aiN) = 6 ~ ( ~ - ’ )  and abN) = 6u$N-1)+27(~$N-’))2.  The former 
immediately yields ( t ) N  = 6N. Since ( f ) N  increases by a factor of 6 at each iteration, 
while the length of the tree increases by a factor of 2, we obtain =ln6/ ln2,  as 
already found in 0 2. The recursion relation involving the second moment can be 
solved by the diagonalisation procedure of the previous section. Introducing uN = 
( t 2 ) N  + A (  t)’, , and choosing A = -3, gives uN = 6uN-1. With the initial condition 

second moment scales as the square of the first moment. This calculation can be 
extended to the higher moments, leading to the general conclusion ( t q ) N  - ( ( z ) ~ ) ~ .  
Thus in the hierarchical tree a single timescale suffices to describe all the moments of 
the first-passage time. We expect that this will continue to hold for any exact self-similar 
structure. 

The survival probability at the nth step, S ( n ) ,  is the probability that the random 
walk has not yet reached the output site. It is related to the first-passage probability 
via S ( n )  = 1 -E:,=, P4(n’). For any finite graph, S(n)  decays exponentially in n at 
long times, and we investigate the relation between the characteristic time of this 
exponential decay and the moments of the first-passage time. Now if S(n)  decays as 
p”, then so does P4( n). Consequently, the corresponding generating function, P4(z), 
will have a simple pole at zc= p-’ ,  As the order of the tree becomes large the survival 
probability decays more slowly, so that z, approaches unity from above. Thus to locate 
the pole in P&”(z), we make the ansatz zc= 1 + E, and substituting in ( l l b )  gives 
~ ( ~ ) = + ( 1  + 6 N ~ ) .  Using this in ( l l a ) ,  we find that Pk”(z) has a simple pole when 

as 6N as the tree is iterated, and this scaling is identical to that of the moments of the 
first-passage time. Thus ail dynamical properties of diffusion on the hierarchical tree 
are described by a single exponent. 

(14) 

(15)  

- +(I+ (+N-’)& + 2 
1 E )  - 

piN-1) = 1 +6a(N-l) E + ~ ~ [ 6 a b ~ - ’ ) + 2 7 ( o r ~ - ’ ) ) ~ ] .  

U ,,- -2 5 ,  w e find ( t 2 ) N  =3(62N)-:(6N). Thus we conclude that ( t 2 ) N  - ( ( t ) N ) 2 ,  i.e. the 

E -1 - 4(5) 1 N . Thus the characteristic time in the exponential decay of S( n) increases 
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4. Diffusion on the hierarchical comb 

For the comb, a decimation approach similar to that given for the hierarchical tree 
gives a formal solution for the first-passage probability. Our calculation proceeds in 
two stages. First we account for a side branch in terms of a ‘waiting-time polynomial’, 
and thereby solve for the first-passage probability of a system with a single side branch. 
Next we solve for the first-passage probability for the full hierarchical comb. 

4.1. First-passage probability for a single side branch 

For concreteness, consider a linear chain n of length 2 and a side branch of height R 
(figure 3 ) .  A random walker starts at site 1 and is absorbed at site 3 .  The equations 
for the occupation probabilities of the sites on the side branch can be eliminated 
successively, as discussed in appendix 3 .  This leads to the master equations 

, 

W0(Z)Pl(Z) = f z P 2 ( z ) + 1  

wR(z)P2(z) = zP l ( z )  (16) 

P3( z )  = 4zP2( z )  

P3( z )  = z 2 / ( 3  WO( z )  W R  ( z )  - z2 ) .  

with solution for the first-passage probability 

(17)  

Here we introduce wo(z )  = 1 for later convenience, and w R ( z )  is the waiting-time 
polynomial that accounts for the modification of P 2 ( z )  by sojourns of a random walk 
on a side branch of length R. This polynomial has the form w R ( z )  = 1 - 3  f R ( z ) ,  where 
fR is the finite continued fraction 

with the initial condition fl = i z 2 .  

