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The magic of networks grown by redirection

P L Krapivsky1,2 and S Redner2*
1Department of Physics, Boston University, Boston, MA 02215, USA

2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

Received: 18 May 2023 / Accepted: 26 July 2023

Abstract: We highlight intriguing features of complex networks that are grown by redirection. In this mechanism, a target

node is chosen uniformly at random from the pre-existing network nodes and the new node attaches either to this initial

target or to a neighbor of this target. This exceedingly simple algorithm generates preferential attachment networks in an

algorithmic time that is linear in the number of network nodes N. Even though preferential attachment ostensibly requires

global knowledge of the network, redirection requires only local knowledge. We also show that changing just a single

attachment rate in linear preferential attachment leads to a non-universal degree distribution. Finally, we present unex-

pected consequences of redirection in networks with undirected links, where highly modular and non-sparse networks

arise.
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1. Introduction

Redirection is a natural mechanism to create growing

networks. In a social setting, you may meet somebody and

ultimately befriend of one the friends of your initial

acquaintance. This redirection also underlies a growth

mechanism in Facebook, where you are encouraged to

create new links to some of the friends of your initial

Facebook friend [1, 2]. The simplest implementation of

redirection for networks where each link has a prescribed

directionality is the following (Fig. 1):

1. A new node n picks a pre-existing node x from the

network uniformly at random.

2. With probability 0\1� r\1, n attaches to x.

3. Otherwise, with probability r, n attaches to the

(unique) ancestor node y of x.

These steps are repeated until a network of a desired size is

generated.

By construction, a network with a tree topology always

remains a tree. While it is straightforward to generalize to

networks with loops by the new node choosing multiple

provisional targets, we focus on trees both for their sim-

plicity and because they illustrate many of the intriguing

features of networks that are grown by preferential

attachment.

Without the redirection step, the above growth rules define

amodel that is known as the random recursive tree (RRT).We

discuss this fundamental nullmodel [3] inSect. 2.Redirection

represents a minimalist extension of the RRT; this idea was

suggested in [4] and developed in [5]. (Alternative extensions

of growth mechanisms that are still local in character [6–9]

have also yield networks with broad degree distributions). As

we will discuss, standard redirection is equivalent to shifted

linear preferential attachment [5], in which the rate of

attaching to a pre-existing network node of degree k is pro-

portional to k þ k, with k ¼ 1
r � 2. This connection highlights

an fascinating aspect of redirection—it transforms a purely

local growth mechanism—namely the RRT plus redirection

to the ancestor—into the global mechanism of linear prefer-

ential attachment. The motivation for preferential attachment

stems from the ‘‘rich get richer’’ parable [10, 11]; that is,

popular high-degree nodes aremore likely to attract additional

links merely by virtue of being popular. While enormous

effort has been devoted to understanding the properties of

these types of networks (see, e.g., Refs. [12–19]), we will

present, in Sect. 3, a number of surprising and under-appre-

ciated features of preferential attachment.

As we will discuss in this section, networks that are built

by the redirection mechanism of Fig. 1 have a degree

distribution that possesses a non-universal algebraic tail,*Corresponding author, E-mail: redner@santafe.edu
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Nk �
N

