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Slowly divergent drift in the field-driven Lorentz gas

P. L. Krapivsky and S. Redner
Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215

~Received 3 December 1996!

The dynamics of a point charged particle that moves in a medium of elastic scatterers and is driven by a
uniform external electric field is investigated. Using rudimentary approaches, we reproduce, in one dimension,
the known results that the typical speed grows with time ast1/3 and that the leading behavior of the velocity

distribution is e2uvu3/t. In spatial dimensiond.1, we develop an effective-medium theory that provides a
simple and comprehensive description for the motion of a test particle. This approach predicts that the typical
speed grows ast1/3 for all d, while the speed distribution is given by the scaling formP(u,t)5^u&21f (u/^u&),
whereu5uvu3/2, ^u&;At, and f (z)}z(d21)/3e2z2/2. For a periodic Lorentz gas with an infinite horizon, e.g.,
for a hypercubic lattice of scatters, a logarithmic correction to the effective-medium result is predicted in which
the typical speed grows as (t lnt)1/3. @S1063-651X~97!09609-8#

PACS number~s!: 02.50.2r, 05.40.1j, 05.60.1w
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I. INTRODUCTION

At the turn of the century, Drude developed a qualitat
theory for electrical conduction in metals@1#. To establish a
more solid basis for Drude’s theory, Lorentz@2# suggested an
idealized model for electron transport in metals in which~i!
electron-electron interactions are ignored,~ii ! the back-
ground atoms are considered to be immobile spherical s
terers, and~iii ! the electron-atom interaction is described
elastic scattering. ThisLorentz gas@3# has played a large role
in developing our understanding of diffusive transport in ra
dom media.

An important feature of the Lorentz gas is the indepe
dence of the electrons. This implies that the underly
Boltzmann equation for the evolution of the electron veloc
distribution function~VDF! is linear. The Boltzmann equa
tion therefore has been fruitful in understanding the prop
ties of the Lorentz gas~see, e.g.,@4# and references therein!.
These investigations have established that, under relati
general conditions, a test particle moves diffusively and t
its diffusivity can be computed in terms of the geomet
properties of the background scatterers. The Lorentz mo
is also simple enough to be amenable to rigorous analy
studies~see, e.g.,@5–10#!. In particular, for a periodic Lor-
entz gas in two dimensions with an ‘‘infinite’’ horizon~infi-
nitely long straight trajectories exist!, strong arguments hav
been given that suggest that there is anomalous diffusio
the form ^r 2&}t lnt @10#; this phenomenon is also expecte
to arise in arbitrary dimension.

Paradoxically, much less is known about the problem t
originally motivated the Lorentz gas model, i.e., the moti
of a charged test particle in a scattering medium under
influence of a spatially uniform electric field. Lorentz him
self constructed a stationary solution to the Boltzmann eq
tion by a perturbative expansion around the Maxwe
Boltzmann distribution @2#. From this solution, Lorentz
reproduced the basic results of the Drude theory. Unfo
nately, the starting point of Lorentz’s analysis is erroneo
If the scattering is elastic~no dissipation!, then an electron
will necessarily gain kinetic energy as it accelerates in
561063-651X/97/56~4!/3822~9!/$10.00
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field and a stationary asymptotic VDF will not exist. Th
dilemma motivated investigations of the field-driven Loren
gas in which some form of dissipation is explicitly incorp
rated@11–13#, so that it is possible to obtain Ohm’s law.

In the absence of dissipation, however, Piasecki a
Wajnryb @14# recognized the fundamental ramifications th
arise from the nonstationarity of the system. From an ex
solution to the Boltzmann equation in one dimension and
asymptotic solution for generald and with the crucial as-
sumption of isotropic scattering, they found that~i! the root-
mean-square~or typical! velocity v rms grows with time as
t1/3 and ~ii ! the VDF has a nonstationary but symmetr

asymptotic form whose controlling factor ise2uvu3/t.
Our goal in the paper is to develop simple and physica

transparent approaches to understand the behavior of
field-driven Lorentz gas. We begin by considering the on
dimensional system in Sec. II, where we substantially rep
duce the results of Piasecki and Wajnryb@14# by relatively
simple methods. We first construct a random-walk argum
to explain the mechanism that gives rise to the slowt1/3

increase ofv rms with time. This argument relies on the a
sumption that each scattering event is spatially isotropic@15#,
a feature that we discuss in more detail later. To determ
the time dependence of the speed distribution funct
~SDF!, we employ the Langevin and underlying Fokke
Planck equations. These approaches provide a physic
transparent and simple derivation of the long-tim
asymptotic behavior. Finally, we develop a Lifshitz arg
ment @16# to reproduce the asymptotic tail of the SDF wi
minimal calculation.