Gefen [19 ] .  Writing 
To compute fR in closed form, we employ the method outlined by Goldhirsch.and 

1 2  

f = & =  R -  zz  (19)  
hR l-gR-l/hR-I 

we see that g R  and hR obey the recursion relations 

hR = ( hR-l  - g R - 1 )  C R  (20) -1 2 
R - q Z  h R - l C R  

Figure 3. A chain of three sites to which a side branch of length R is attached. 
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with cR an arbitrary constant. This constant can be ” eliminated by introducing g R =  

c 1 C z . .  . C R ~ R  and h R  = C l C z .  . . CRhR. Then g~ and hR obey 

hl, = LR-1 - g R - 1 .  (21) 

Since we are interested in fR, which is the ratio of gR to hR (or gR to h”,), we may 
henceforth omit the tildes in (21). We therefore have hR = hR-l*hR-Z, and the 
solution is a linear combination of a+ and a- , w h ~ a ,  = 4( 1 kd1- z’). Since z > 1, 
a ,  can be written as a exp(*i+), with 4 = tan-’(dz2 - 1)  and i = a. Using the initial 
condition, fi = 2a2, we finally obtain 

g - 1 2 ”  
R - q Z  hR-l 

This result, together with (17) provides a solution for the first-passage probability on 
a chain of length 2 with a side branch of length R. Note also that when R =CO, the 
recursion relation (18) reduces to the algebraic relation fa = :z’/( 1 -fa), which has 
the solution 

- 
fa = $z2( 1 -J1 - z2) .  (23) 

We will discuss the physical consequences of these results for the asymptotic behaviour 
of the survival probability in 0 6 .  

4.2. First-passage probability for the hierarchical comb 

We now exploit the solution of a single side branch to solve for the first-passage 
probability on an arbitrary Nth-order comb. The master equations for this structure are 

wo(z)P1(z) = f z P z ( z ) +  1 

W’(Z)P3(Z) = f z P 2 ( z ) + f z P ,  w1(z)Pq(z) = +ZP3(Z) + f zP ,  (24) 

WI(Z)P2(Z) = ZP1(Z)+fZP3 

w3(z)P,(z) = f zPq(z )+ f zPg  etc 

where we now define w N ( z )  = 1 - f f R . ~ - l  for N 3 1, withf, the continued fraction given 
in (18). By decimating out the even-index sites (those with the shortest side branch 
attached), the master equations are transformed to those of an ( N  - 1)th-order comb, 
but with the following rescaled waiting-time polynomials 

W h ( Z )  =- w1(z)wo(z)-- 
3 (  Z z’) 3 

and the initial condition factor of unity in the equation for P l ( z )  is replaced by 3W,/Z. 
Successively applying this decimation to the shortest branches at each stage ultimately 
leads to a renormalised zeroth-order structure, which is easily solved. We therefore 
find the general solution for the first-passage probability on an Nth-order structure 

P(”(z) = z ‘ / ( 3 w ~ ” ( z ) w y y z )  - 2 2 )  (26) 
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where the superscript in wkN3 and w i N )  indicates N applications of the renormalisation 
transformation (25) .  In principle, the moments of the transit time can be found by a 
direct expansion of the first-passage probability in powers of E = 1 - z. This is a tedious 
task, however, and we therefore turn to an alternative approach which is based on the 
anisotropic scaling structure of the comb. 

5. Scaling for the first-passage time moments and the survival probability 

To compute the moments of the first-passage time on the comb, we exploit the fact 
that the comb iterates anisotropically in the x and y directions, leading to an anisotropic 
rescaling of the hopping probabilities. Accordingly, we generalise from one hopping 
rate,' a, to hopping rates a -f, as defined in figure 4. This is the minimal set of rates 
needed to close a direct renormalisation from an Nth-order to an ( N  - 1)th-order 
comb. With these rates, the master equations for the first-order comb are 

P ~ ( z )  = u P ~ ( z )  + b P ~ ( z ) = ~ c P ~ ( z ) + ~ P ~ ( z )  
(27)  

P3(z) = f P 2 ( z )  PdZ) = eP2(z) 
with the solution for the first-passage probability 

P 3 ( ~ ) = 3 b c f / ( l - 3 u c - d e ) .  

