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Abstract. We present a simple method for obtaining the typical smallest distance from an 
absorbing trap to the nearest particle in a system of Brownian particles. In terms of the 
overall density profile, we also obtain the distribution function for the minimum distance. 
By using a quasistatic approximation for the diffusion equation, we derive new results for 
two dimensions: the characteristic distance to the nearest particle increases asymptotically 
as m. The technique is useful in diffusion-reaction systems. 

In the Smoluchowski model for bimolecular reactions, an ideal spherical trap centred 
at the origin is surrounded by a cloud of Brownian particles which are captured upon 
contact with the trap. The reaction rate in this formulation depends on the spatial 
distribution of particles about the trap. Recently, interest has focused on finer details 
of this distribution such as the distance of the nearest surviving particle from the trap 
[l-31. The density distribution function of that distance is the key to several exact 
results concerning some diffusion-reaction systems in one dimension [4]. 

While the spatial density of the particles surrounding the trap can be easily obtained 
by solving a diffusion equation with the appropriate boundary conditions, the distance 
to the nearest particle from the trap seems to require a more sophisticated analysis 
[ 13. In this paper, we suggest a simple derivation for the typical distance from the trap 
to the nearest particle and of the distribution of those distances, based upon the more 
readily attainable spatial density of all particles and simple facts from the statistics of 
extremes [ 5 , 6 ] .  To demonstrate our method, we rederive the known results for one 
and three dimensions. The simplicity of our approach, together with using a quasistatic 
approximation [7] for solving the diffusion equation, allows us to solve the two- 
dimensional case for the first time. 

Consider first the one-dimensional problem: a perfect trap is located at the origin 
and is initially surrounded by a homogeneous density, co, of Brownian particles which 
diffuse with a diffusion constant D. The density c(x, t )  of the surviving particles (to 
the right of the trap) is given by the diffusion equation 

x a o  
a a2 
at  ax 
- C(X, t )  = DT C(X, t )  
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with the initial and boundary conditions 

The solution to ( l a ) - (  1 c )  is 

c(x, t )  = co erf - 
(2&) 

where erf(z) = (2/&?) 

which is closest to the trap, we observe that the criterion 

exp(-u2) du is the error function. 
To compute xmin, a characteristic minimum distance from the surviving particle 

c(x, t )  dx  = 1 IoX"" (3) 

specifies that there will be one particle which is a distance xmin or less from the trap. 
Thus, we identify xmin as the typical distance from the trap to the nearest particle. 
Using the expression for c(x, t )  from (2) in (3) yields, in the long-time asymptotic limit 

xmin=2 3/4 7T 1/4(3"4 (4) 

Next, we compute p ( x ,  t ) ,  the probability density function for x m i n .  To this end we 
first derive an expression for the probability that the nearest particle to the trap is at 
a distance equal or larger than x. Let N ( y ,  t )  = 1; c ( x ,  t )  dx be the expected number 
of surviving particles in the interval (0, y ) ,  where y B x. The probability that a single 
particle is not in the interval (0, x) is simply 1 - N ( x ,  t ) / N ( y ,  t ) .  Hence, the probability, 
P ( x ,  t ) ,  that no particles are inside the interval (0, x)  equals (1 - N ( x ,  t ) / N ( y ,  t ) ) N ' y 7 ' ) .  
Since N ( x ,  t )  < N ( y ,  t )  we can approximate P ( x ,  1 )  as exp(-l: c(x', t )  dx'). Finally, 
p ( x ,  t )  = - a P ( x ,  t ) / a x ,  leading to 

p ( x ,  t )  = c(x, t )  exp 

Equation ( 5 )  is of course valid only in the long-time asymptotic limit. Substituting the 
t+oo limit of c(x, 1 )  given in (2) into ( 5 ) ,  we find 

This is the result for the (one-sided) distance distribution found by Weiss et a1 in one 
dimension [l]. Notice that x m i n  computed by (3) is not equal to the average distance 
of the nearest surviving particle from the trap that arises from (6), though the two 
quantities scale in the same manner. 

An even easier way to derive the functional form of p ( x ,  t )  and x m i n  is by employing 
a quasistatic approximation to solve the diffusion equation. In this approximation the 
explicit time derivative in the diffusion equation is neglected and the time dependence 
in the equation is accounted for by a moving boundary condition [7]. This very simple 
approach is found to work remarkably well in a variety of physical situations. For the 
trapping problem in one dimension, we solve the static diffusion (Laplace) equation 
in the 'active' region x < m, subject to the boundary condition that at x* = the 
solution from the Laplace equation must equal co. The solution to 0 = Da2c/aX2 for 
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x < dl% is c = constant x x (this satisfies the boundary condition (IC)), and for x s- dl% 
we take c = co (this satisfies the initial condition ( 1  b ) ) .  Extending and matching these 
functions at x* one obtains the approximation 

Using this form of c(x, t )  for x < m  in (3) and ( 5 )  leads to the correct functional 
forms of xmin and p ( x ,  t )  in one dimension. The essential point here is that for the 
minimum distance we require the density distribution only for very small x, and this 
is obtained exactly in the quasistatic approximation. 