km
; m ¼ 1þ 1

r
[ 2 : ð1Þ

The exponent must satisfy m[ 2 for all sparse networks

whose degree distribution has an algebraic tail. This bound

follows from the identity
P

k� 1 kNk ¼ 2L and the linear

growth of the number of links L with N, which is the

defining property of sparse networks. For trees, in partic-

ular,
P

k� 1 kNk ¼ 2 L ¼ 2ðN � 1Þ.
However, a disconcerting feature of several complex

networks [20] is that they are apparently characterized by

degree distributions with tail exponent m\2, which violates

the bound in Eq. (1). Mathematically, this implies that the

sum
P

k� 1 kNk grows superlinearly with N, which cannot

occur in sparse networks with Nk �N=km. An exponent

value m\2 may arise in densifying networks [21–23],

where L increases superlinearly with N. Intriguingly, such

an anomalously small exponent also occurs in undirected

growing trees that are generated by complete redirection

(Sect. 4.3). To be consistent with the constraint
P

k�N kNk �N, the amplitude of the degree distribution

must grow sublinearly with N, namely

Nk �
Nm�1

km
; m\2: ð2Þ

Networks grown by this parameter-free complete redirec-

tion mechanism: (a) are highly modular; (b) have numerous

macrohubs; (c) consist almost entirely of leaves (nodes of

degree 1); (d) the ‘‘core’’ of the network (nodes of degree

k� 2) comprises a vanishingly small fraction of the net-

work as N ! 1; and (e) are non-self-averaging, namely,

basic characteristics, such as Nk for any k[ 1, exhibit huge

fluctuations from realization to realization. In spite of the

simplicity of complete redirection, there is little analytical

understanding of its intriguing consequences and these

represent an appealing future challenge.

We emphasize that the redirection algorithm is extremely

efficient. To build a network ofN nodes requires a computation

time that scales linearly withN, with a prefactor of the order of

one. Redirection also allows one to build networks with more

general preferential attachment mechanisms, such as sublinear

preferential attachment, with nearly the same efficiency as the

original redirection algorithm (Sect. 4.2).

2. The random recursive tree (RRT)

We begin our discussion with the RRT, first introduced by

Otter [3], in which nodes are added to the network one by

one (Fig. 2). Each new node attaches to a single ‘‘target’’

node that is chosen uniformly at random among the already

existing nodes; that is, the attachment rate Ak ¼ 1, for any

degree k. By the restriction that each new node has a single

attachment point (equivalently, the out degree of every

node equals 1), the resulting network is a tree. If a new

node attaches to more than one pre-existing node, loops

could form. The degree distribution of a network with

loops is modified only in the amplitude of the degree dis-

tribution compared to growing trees. On the other hand,

topological features of networks with loops are different

than trees, but our focus is on the degree distribution, for

which it is simplest to focus on tree networks.

The growth rules of the RRT thus are:

1. Pick one of the nodes of the RRT—defined as the

target—with uniform probability.

2. Introduce a new node that links to the target node.

Starting with a single node, these two steps are repeated

until the tree reaches a desired number of nodes N.

2.1. The degree distribution

We first outline how to derive the exact degree distribution

and then determine the degree distribution in the limit

N ! 1. The degree state of any network is characterized

by the vector N � fN1;N2; . . .g, where Nk denotes the

number of nodes of degree k. When a new node is

Fig. 1 Illustration of redirection. The rate at which a new node n
attaches to the ancestor y of node x by redirection is proportional to

the number of upstream neighbors of y (green nodes) (color

figure online)

Fig. 2 A random recursive tree of 9 nodes, showing the ordering of

the nodes and each of their attachment points
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introduced, the changes in the network state vector N are

[24, 25]:

Attach to node of degree 1: ðN1;N2Þ ! ðN1;N2 þ 1Þ

Attach to node of degree k[ 1 : ðN1;Nk;Nkþ1Þ

! ðN1 þ 1;Nk � 1;Nkþ1 þ 1Þ;
ð3Þ

while the state of all other network nodes are unchanged.

Typically we are not interested in the full probability dis-

tribution PðNÞ, but just the average number of nodes of a

given degree, hNki, namely, the degree distribution; the

angle brackets denote an average over all possible growth

histories of the network.

Let us determine how the Nk change when a new node is

added to the network. As indicated by Eq. (3), we need to

separately consider nodes of degree 1 and nodes of degree

greater than 1. The number of nodes of degree 1, N1ðNÞ,
i.e., the number of leaves, is a random variable that changes

with each node addition according to

N1ðNþ1Þ ¼
N1ðNÞ probability N1

N

N1ðNÞ þ 1 probability 1� N1

N :

(

ð4Þ

These equations apply for N� 2, while the natural initial

condition is N1ð2Þ ¼ 2. This equation expresses the two

possibilities when a new node joins the network: with

probability N1=N, the new node attaches to a node of

degree 1 and the number of such nodes does not change,

while with probability ð1� N1=NÞ, the new node attaches

to a node of degree k[ 1 and N1 increases by 1.