For concreteness, we investigate the renormalisation of an R = 3 first-order comb 
(cf appendix 4), and later generalise to arbitrary R. By decimating the first-order sites, 
one obtains master equations of the zeroth-order comb, but with the renormalised 
hopping rates 

a' = a c / A  (29a)  
c' = c2( 1 -$e2 ) /  B3 (29b)  
d ' =  $e2d(  1 - d e ) /  B3 (29c)  
e' = $e'/( 1 - y e 2 )  ( 2 9 4  
g' = cg/ A (29e)  

where A = (1 - de -3ac ) ,  B3 = (1 - de)(  1 - $ e 2 - i d e )  -2c2(  1 -Se2) and where b and f 
naturally appear together as the product g = bJ: 

- c ,  - 
3c a f 

Figure 4. A first-order hierarchial comb showing the general set of hopping rates needed 
to close the renormalisation of the comb. 
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To compute the moments of the first-passage time for this generalised structure, 
we first expand each of the hopping rates in powers of E = 1 - z, e.g. 

a = a o ( l +  a ,& + a2s2)  + o ( E ~ )  (30)  

and similarly for c, d, e, and g. By evaluating (29) at z = 1 ,  the leading term in a, e, 
and g equals f, while the leading term in c and d depends on the order of the comb. 
Accordingly the power series expansion for P 3 ( z )  is 

P 3 ( z )  =.1+  & [ 2 c 1 + g 1 +  a , +  (do /3co) (e l+  d , ) ]  

+ c2(2c2+ g 2 +  a2+ 2g,cl + 2c1a, + c:+ g,al  

+ ~ ~ 0 / ~ ~ 0 ~ ~ ~ 2 + ~ 2 + ~ 1 ~ 1 - ~ 1 ~ 1 - ~ 1 ~ 1 - g , ~ ,  -g ld , ) l+O(E3) .  (31a)  

p3 ( z )  - 1 + mlE + m2& +0(s3)  (31b)  

Retaining only the asymptotically dominant contributions under rescaling leads to 

where m, - O ( ( d o / c o ) e , )  and m2-O((do /co )ez ) .  For R = 3 ,  a straightforward calcula- 
tion shows that these dominant contributions rescale as 

db/ CA = 2do/3 CO e:  = 9e1 e;-81e2 (32a)  

leading to the scaling laws ( t ) N + l  = 6( t ) N  and ( t 2 ) N + 1  - 54( t 2 j N .  

contributions rescale as 
For general R, a similar calculation shows that the asymptotically dominant 

d b/ c& = 2do/ Rc0 e; = R2el e;  - R4e2.  (32b)  

From the manner in which these terms appear in the power series for P 3 ( z ) ,  we can 
interpret the quantity do/ co as the probability for a random walk to enter a side branch 
at a junction with the backbone, and eq as the qth moment of the residence time on 
the side branch. Since e is the hopping rate in the y direction, it is physically clear 
that e; = RZqeq, although we cannot provide a proof of this fact within the present 
context. These rescaling factors conspire to yield an overall contribution of R2q-1 for 
the rescaling factor of the qth moment of the first-passage time. Correspondingly, the 
scaling exponent, defined by ( t q )  - LTq, is T~ = In 2R'2"1'/ln 2. 

Thus we have found multifractal behaviour, as T~ # qT1,  with T~ becoming strictly 
proportional to q only in the limit q + CO. However, this multifractality is of a trivial 
character which arises from the anisotropy of the comb. Our prediction for rq is in 
good agreement with the simulations of Havlin and Matan [9]. For R = 3 ,  their data 
for T~ is almost linear for large q, as we would expect (see figure 3 of their paper). 
Furthermore, their numerical data for T~ for q = 1 ,  4 and 5 are 2.585 f 0.02, 11.70 f 0.04 
and 14.80 f 0.04, respectively, compared to our corresponding theoretical values (to 
four significant figures) of 2.585, 12.09 and 15.26. The agreement is excellent for q = 1, 
and somewhat less good for q = 4 and q = 5 .  We attribute the discrepancies to the 
presence of lower-order correction terms to the first-passage moments. These will be 
seen in numerical simulations on a finite structure, while our calculation for the 
exponents involves only the asymptotically dominant term. 