In Sec. III we study the field-driven Lorentz gas for arb
trary spatial dimensiond. In greater than one dimension, th
freely accelerated trajectory segments between scatte
events are biased by the field, leading to anisotropy in
spatial position of the test particle at the next scatter
event. To account for this bias in a simple manner, we ap
an effective medium approach. In this description, a part
begins at the center of a ‘‘transparency’’ sphere of rad
equal to the mean free path. The particle freely acceler
until it reaches the surface of the sphere. This defines a
3822 © 1997 The American Physical Society
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56 3823SLOWLY DIVERGENT DRIFT IN THE FIELD-DRIVEN . . .
lision, whereupon the test particle starts at the center o
new transparency sphere. We generally assume isotr
scattering in each collision, a feature of elastic scatter
from hard spheres in three dimensions@15#. However, there
is actually preferential backscattering ford,3 and preferen-
tial forward scattering ford.3 @17#. Numerical simulations
suggest that this short-range persistence ford.3 or antiper-
sistence ford,3 does not affect the asymptotic motion
the test particle, so that we typically focus on isotropic sc
tering.

For isotropic scattering, it is simple to quantify the fiel
induced bias of the test particle as it moves within a tra
parency sphere. A random-walk argument of a similar sp
to that given in one dimension then indicates that the in
ence of the bias is of the same order as the stochast
caused by scattering. This implies that the SDF will ob
one-parameter scaling. From the solution to the underly
Fokker-Planck equation, we find the speed distribut
P(u,t)}t21/2z(d21)/3exp(2z2/2), where u5uvu3/2 with uvu
the speed, and the scaling variablez is proportional tou/t1/2.
We also extend the effective-medium theory to the c
where the mean free path is chosen from a distribut
r(l )}l 2m. This allows us to investigate how the width o
the mean-free-path distribution affects the transport cha
teristics of the Lorentz gas. As might be expected, wh
m.3, corresponding to a finite second moment^l 2& of
r~l !, the transport of the test particle is nearly identical
the case where the mean free path is fixed. However,
m,3, i.e., for a distribution witĥ l 2&5`, faster asymptotic
transport arises. The borderline case ofm53 corresponds to
a lattice array of scatterers such that an infinite horiz
arises, and logarithmic corrections in the transport laws
predicted to occur, analogous to the results for the undri
Lorentz gas@18–20,10#.

In Sec. IV we present Monte Carlo simulation results
test particle motion in a two-dimensional effective mediu
When the radius of the transparency circle is fixed, we ob
excellent agreement between simulation results and our
oretical predictions for the case of isotropic scattering. Sim
lations based on the correct scattering law for hard circle
two dimensions~preferential backscattering! give virtually
identical results, i.e., short-range antipersistence between
jectory segments appears to be asymptotically irrelevant.
also consider the case of a power-law distribution of radii
the transparency circler(l )}l 2m. While the physically in-
teresting case ofm53 corresponds to the borderline of a
plicability of our naive effective-medium approach, nume
cal results indicate transport properties that are close to th
obtained for a fixed radius transparency circle.

In Sec. V we present a brief discussion and summary

II. LORENTZ GAS IN ONE DIMENSION

With isotropic scattering, a test particle in a on
dimensional periodic array of scatterers undergoes an iso
pic random walk as a function of the number of stepsn, but
with a position- and direction-dependent time increment
each hop. In the next subsection we provide a heuristic
dom walk argument to first determine the dependence of
typical speed onn and then infer the dependence on tim
We then apply a more rigorous approach to find the SDF.
a
ic

g

t-

-
it
-
ity
y
g
n

e
n

c-
n

or

n
re
n

r
.
in
e-
-

in

ra-
e

r

se

o-

r
n-
e

.
s

a function ofn, isotropic scattering, together with the restri
tion of energy conservation, implies that the SDF is a h
Gaussian inn. We then introduce a Langevin equation as
convenient and simple way to determine the dependenc
the SDF on time.

A. Random-walk argument for the rms velocity

Consider a charged test particle that moves with cons
accelerationa5eE/m, wheree and m are the charge and
mass of the particle andE is the electric field. The test par
ticle moves in a medium of equally spaced point scatter
with separationl . To mimic the behavior of a three
dimensional system with isotropic scattering, the parti
hops with equal probability to its nearest neighbor on the
or the right after each collision. Thus the trajectory of the t
particle consists of freely accelerating segments that
punctuated by isotropic scattering events. This is simply
isotropic random walk, but with position- and direction
dependent time increments between successive steps.

We use this picture to compute the behavior of the typi
velocity as a function of time. Energy conservation gives

1

2
mvn

22eExn5const, ~1!

wherevn and xn refer to the particle velocity and positio
immediately after thenth scattering event. We rewrite this a

vn11
2 2vn

25
2eE

m
~xn112xn!56

2eEl

m
. ~2!