The evolution equation for the average number of leaves

is therefore

�
N1ðNþ1Þ

�
¼

D
N1ðNÞ �

N1ðNÞ
N

E
þ
D
N1ðNÞ þ 1ð Þ

�
�
1� N1ðNÞ

N

�E

¼ 1þ
�
1� 1

N

��
N1ðNÞ

�
:

ð5Þ

Because the relevant time-like variable that characterizes

the network size is the total number of nodes N, we will

always use N as the time variable. The solution to this

recursion, for N � 2, is

�
N1ðNÞ

�
¼ N

2
þ 1

N � 1
: ð6Þ

The discrete approach can be used to determine higher

moments of the random variable N1ðNÞ. The second

moment hN2
1 ðNÞi is especially important as we can obtain

the variance and thereby quantify degree fluctuations. From

Eq. (4), we deduce the recurrence for the second moment

N2
1ðN þ 1Þ

� �
¼ 1þ 1� 2

N

� �

hN2
1ðNÞi þ 2� 1

N

� �

hN1ðNÞi ;

whose solution is

N2
1ðNÞ

� �
¼ Nð3N þ 1Þ

12
þ N

N � 1
: ð7Þ

From the first two moments, the variance, for N� 3, is

N2
1ðNÞ

� �
c
� N2

1ðNÞ
� �

� N1ðNÞh i2¼ N

12
� 1

ðN � 1Þ2
; ð8Þ

so the deviation of N1ðNÞ from its average is of the order of
ffiffiffiffi
N

p
. Higher cumulants of the number of leaves also grow

as
ffiffiffiffi
N

p
. The cumulants Np

1ðNÞ
� �

c
with arbitrary integer

p� 1 are given by remarkably simple formula

Np
1ðNÞ

� �
c
¼ p�1BpN þ ð�1Þp�1ðp� 1Þ!

ðN � 1Þp
ð9Þ

applicable when N � pþ 1. Here Bp are Bernoulli numbers

defined [26] as the coefficients in the power series

z

ez � 1
þ z ¼

X

p� 0

Bp
zp

p!

Thus for large N, the number of nodes of degree 1 is

sharply distributed about its average value. For this reason,

one may ignore fluctuations and focus on the average. This

same holds for all nodes of higher degrees as long as the

number of such nodes is large, NkðNÞ � 1. Thus we again

focus on the average.

By similar reasoning as that used for N1, the number of

nodes of degree k� 2, evolves according to

NkðNþ1Þ ¼
NkðNÞ � 1 probability Nk

N

NkðNÞ þ 1 probability Nk�1

N

NkðNÞ probability 1� Nk�1þNk

N

8
><

>:

ð10Þ

after each node addition. Following the same steps that led

to Eq. (5), the evolution equation for hNki is

NkðNþ1Þh i ¼ NkðNÞh i þ
	
Nk�1ðNÞ � NkðNÞ

N




: ð11Þ

While this equation can again be solved to give the exact

degree distribution for finite networks, we now restrict

ourselves to the leading behavior of the degree distribution

for N ! 1. For simplicity, we drop the angle brackets and

the argument N, so that we write Nk for the average number

of nodes of degree k in a network that contains N nodes.

Next, we replace the discrete differences with derivatives

in Eqs. (5) and (11), so that the asymptotic degree

distribution evolves according to the master equation

The magic of networks



_Nk �
dNk

dN
¼ Nk�1 � Nk

N
þ dk;1 : ð12aÞ

The first equation is _N1 ¼ �N1=N þ 1, with solution

N1 ¼ N=2. Then _N2 ¼ ðN1 � N2Þ=N, with solution

N2 ¼ N=4. Continuing one finds that all the Nk are

proportional to N. Thus we write nk � Nk=N and reduce

Eq. (12a) to

nk ¼ nk�1 � nk þ dk;1 ð12bÞ

leading to the exponential degree distribution nk ¼ 2�k.