We can also use the above rescaling properties to determine the behaviour of the 
characteristic time in the asymptotic decay of the survival probability. From ( 3 1 )  and 
(32) ,  we have, for z = 1 - E, 

P;( z )  - 1 + ( 2 / R ) [ m 1 ( R 2 & ) +  ~ ~ ( R ' E ) ~ + O ( ( R ' E ) ~ ) ] .  (33) 
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That is, the generating function for the first-passage probability rescales as 
P ; ( E )  - 1 = ( ~ / R ) ( P ~ ( R ’ E )  - 1). (34) 

From the inversion integral for the generating function, this implies that the first-passage 
probability as a function of the number of steps, n, rescales as 

Consequently, the characteristic time, t*, rescales as t”’ = R’t*, so that the correspond- 
ing scaling exponent T*, equals In R’/ln 2. This yields T* = 3.17 for R = 3, and T* = 4 
for R = 4, compared with the respective numerical data [9, 181 of r* = 3.06i0.06 and 
3.94. The discrepancy between the theoretical and numerical values is significant for 
R = 3 and we will discuss the source of the discrepancy by a more complete calculation 
of the survival probability in the next section. 

Pi( n )  - (2/ R3)P3( n /  R’). (35) 

6. Asymptotic behaviour of the survival probability 

As first discussed for the hierarchical tree, we need to locate the smallest singularity 
of the first-passage probability to determine the scaling behaviour of t*.  Consider first 
a linear chain of length 2 with a side branch of length R. From (17), the condition 
that locates the singularity in the first-passage probability on this structure is 

and a solution can be found graphically (figure 5). Note that when z = 1, fR = 4 for 
all R. However, for ZS 1, fR is a rapidly increasing function which diverges at 

Since the right-hand side of (36) equals unity at z = 1, and is a relatively slowly 
decreasing function of z, we know that 1 < z, < z,. Furthermore, since zm + 1 as O( R-’), 
and because the slope of fR at z = 1 is proportional to R, it follows that the leading 
behaviours of zc - 1 and zoo - 1 coincide. To obtain the next-order approximation for 
z, ,  we write zc- 1+(n2/8R2)(1 -T), with T<< 1. Substituting this into (36) yields 

and higher-order terms are, in principle, calculable. This result shows that t* - (z, - 1)-’ 
increases as RZ, as expected. The comparison between this approximation and the 
exact value of z, is shown in table 1. 

fR ( zc) = 4 (3 - z?)  (36) 

z m = [ l + t a n 2 ( ~ / 2 R ) ] ” * =  1+rr2/8R2. 

z,= 1 + r2/8R’- ~ ~ / 4 R ~ + 0 ( 1 / R ~ )  (37) 

0 1 2, 2- z 

Figure 5. Illustration of the graphical solution to (36). The divergence of fR(z) at zm is 
indicated, as well as the location of the root of (36). 



Scaling on exact and quasi-exact self-similar structures 897 

It is also worth noting that for an infinite-length side branch, the waiting-time 
polynomial has a square root singularity at z = 1. This implies that the first-passage 
time is divergent, while the survival probability decays with time as t - ’ / 2 .  

Table 1. Comparison between the ‘exact’ value of z, given by the numerical solution to 
(36), and the approximate values of z, obtained by keeping the first two or the first three 
terms in (37). To see the differences between these quantities more clearly, we tabulate 
the values of ( z , - 1 ) 8 R * / ~ ~  rather than z,. 

( ~ , - 1 ) 8 R ~ / r *  

R Two term Three term Exact 

2 1 0.00 0.408 63 
3 1 0.33 0.551 56 
4 1 0.50 0.639 32 
5 1 0.60 0.697 60 

10 1 0.80 0.830 37 
20 1 0.90 0.908 62 
50 1 0.96 0.961 51 

100 1 0.98 0.980 39 

For the first-passage probability on the Nth-order comb, a first approximation to 
z, is obtained by locating the divergence of the most singular contribution to w(IN)(z). 
For a side branch of length R N  

zLN) = [ 1 +tan2(4/2RN)]’/’ = 1 + .rr2/8RZN. 

Thus for an Nth-order comb, we write z i N )  = 1 + ( T ~ / ~ R ~ ~ ) (  1 - T ) ,  and we attempt 
to find the correction term T. 