Because of the postulated isotropic scattering,vn11
2 2vn

2 is
equally likely to be positive or negative. Additionally, if th
particle starts at rest fromx50, then energy conservatio
implies thatx cannot be negative; this provides a reflecti
boundary condition atx50. Thus we conclude thatvn

2 un-
dergoes a simple random walk as a function ofn, with an
elementary step size given byw2[2eEl /m, and with re-
flection when the velocity reaches zero. As a result,

^vn
4&}nw4 ~3!

or uv rmsu}n1/4w.
To determine the dependence ofv rms on time, we write

the time increment between successive collisions as

dtn[tn112tn'l /uvnu. ~4!

The last approximation applies when the typical speed
large so that the acceleration between scatterings can be
glected. The typical elapsed time forn collisions is therefore

t5 (
k51

n

dtk;
l

w E
1

n dk

k1/4;
l

w
n3/4. ~5!

Solving for n as a function of time and substituting into E
~3! gives the fundamental result

v rms;wS wt

l
D 1/3

;~a2l t !1/3. ~6!
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3824 56P. L. KRAPIVSKY AND S. REDNER
It is instructive to compare the time dependence ofv rms
with that of the average velocity in the field direction. Th
latter can be computed from the recursion relation

vn11'6vn1adtn'6vn1
al

uvnu
. ~7!

By isotropy, the factor of61 occurs equiprobably for eac
scattering and we therefore ignore the influence of the
chastic term with respect to the systematic term in Eq.~7!.
Since the typical speed grows indefinitely, we also ignore
acceleration during the free flight between adjacent sites
that vdrift[^vn&'al /v rms. As a function of time, this may
be rewritten as

vdrift~ t !;S al 2

t D 1/3

. ~8!

Thus the average drift velocitydecreaseswith time, even
though the rms velocity increases. Therefore the VDF
comes systematically more isotropic in the long time lim
@14#.

Finally, using Eq.~8!, one can estimate the average d
placement̂ x(t)& in the field direction to be

^x~ t !&;vdrift~ t !t;~al 2t2!1/3. ~9!

Alternatively, this same result follows directly from energ
conservation~1! and the time dependence ofv rms(t) from
Eq. ~6!.

B. Speed distribution

We now derive the speed distribution using simple b
rigorous approaches that obviate the need to solve
Boltzmann equation. First consider the Langevin equation
describe how the typical speed depends onn. Sincevn

2 is
randomly incremented or decremented by a fixed amounw2

in a single collision, we may write, in the large-n limit,

dvn
2

dn
5w2h~n!, ~10!

where the noise has zero mean^h(n)&50 and no tempora
correlation ^h(n)h(n8)&5d(n2n8). Since we are inter-
ested in then→` limit, the continuum result for this corre
lation function is appropriate. In this limit, the amplitud
distribution of the noise is also Gaussian. Consequently,
solution to the Langevin equation with reflection atvn

250 is
a half-Gaussian distribution forvn

2 with a dispersion equal to
nw4 @21#.

To determine the time dependence of the speed distr
tion, we transform fromn to t by writing dt5l dn/uvnu, so
that

dvn
2

dn
52l

duvnu
dt

. ~11!

Next, we transform the dependence of t
noise correlation from n to t. Writing d(n2n8)
o-

e
so

-
t

-

t
e

to

e

u-

5d(t2t8)(dt/dn) gives ^h(n)h(n8)&5^h(t)h(t8)&l /uvu,
so thath(n)5h(t)Al /uvu. Substituting this into the Lange
vin equation~10! gives

duvu
dt

5
w2

2l
A l

uvu
h~ t ! ~12!

or

duvu3/2

dt
5

3w2

4Al
h~ t !. ~13!

Thus we conclude that the distributionP(u,t) is Gaussian in
u5uvu3/2, with a dispersion proportional tow4/l . Then the
SDF is determined from the identityP(v,t)duvu
5P(u,t)du to yield

P~v,t !5A uvu
4pl a2t

expF2
uvu3

9l a2t G . ~14!

An independent and appealing approach to obtain
SDF is by a Lifshitz tail argument@16#, in which the as-
sumed scaling form of the SDF is matched to the ‘‘extrem
contribution that arises from a particle that is scattered in
field direction at each collision. This extreme tail can usua
be estimated by elementary means, which is the basis for
appeal of this approach. Although heuristic, the advanta
of this method are simplicity and wide applicability.