3. Preferential attachment

In preferential attachment, the rate Ak at which a node

attaches to a pre-existing node of degree k is an increasing

function of k. A ubiquitous feature of preferential attach-

ment networks is that their degree distributions have broad

tails, a fact that sparked much interest in this class of

networks over the past two decades. We now derive this

scale-free degree distribution using the approach of in Ref.

[5].

3.1. Master equation

The evolution of the degree distribution for a network

whose growth is governed by an attachment rate Ak is

(compare with Eq. (12a) for the RRT):

_Nk ¼
Ak�1Nk�1 � AkNk

A
þ dk1: ð13Þ

The first term on the right accounts for the new node

connecting to a pre-existing node that already has k � 1

links, thereby increasing Nk by one. Since there are Nk�1

nodes of degree k � 1, the rate at which such processes

occur is proportional to Ak�1Nk�1. The total rate A �
AðNÞ �

P
j� 1 AjNj in the denominator means that Ak�1=A

is the probability for a node of degree k � 1 to become a

node of degree k. A corresponding role is played by the

second term on the right. The overall amplitude of Ak is

immaterial, since only the ratio Ak=A appears in the master

equation. The last term accounts for the introduction of a

new node that has one outgoing link and no incoming links.

To determine the degree distribution, we need to specify

the attachment rate Ak. We focus on power-law preferential

attachment, Ak ¼ kc, with c� 0. We will show that dif-

ferent behaviors arise for sublinear (c\1), superlinear

(c[ 1), and linear (c ¼ 1) attachment rates. The linear

case is especially rich because the degree distribution is

nonuniversal.

When confronted with determining a non-trivial distri-

bution, it is often instructive to first deal with the simpler

problem of determining low-order moments of the degree

distribution MaðNÞ �
P

j j
aNj. The zeroth and first

moments of this distribution have particularly simple

N dependences: _M0 ¼
P

j
_Nj ¼ 1 and _M1 ¼

P
j j

_Nj ¼ 2.

The equation for M0 states that the total number of nodes

(of any degree) increases by 1 each time a new node is

introduced. Similarly, the equation for M1 states the total

degree of the network,
P

jNj, increases by two when the

single link associated with the new node is added to the

network. Since both the zeroth and first moments of the

degree distribution increase linearly with N, the total rate

A ¼
P

j j
cNj also grows linearly with N, because A is

intermediate to the zeroth and first moments for 0� c� 1.

Asymptotically, A ’ lN, with the as yet-undetermined

amplitude l that must range between 1 and 2 as c increases
from 0 to 1.

Solving for the first few Nk from Eq. (13), it becomes

clear that each Nk is also proportional to N. This fact

suggests substituting NkðNÞ ¼ nkN and A ’ lN into these

master equations. With this step, the overall N dependence

cancels, leaving behind the recursion relations nk ¼
ðAk�1nk�1 � AknkÞ=l for k[ 1 and n1 ¼ 1� A1n1=l.
After straightforward algebra, the degree distribution is

nk ¼
l
Ak

Y

1� j� k

1þ l
Aj

� ��1

: ð14aÞ

Using the definition l ¼
P

j� 1 Ajnj in (14a) we obtain

X

k� 1

Y

1� j� k

1þ l
Aj

� ��1

¼ 1: ð14bÞ

To extract the physical meaning of the general solution

(14a) with l implicitly determined by (14b) we examine

the asymptotic behavior for the three generic cases of

sublinear, superlinear, and linear preferential attachment.