Writing the waiting-time polynomial for a side branch of length R N  as wN+, = 
1 - $ f R ~  = 1 - fgN,  then at z = z i N )  a simple calculation yields 

Thus to order R - N ,  we replace gk by its value at z = 1, namely gk = 4 for k < N. 
In the spirit of this approximation, we evaluate wkN) at z = 1, and keep only the 

dominant contribution to w(IN) in the condition 3wkN,N)(z)w!N)(z)  = z2 that locates the 
singularity of the first-passage probability. Thus in (25b) we write w’,(z)= 
2wN+1( z) - 3 ,  and iterating this linearised relation yields, after some algebra, 

Substituting this into (26) and using the approximation ( 3 8 )  for gN gives, finally, 
T =  2(2/R)N. Thus the singularity in the first-passage probability for an Nth-order 
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comb is located at 

and this leads to the characteristic decay time, 

f X = K N [ 1 + 2 ( 3 N ] .  7T2 

Notice that the correction term in the decay time depends on the order of iteration, 
N. This means that numerical estimates of t g  should exhibit curvature when plotted 
on a double logarithmic scale. Thus the value of the associated exponent T* determined 
from such data may not agree with the asymptotic formula T* = In R2/ln 2 which arises 
when all correction terms are ignored. Furthermore for R = 3 and N = 1, the correction 
term leads to z,< 1, and higher-order terms in R-' play a relatively large role. While 
the correction is straightforward to obtain in principle, it is tedious computationally. 
A comparison between the values of t R  obtained from the numerical solution to (26 )  
and the estimate given by (41) is shown in figure 6 .  

Figure 6. Comparison of the exact value (0) of t* obtained from the solution to equation 
(39) with the approximate values obtained from equation (41) by retaining only the first 
two terms ( x )  or all three terms (0)  of equation (41). 

7. Summary 

We have calculated the first-passage probability, the moments of the first-passage time 
and the survival probability for random walks on hierarchical structures. In the case 
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of exact self-similarity, e.g. the hierarchical tree, a single timescale suffices to charac- 
terise all the dynamical behaviour of random walks. The moments of the first-passage 
time to go from an input point to an absorbing sink are characterised by a unique 
timescale, i.e. ( t 4 )  - ( t ) ¶ ,  where ( t )  - L', with T = In 6/ln 2. Similarly, the probability 
that the random walk does not hit the sink decays asymptotically as exp(-t/t*), with 
a characteristic decay time, t * ,  that also scales as ( t ) .  

For the hierarchical comb, there is a dynamical transition between normal and 
anomalous diffusion at R = 2, where R is the rescaling factor of the teeth of the comb 
upon rescalings of the backbone by a factor of 2. In the anomalous regime ( R  > 2), 
the qth moment of the first-passage time scales as ( t 4 ) -  La, with T ¶ =  

1+(2q-  1)ln R/ln2. This behaviour is very similar to the scaling behaviour of the 
moments of the transit-time distribution for the hydrodynamic dispersion problem on 
percolation clusters [20]. 

For the survival probability on the comb, the characteristic time t* scales as L'", 
with T* = In R2/ln 2. This is different from the exponent, T ~ ,  of the first-passage time, 
but is related to the exponents characterising the higher moments by T* = lim,:" rq/q. 
Thus both the survival probability and the higher moments of the transit time are 
governed by the walks which traverse the longest side branch of the comb. However, 
for values of R b 2 there are appreciable corrections to the scaling behaviour of t * ,  
and these are needed in order to understand numerical simulation results. 

It is worth noting the dichotomy between the moments of the first-passage probabil- 
ity, and the moments of the displacement distribution. The former pertain to the 
temporal behaviour at a fixed observation point while the latter pertain to the spatial 
distribution at a fixed observation time. The second moment of the displacement, (r'), 
may be characterised by the fractal dimension of the walk, d,, via the scaling law 
( r2)  - t2'd-. If diffusion were characterised by a unique timescale, then T, would coincide 
with d,.  This generally appears to be the case for exact self-similar structures. However, 
for the hierarchical comb, Havlin et a1 [ 7 ]  have obtained d ,  = 4 In R/ln 2R, which is 
very different from the value T~ = In 2R/ln 2. A plausible explanation for this dis- 
crepancy is that moments of the first-passage time at a fixed observation point are 
strongly influenced by the 'slowest' particles, while moments of the displacement 
distribution at fixed time are strongly influenced by the 'fastest' particles. Cases where 
T~ # d, deserve more attention in order to clarify the essential differences between the 
fixed time and fixed observation point ensembles. 