Our starting point is to assume that the SDF can be w
ten in the scaling form

P~v,t !;
1

v rms
f ~v/v rms!, ~15!

where the scaling functionf (z) is expected to approach
constant asz→0 and vanish faster than any power law f
z→`. Generally, this large-z dependence is quasiexpone
tial @22#

f ~z!;exp~2zd!, ~16!

whered is the ‘‘shape’’ exponent of the distribution.
Consider now a trajectory in which the test particle

perpetually scattered parallel to the field, so that its spee
simply v5at. Substituting into Eq.~16! and using Eq.~6!
for v rms gives

P~v5at,t !;e2@at/~a2l t !1/3#d/3
5e2~at2/l !d/3

. ~17!

On the other hand, the probabilityPn thatn scattering events
are all parallel to the field equals 22n. For this uniformly
accelerated motion, the correspondence betweenn and the
time is simplyat2/25nl . Writing Pn as a function of time
and matching with the argument of the exponential in E
~17! givesd53, in agreement with above asymptotically e
act results. Note that if we define a size exponentn through
v rms;tn, then the general scaling relationd5(12n)21 @22#,
between the size and shape exponents, fails for the fi
driven Lorentz gas.

Parenthetically, we note that the naive substitution of
dependence on the number of scattering events by the
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dependence for extreme events gives a correct descriptio
the tail of the SDF. In contrast, if we take the correct dis
bution of vn

2 , P(vn
2)}exp(2vn

4/2nw4), and substitute
n;(wt/l )4/3, which expresses the average number of co
sions as a function of time, we arrive at awrong expression
for the SDF. This suggests that the distribution of times
fixed n, averaged over all random walks, will be broad.

III. LORENTZ GAS IN GREATER THAN
ONE DIMENSION

A. Effective-medium approximation

The field-driven Lorentz gas in greater than one dim
sion presents theoretical and computational challenges.
merical simulations of the dissipationless system are pron
large fluctuations and quantitative conclusions are not rea
obtained@11#. Because of this computational difficulty an
also because dissipation arises in any physical realizatio
the Lorentz gas, simulations have primarily focused on
field-driven system with dissipation. This is achieved by
ther allowing for inelasticity in collision events@12# or intro-
ducing a ‘‘thermostat’’ that continuously extracts ener
from the particle during its free motion to maintain a co
stant kinetic energy@11,23#. While much is known abou
these dissipative systems@23,24#, our interest is in the non
stationary behavior of dissipationless system: namely,
time dependence of the typical speed and the form of
SDF.

Because of the inherent difficulties in describing the m
tion of a test particle in a regular lattice of scatterers,
introduce an effective-medium approximation in which t
true trajectory is replaced by an effective but physica
equivalent trajectory whose properties are readily calcula
~Fig. 1!. We assume that immediately after each scatter
event, the test particle starts at the center of a transpar
sphere of radius equal to the mean free pathl . The test
particle freely accelerates until the next collision, defined

FIG. 1. ‘‘Transparency’’ sphere that surrounds a scatterer. A
a scattering event, the test particle moves freely on a parab
trajectory until the next collision at the sphere boundary. The ini
and final angular position of the test particleu anda, respectively,
are indicated. The critical trajectory~pointing downward! is defined
by the condition that the final longitudinal position of the test p
ticle is atx50.
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be the point where the surface of this sphere is reached.
collision point also defines the center of the next transp
ency sphere. This construction is repeated to generate a
ticle trajectory that consists of parabolic segments~the free-
particle motion between collisions!, which are punctuated by
collision events. As discussed in the Introduction, we gen
ally employ isotropic scattering, so that the outgoing parti
direction is randomized at each collision event.

B. Typical speed

To estimate the typical speed, we need to quantify
deflection of a trajectory during free flight. Let us defin
trajectories whose collision points are in the hemisph
x.0 as positively biased and vice versa. Separating th
trajectories is a ‘‘critical’’ trajectory, in which the next col
lision point is also atx50 ~Fig. 1!. ~This critical trajectory
exists only if the initial speed satisfiesv.w/&; otherwise
all trajectories are deflected towards increasingx. However,
since the typical speed grows as a power law in time, the
of trajectories in which the speed is too small to define
critical trajectory is expected to be negligible.!

By elementary mechanics, the inclination angle of th
critical trajectory is

uc5
1

2
sin21S 2

al

v2 D'
p

2
1S w

2v D 2

as
w

v
→0. ~18!

Very roughly, then, we may view the longitudinal motion
the test particle as an equivalent biased one-dimensional
dom walk, in which trajectories with 0,u,uc are mapped
onto steps to the right and trajectories withuc,u,p are
mapped onto steps to the left. From Eq.~18!, the bias at each
step is proportional to the inverse square of the particle sp
e5(w/2v)2. Following the same steps as those given in E
~1!–~6!, the velocity increment between scatterings is giv
by vn11

2 2vn
256w2, but with the 6 sign now occurring

with respective probabilities1
2 (16be), where b is a

dimension-dependent number of order unity. Thus, in ad
tion to the stochastic particle motion given in Eq.~3!, a de-
terministic contribution also arises. This latter compone
gives, for the n dependence of the spee
vn

2;new2; nw4/v2, or uvnu;n1/4w, identical to the one-
dimensional result. Now employing the approach given
Sec. II A, we reproduce the same time dependence ofv as in
one dimension. Thus, in higher dimensions, the manife
tions of isotropic scattering and field bias are of the sa
order in our effective-medium theory and this leads to
time dependence of the one-dimensional system.