Consider next the Smoluchowski problem in three dimensions. The trap must now 
have a finite dimension to make trapping possible. Let the trap be a sphere of radius 
a, centred at the origin. The diffusion equation is 

a i a  a - c(r ,  t )  = D- - r 2 -  c ( r ,  t )  
a t  r2 a r  ar  

r 3 a  

with the initial and boundary conditions 

c( r, 0 )  = co r 3 a  ( 8 b )  

c(a, t )  = 0. ( 8 c )  

Although an exact solution can be obtained straightforwardly, we use the quasistatic 
approximation and then derive the functional form of rmin and p ( r ,  t ) .  The solution 
of the static equation for a S r < m is c =constant x ( l l a  - l / r ) ,  and c = co for 
r s m .  Matching the solutions at r * = m  fixes the value of the constant to 
c 0 m / ( m -  a ) ,  so that in the long-time asymptotic limit one has 

c ( r , t ) = c ,  ( I + -  & ) ( I - : )  a s r t m .  (9) 

Notice that, in fact, c( r, t )  becomes independent of time as t + CO, and agrees with the 
exact solution to ( 8 ) .  Since the limit c(r,  t + CO) exists, rmin+ constant. Using ( 5 )  we find 

where p = r / a  and the factors of 47rr2 occur because in three dimensions N (  r )  = 
jL 47rr2c(r, t )  dr. The result in ( 1 0 )  is identical to that of Weiss et a1 [l]. 

Finally, we address the Smoluchowski problem in two dimensions. Assuming, once 
more, a trap of radius a, the diffusion equation is 

a l a  a 
- c(r ,  t )  = D-  - r -  c ( r ,  t )  
a t  r dr  ar 

r z a  

The quasistatic approximation now yields 
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To compute rmin,  we use jbin 27~rc(r, t )  d r  = 1. Then pmin = rmin/a  is obtained as the 
solution to the transcendental equation 

(13) p2 In p -5(p2- 1) = (&rcoa2) ln(Dt/a2) .  

The numerical solution of (13) is plotted in figure 1. For t + CO, rmin - J l n ( D t / a 2 ) / 2 ~ c 0 .  
Finally, the long-time asymptotic limit of the distribution function for the distance of 
the nearest particle is 

-Inp--)I. p?--  1 (14) [ l n ( m / a )  2.rrcaa (p2 2 4 
2 moa 

I n ( m / a )  
p l n p e x p  - p ( r ,  t )  = 

In summary, by basic notions of extreme statistics there exists a straightforward 
relation between the form of the density profile of Brownian particles near a trap, 
c(x, t ) ,  the characteristic distance of the nearest surviving particle, xmin, and the 
probability density function of that distance, p(x, t ) .  Equations (3) and ( 5 )  express 
these relations in one dimension. The generalization of these equations to higher 
dimensions is trivial. Furthermore, because we are interested only in the long time 
asymptotic limit, it is possible to employ a simplifying quasistatic approximation for 
the diffusion equation, whereby the explicit time dependence is dropped and is 
reintroduced through a moving boundary condition. We have illustrated the method 
by rederiving known results in dimensions one and three, and have exploited the 
simplicity of the approximation to obtain the solution in the borderline case of two 
dimensions. In two dimensions, the distance of the nearest particle to the trap increases 
as v'i$ij. 

We notice that the relations between c(x, t ) ,  xmin, and p(x, t )  can be applied to 
other related problems. For example, Schoonover er a1 [3] have studied a version of 
the one-dimensional Smoluchowski problem where in addition to the particles the trap 
is also allowed to diffuse with a diffusion constant DT. They find that xmin - t", where 
a is a smoothly varying function of the ratio A = DT/ 0, increasing from Q = 1/4 for 
A = 0 to a = 1/2 for A =CO. Using ( 3 )  and the scaling assumption c(x, t )  =f(x / f i ) ,  one 
can show that c(x, t )  - ( ~ / f i ) ~ ~ ' ( ' - * ~ )  in the long-time asymptotic limit. Then using 
( 5 ) ,  one would get p(x, t )  - ( ~ / f i ) ~ " ' ( ' - ' ~ )  exp[-constant x ( ~ / t ~ ) ' ' ( ' - ' ~ )  I. 

4 (1/2ncOa2 )ln(Dt/a2> 

Figure 1. Plot of the numerical solution to (13), the typical distance of the nearest particle 
to the trap in two dimensions. 
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Note added in proof: After this manuscript was completed we learned of closely related work by Havlin et 
al in which the nearest-neighbour distance distribution in two dimensions is derived by independent means. 
We are grateful to S Havlin for informing us of these results before publication. 
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