After this work was completed, we learned of complementary results derived by 
Weiss et al [ 181 for random walks on deterministic structures. We thank these authors 
for sending a copy of their work prior to publication. 
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Appendix 1. Mean first-passage time on the hierarchical comb 

The equations governing the first-passage times for a random walk starting at a given 
site of the first-order comb are (cf figure l (b) )  

t l  = T, + f 2  

t2 =$( T, + f l ) + $ (  Ty + f 6 ) + $ (  T, + f 3 )  

t3 = $( T, + t 2 )  + f (  Ty + t 7 )  + f (  T, + t4)  

By eliminating the equations associated with all sites except 1, 3 ,  5 and R + 6 ,  the 
first-order sites are decimated out, and one obtains ( 3 )  for the average first-passage time. 

Appendix 2. First-passage probability on the hierarchical tree 

For the first-order hierarchical tree (figure 2), the master equations for the generating 
function are 

Pg( z )  = PlO( z )  = a&( 2 ) .  

By decimating out the first-order sites in the tree, namely 2 ,  3 ,  5 ,  6 ,  8 and 9, and 
identifying sites 1, 4, 7 and 10, with l’, 2’, 3’ and 4’, respectively, we obtain the rescaled 
master equations 

with a ’ = a 2 / ( 1 - 6 a Z )  and c = ( 1 - 3 a 2 ) / ( 1 - 6 a z ) .  These are of the same form as the 
master equations for the zeroth-order structure, except that the hopping rate has been 
renormalised, and a new parameter, c, has been introduced. The solution to these 
renormalised master equations yields the first-passage probability, P4, = 3aI2/( 1 - 6ut2) ,  
in the form given in (10). 
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Appendix 3. Master equations for a single side branch 

For a side branch of length R attached to a linear chain at site i, the master equations 
for the sites on the side branch are (cf figure 7) 

Pi( z )  = 

Pl(Z) =$aPi(z>+aP,(z) 

P,( z )  = U P 1 (  z )  + U P , (  z )  

z )  + UPi+l(Z) + U P l (  z )  

with a = z / 2 ,  while the master equations for the sites { j }  on the linear chain have the 
form 

Pj(z)= aPj-l(z)+aPj+l(z).  (‘45) 

Here a = z / 2 .  In (A4), we first eliminate the variable PR(z ) .  The master equation for 
PR- l ( z )  then becomes 

(1 -2aZ)P,-,(z) = aP,-,(z). (A@ 

Next the variable PR-l is eliminated, and this yields the master equation for P,-,(z) ,  

Continuing this process until the occupation probabilities associated with all the sites 
on the side branch are eliminated leads to the effective master equation for the junction 
site, 

w,(z)P,(z) = a P i - l ( z ) + a P i + l ( z )  (‘48) 

where w R ( z )  is the waiting-time polynomial defined in (18). 

I R  

i 2  
I ’  
I --- - - - - --- 

j-2 j-1 j j.1 j +  2 

Figure 7. A linear chain with an attached side branch of length R. 
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Appendix 4. Generalised master equations for the first-order comb 

For the first-order R = 3 hierarchical comb, the master equations for the generating 
function are (using the notation of (27) for the coefficients and that of figure l (b )  for 
the site labels) 

PI = aP,+ b 

P2 = 3cP1 + aP3 f dP, 

P3 = aP,+ aP4+idP, 

P4 = aP3 + dP,, 

ps =P4 

P6 = eP2 

P, = ep3 + $eP, 

p8 = f eP, + 3 e ~ ,  

P, = $eP, 

PI,, = eP4. 

As in the case of the hierarchical tree, we first decimate out the first-order sites (2, 4, 
6, 7, 8 and 10) and sites 1, 3 ,  5 and 9 are identified with l', 2', 3' and 4', respectively. 
This leads to master equations of the same form as those in (27) for the zeroth-order 
comb, but with renormalised coefficients given in (29). 
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