C. Speed distribution

To determine the speed distribution, we first derive t
Langevin equation for the dependence of the typical sp
on n, from which the underlying Fokker-Planck equation f
the SDF may be written and solved. In a timeDt after col-
lision n ~and before collisionn11!, the particle will be lo-
cated at

rW5vDtn̂1
aDt2

2
ê ~19!

r
lic
l

-
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3826 56P. L. KRAPIVSKY AND S. REDNER
with respect to the center of the transparency sphere. Hen̂
andê are the unit vectors in the direction of motion after t
scattering event and the electric field, respectively, i

vW n5vn̂ andEW 5Eê. The next collision event takes place o
the surface of the sphererW 25l 2. Consequently, the time
incrementt between collisions is implicitly given by

l 25~vt!21avt3~ n̂•ê!1
a2t4

4
. ~20!

The velocity change between collisions is found from e
ergy conservation

vn11
2 2vn

252a~rW•ê!52avt~ n̂•ê!1~at!2. ~21!

Combining Eqs.~20! and ~21!, the time increment can b
eliminated to give the analog of Eq.~2!

vn11
2 2vn

2'2al ~ n̂•ê!1
a2l 2

v2 @12~ n̂•ê!2#. ~22!

In Eq. ~22! and below we ignore terms ofO(w6/v4). The
first term in Eq.~22! is purely stochastic because^n̂•ê&50.
Since ^(n̂•ê)2&51/d, we may write this stochastic term a
w2h(n)/Ad. The second term in Eq.~22! has both determin-
istic and stochastic components, with the magnitude of
former equal to (al /v)2(121/d)5(d21)w4/4v2d, the lat-
ter being negligible in the long-time limit. Thus we obta
the Langevin equation

dvn
2

dn
5

d21

4d

w4

v2 1
w2

Ad
h~n!. ~23!

In one dimension, the deterministic term disappears and
~23! coincides with Eq.~10!.

Following the same steps as those given after Eq.~10!, we
eliminaten in favor of the time to transform the above equ
tion to

duvu3/2

dt
5

3~d21!w4

16l d

1

uvu3/21
3w2

4Al d
h~ t !. ~24!

In this equation, the order of magnitudes of the system
and stochastic terms on the right-hand side are ident
Thus uvu3/2 evolves by a biased random-walk process,
one in which the bias and the dispersion are of the sa
scale. This can be seen more clearly by writing the unde
ing Fokker-Planck equation forP(u,t), where u[uvu3/2.
Following the standard prescription@21#, this Fokker-Planck
equation is

]P

]t
5

9w4

16l d F]2P

]u22
d21

3d

]

]u S P

u D G . ~25!

Notice that because the bias is proportional to 1/u, both
terms on the right-hand side are of the same order an
scaling solution is appropriate. Let us therefore make
scaling ansatz

P~u,t !5
1

^u&
f ~z! with z[u/^u&. ~26!
.,

-

e

q.

ic
l.
t
e
-

a
e

Substituting this into the Fokker-Planck equation~25! and
writing the time and velocity derivatives in terms of the sc
ing variable, the partial differential equation can be separa
into two ordinary differential equations. From the time d
pendence of̂u&, we obtain

d

dt
^u&25

9w4

8l d
. ~27!

This then gives a characteristic speed that is proportiona
(w4t/l )1/3 or (a2l t)1/3. From the dependence on the scali
variable, we find that the scaling function obeys the ordin
differential equation

2 f ~z!2z f8~z!5 f 9~z!1
d21

3 F f ~z!

z2 2
f 8~z!

z G , ~28!

where the prime denotes differentiation with respect toz.
One integration gives

f 8~z!5S d21

3z
2zD f ~z!1A, ~29!

where A is a constant. Sincef (z) and its first derivative
vanish faster than any power ofz for z→`, A50. The so-
lution to the resulting equation is

f ~z!5
2~42d!/6

G„~d12!/6…

z~d21!/3e2z2/2, ~30!

with G(y) the gamma function@25# and the numerical coef
ficient is determined by the normalization conditio
*0

` f (z)dz51.

D. Distributed mean-free paths

In both the random-walk argument ford51 and the
effective-medium theory ford.1, a mean free path that ha
the fixed valuel for each scattering event was an inhere
feature. However, in the Boltzmann equation approach
Piasecki and Wajnryb@14#, a Poisson distribution of mea
free paths is implicitly assumed. In fact, there will be a d
tribution of mean free paths in any real scattering mediu
We therefore examine the physical effects that such a di
bution has on transport properties. Probability theory@26,27#
suggests that if the distribution is relatively sharp, the pre
ous random-walk arguments apply, while for a broad dis
bution, different transport behavior arises. We therefore c
sider a power-law distribution of mean free paths

r~ l !;lm21/l m, ~31!

which is expected to facilitate the absorption of field ener
by the test particle for sufficiently small Le´vy index m. Ad-
ditionally, this form, for m53, corresponds to the Lorent
gas in a scattering medium with an ‘‘infinite’’ horizon~e.g.,
a square lattice of spherical scatterers! @18–20#.

Let us first consider a one-dimensional system in whic
new mean free path is independently chosen from the ab
distribution after each scattering event. We allowm to be
arbitrary since this general situation is tractable. If the sec
moment ofr~l ! is finite, i.e.,m.3, then the distribution of a
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sum of a large number of independent random variab
each distributed according tor~l !, approaches a Gaussia
and the random-walk argument of Sec. II applies. In contr
for m<3, a Lévy distribution emerges whose index depen
on m. Making use of well-known results@26,27# for Lévy
distributions, we determine then dependence ofv rms to be
@the analog of Eq.~3!#

vn
2;w2HAn lnn, m53

n1/~m21!, m,3,
~32!

with w25la. Repeating the calculational steps employed
Sec. II, we find, for the time dependence ofv rms(t),

v rms~ t !;wH Fwat

l
lnS wt

l D G1/3

, m53

S wt

l D 1/~2m23!

, 2,m,3.

~33!

The average displacement in the field direction is thus gi
by ^x(t)&5v rms(t)

2/2a, while the drift velocity is
vdrift(t)5^x(t)&/t. For m<2, the first moment ofr~l ! di-
verges, so that the typical mean free path is infinite. Con
quently, collisions become irrelevant asymptotically, so t
the typical velocity should grow linearly in time and a
asymmetric velocity distribution should arise.

IV. NUMERICAL SIMULATIONS

To test our theoretical predictions, we perform Mon
Carlo simulations of particle motion in a two-dimension
effective medium. An important element in this simulation
determining where an arbitrary parabolic trajectory, wh
starts at the origin, intersects the circumference of a conc
tric circle. This involves the unwieldy solution of a quart
equation. However, since the typical speed grows with tim
individual trajectory segments should be only slightly curv
in the long-time limit. Thus we compute the trajectory a
the time between collisions in a perturbation series appro
ate for the large speed limit. If the speed happens to
below a preset threshold such that a strongly curved tra
tory segment should arise, we impose the constraint tha
this segment the particle is deflected exactly parallel to
field. We anticipate that this ‘‘reflecting’’ boundary cond
tion in velocity space has a negligible influence on the lo
time motion of the test particle.

Our simulation algorithm therefore consists of the follo
ing steps to compute the velocity and time increments
tween collisions. These steps are repeated to genera
single-particle trajectory.

~i! If the speed is above a predetermined thresholdv th ,
then:

~a! Choose a random scattering angle in the ran
0<u<p ~see Fig. 1!.

~b! Determine the angular positiona of the particle when it
hits the surface of the circle. From elementary mech
s,

t,
s

n

n

e-
t

l

n-

,

i-
ll
c-
or
e

-

-
a

e

-

ics, a is perturbatively given in the large velocity limi
by

a5u2e sinu1e2sin 2u1• • • ,
with e5(w/2v)2.

~c! From the anglea, determine the change in the longitu
dinal position of the particleDx and thereby determine
the change in the speed of the particle
v f

25v i
21w2Dx/l . Herev i is the velocity of the par-

ticle as it begins from the center of the transparen
circle and v f is the particle velocity just before th
collision at the circumference of the circle.

~d! Determine the time incrementt associated with this
trajectory. In the large velocity limit,t is perturbatively
given by

t5
l

uvu H 12e cosu1
5e2

2
~cos2u21!1• • •J.

~ii ! If the speed is less thanv th , then, the scattering angl
is taken to be u50. Consequently,v f

25v i
21w2 and

t52l /(uv i u1uv f u)'2l /w.
Clearly, the different particle update rules for initial spe

smaller or larger than the threshold is a crude approximat
One can envision more accurate but more cumbersome r
to integrate over low-speed trajectory segments. Since th
segments are relatively unlikely, this refinement was not p
sued and indeed appears to be unnecessary. Also, becau
the arbitrariness in the integration over the low-speed s
ments, the actual value ofv th is also somewhat arbitrary an
we chosev th5w. To appreciate the role of trajectory curva
ture, note that whenv5v th the maximum deviation betwee
the initial and final angular positions of the trajectory aris
when u'111.5°, with a2u'215.8°. For v52v th , the
maximum deviation point occurs whenu'97°, with
a2u'23.7°. Thus the effect of curvature in the individu
trajectory segments is typically small.

Typical results from this Monte Carlo simulation with iso
tropic scattering are presented in Fig. 2. Shown arev rms(t)
and^x(t)& on a double logarithmic scale based on 2000 t
jectories of 1.529'127 834 steps for the case where t
transparency circle has a fixed radius. After some trans

FIG. 2. Monte Carlo simulation results for 2000 walks of 1.529

steps in a two-dimensional effective medium. Shown arev rms(t)
~n! and the mean longitudinal position̂x(t)& ~3!. The straight
lines represents the best fits to the data in the range 1.517<t<1.529.
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behavior, the data fort*500 appear to be linear and a line
least-squares fits yields the respective slopes of 0.329
0.665, in excellent agreement with the respective theore
predictions of 1/3 and 2/3.

In Fig. 3 we present corresponding results for the dis
bution of u5uvu3/2 at t51.520, t51.523, t51.526, and
t51.529. The raw data has been scaled so that the abscis
z5u/^u&, while the ordinate is f (z)5^u&P(u,t). This
scaled data at later times have then been smoothed by
aging over a small neighborhood to reduce fluctuatio
These data compare well with the theoretical predict
f (z)5@21/3/G(2/3)#z1/3e2z2/2 ~Fig. 3!.

We also performed a more faithful simulation for tw
dimensions in which the correct hard-circle scattering
implemented. In place of step~i! given above, we assum
that just before thenth collision, with incidence anglean21
~see Fig. 1!, the test particle uniformly illuminates the cros
section of the scatterer, which is taken to be a circle of rad
r . After specular reflection by the scatterer, the differen
between the incident and final angles
dc5p22 sin21(b/r), where the impact parameterb is uni-
formly distributed between6r . This angular deflection is
used to compute the outgoing angleun5an211dc and the
corresponding incoming anglean . Our simulation results for
this more faithful implementation of hard-circle scatteri
are virtually identical to those from isotropic scattering a
give the exponent estimates of 0.330 and 0.662 for the t
dependence ofv rms(t) and ^x(t)&, respectively. Because o
this agreement, and also for simplicity, our simulations c
centrated on the case of isotropic scattering.

As discussed previously, a lattice array of scatterers le
to a power-law distribution of mean free paths. We theref
also performed simulations of the effective medium wh
the radius of the next transparency circle is chosen from
distribution r(l );lm21/l m, with m53. We find that the
time dependence ofv rms(t) and ^x(t)& is quite close to that
obtained for the case of a fixed-radius transparency cir
After a relatively long transient, the data fort*1000 appear
to be linear on a double logarithmic scale and a linear le
squares fits in this range yield the respective slopes of 0.

FIG. 3. Scaled distributionf (z)[^u&P(u,t) versusz[u/^u&,
where u5uvu3/2. Representative data shown includet51.520 ~s!
andt51.523 ~L! smoothed over a three-site neighborhood,t51.526

~,! smoothed over a five-site neighborhood, andt51.529 ~1!
smoothed over a seven-site neighborhood. The curve is the the

ical prediction 0.930•••3z1/3e2z2/2.
nd
al

i-

is

er-
s.
n

s

s
e

e
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ds
e
n
e
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t-
40

and 0.671~Fig. 4!. The data forv rms(t) and^x(t)& exhibit a
slight downward trend, a feature that could be attributed t
logarithmic correction. However, our data are insufficient
test for such a correction quantitatively. The distribution
speeds also exhibits relatively good data collapse, but th
are quantitative discrepancies between the shape of the
ing function and the predictionf (z)'0.930•••3z1/3e2z2/2

that fit the data for the case of a fixed-radius transpare
sphere~Fig. 5!.

V. DISCUSSION AND SUMMARY

We have investigated the motion of a charged particle t
is driven by a constant field in a dissipationless elastic a
isotropic scattering medium: the field-driven Lorentz ga
A fundamental aspect of this system is that the transpor
nonstationary so that the typical velocity grows with time

et-

FIG. 4. Monte Carlo simulation results for 2000 walks of 1.529

steps in a two-dimensional effective medium in which the radiusl

of the transparency sphere is drawn from the distributionr(l )
}l 23. Shown arev rms(t) ~n! and the mean longitudinal positio
^x(t)& ~3!. The straight lines represents the best fits to the dat
the range 1.517<t<1.529.

FIG. 5. Scaled distributionf (z)5^u&P(u,t) versus the variable
z[u/^u&, whereu5uvu3/2. The radiusl of the transparency spher
is drawn from the distributionr(l )}l 23. Representative data
shown includet51.520 ~s! and t51.523 ~L! smoothed over a
three-site neighborhood,t51.526 ~,! smoothed over a five-site
neighborhood, andt51.529 ~1! smoothed over a seven-site neig

borhood. The curve is 0.930•••3z1/3e2z2/2.
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t1/3. Although this growth is unbounded, it is significant
slower than the linear time dependence that would occu
the absence of scattering. In one dimension, we have de
oped a random-walk description that involves isotropic h
ping together with a position- and direction-dependent ti
increment for each hop that correctly predicts the anoma
time dependence of the typical velocity and mean displa
ment.

Based on this random-walk picture, we obtained the
locity distribution by writing first the Langevin equation fo
the typical velocity and then the underlying Fokker-Plan
for the velocity distribution. We also constructed a Lifsh
tail argument that reproduced the correct behavior for
velocity distribution. The solution to the Fokker-Planc
equation yields the Gaussian distribution in the varia
u5uvu3/2,

P~u,t !}
1

At
e2u2/t, ~34!

which, when written in terms ofuvu, becomes

P~v,t !}Auvu
t

e2uvu3/t. ~35!

Interestingly, this is similar but not coincident with th
asymptotic velocity distribution function

P~v,t !}
1

t1/3e2uvu3/t ~36!

obtained by Piasecki and Wajnryb@14# from the Boltzmann
equation. However, their approach implicitly assumes
‘‘annealed’’ medium with a Poisson distribution of distanc
between collisions. While our random walk and the Bol
mann approach should give the same scaling of the typ
speed with time, the form of the velocity distribution fro
the two approaches should not be expected to coincide.

Our random-walk argument can also be applied to
interesting case of an alternating electric fie
E(t)5E0sin(vt) and gives the counterintuitive result that th
combination of an ac field and isotropic scattering leads
unbounded growth in the speed. This growth arises beca
of the isotropy in the scattering events. When the time
tween collisions becomes less than the time for the field
reverse, then the direction of the field becomes irrelev
Consequently, our random-walk argument for a dc field
rectly applies andv rms should grow ast1/3. Thus scattering
assists in the absorption of field energy by the test particl
an ac field, while with no scattering, a test particle mer
follows the field and the typical speed is bounded.

In higher dimensions, we introduced an effective-medi
approximation that provides a physically appealing desc
tion for the motion of a charged test particle. This appro
mation posits that the test particle moves on a parab
field-biased trajectory within a ‘‘transparency’’ sphere a
that an isotropic collision event occurs when the parti
reaches the surface of this sphere. The assumption of
tering when a particle moves a fixed radial distance imp
an annealed medium. Thus one might anticipate that th
in
el-
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could be a direct connection between the effective-med
and the Boltzmann equation approaches. Because of the
in the free-particle trajectory segments, the isotropy in o
going particle directions immediately after one scatter
event becomes anisotropic at the next scattering. Within
equivalent one-dimensional random-walk description of
test particle motion, this anisotropy can be described in te
of an effective bias that is proportional to 1/v2. The logical
consequences of this feature again leads to a typical sp
that again grows ast1/3, just as in one dimension.

The effect of the field-induced bias is more apparent
the behavior of the speed distribution. Following a simi
approach to that given for one dimension, the solution to
Fokker-Planck equation foru5uvu3/2 is

P~u,t !}
1

At
S u

At
D ~d21!/3

e2u2/t, ~37!

which when written in terms ofuvu gives

P~v,t !}
uvud/2

t ~d12!/6
e2uvu3/t, ~38!

while the corresponding result of Piasecki and Wajnryb i

P~v,t !}
uvud21

td/3
e2uvu3/t. ~39!

While these two forms agree ford52, the coincidence seem
fortuitous. The Boltzmann approach explicitly builds in iso
ropy in the collision events and in the intervening partic
motion, while the effective medium explicitly accounts fo
the field-induced bias between scattering events.

An attractive aspect of the effective-medium approach
that it can be easily generalized to a distribution of mean f
paths, a feature that arises in a lattice realization of the L
entz gas. Such a distribution may be accounted for b
power-law distribution of sphere radiir(l )}l 2m, with
m53. This represents a marginal case between the reg
where distributed radii appear to have no effect, form.3, to
the case where the scaling of the mean speed with tim
affected, for 2,m,3. Our numerical simulations indicat
that the case ofm53 leads to behavior similar to that of n
dispersion in the sphere radii. However, the applicability
either the Boltzmann equation approach or our effecti
medium description to a lattice realization of the Lorentz g
has yet to be tested.
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