3.1.1. Sublinear preferential attachment

For Ak ¼ kc with c\1, we rewrite the product in Eq. (14a)

as the exponential of a sum of logarithms, convert the sum

to an integral, and then expand the logarithm inside the

integral in a Taylor series. These straightforward steps lead

to

nk �

k�c exp �l k1�c�21�c

1�c

� �h i
1
2
\c\1;

kðl
2�1Þ=2 exp �2l

ffiffiffi
k

p� �
c ¼ 1

2
;

k�c exp �l k1�c

1�c þ
l2

2
k1�2c

1�2c

h i
1
3
\c\ 1

2
;

8
>>>>>>><

>>>>>>>:

ð15Þ
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with similar, but more complicated expressions for nk for

still smaller values of c. Each time c decreases through 1
m,

where m is an integer, an additional term is generated in the

exponential that is an increasing function of k. Neverthe-

less, for any value of c\1, the leading behavior is always

the universal stretched exponential decay,

expð�const:� k1�cÞ.

3.1.2. Superlinear preferential attachment

For c[ 1, a gelation-like phenomenon occurs in which

nearly all links attach to a single node. Let us first treat the

ultra singular behavior that arises for c[ 2, for which there

is a non-zero probability for a ‘‘bible’’ to occur—a node

that links to every other node in an infinite network, while

only a finite number of links exist between all other nodes.

To determine the probability for a bible, suppose that a

network of N þ 1 nodes contains a bible (Fig. 3). The

probability that the next node links to the bible is

Nc=ðN þ NcÞ, and the probability that this pattern of con-

nections continues indefinitely is P ¼
Q

N � 1 N
c=ðN þ NcÞ.

Using the same asymptotic analysis as above, where we

write the product as the exponential of a sum of logarithms,

expand the logarithm for large N, and approximate the sum

as an integral, the asymptotic behavior of this product is

P ¼ 0 for c� 2, and P[ 0 for c[ 2. Strikingly, there a

non-zero probability for a bible to exist in an infinite net-

work for c[ 2!

When 1\c\2, the attachment pattern of low-degree

nodes is not as simple as in Fig. 3, but there continues to be

a single node whose degree is of the order of N. There is

also an infinite sequence of transition points when c passes
through m

m�1
, with m an integer greater than 2, in which

number of nodes of degree k�m grows as Nk�ðk�1Þc, while
the number of nodes of degree k[m remain finite for

N ! 1 (Fig. 4). To understand this behavior in a simple

way, it is instructive to study the governing equations for

each Nk one by one. For N1 we have

_N1 ¼ 1� N1

A
:

We now make the assumption that the total attachment rate

is governed by the single highest-degree node, with degree

of the order of N. Thus A ¼
P

jcNj �Nc. Since N1 can at

most be of the order of N, the second term in the above

equation is negligible, so that _N1 � 1 or N1 �N. Similarly,

the equation for N2 is

_N2 ’
N1 � 2cN2

Nc
:

Again, neglecting the second term, gives _N2 ’ N1�c, from

which N2 �N2�c. We can then verify that the term that we

dropped is indeed negligible. Continuing this self-

consistent procedure for general degree k, we find

Nk �Nk�ðk�1Þc ; ð16Þ

as long as the exponent of Nk is positive, while Nk will be

finite for N ! 1 for values of k for which k � ðk � 1Þc is
negative (Fig. 4).

Thus we predict an infinite sequence of transitions at

c ¼ cm ¼ m
m�1

. For c[ cm, the number of nodes of degree

k[m are all of Oð1Þ, while nodes of degrees k�m grows

sublinearly with N, as Nk�ðk�1Þc. This set of transitions

becomes progressively more dense as c ! 1 from above.

At c ¼ 1, the network changes its character from con-

densed, where a hub node has degree of OðNÞ, to sparse,

where the number of nodes of any degree is proportional to

N.

3.1.3. Linear preferential attachment

Here, it is important to distinguish between strictly linear

preferential attachment, Ak ¼ k, and asymptotically linear

preferential attachment, Ak ’ k. In the former case, the

total attachment rate is A ¼
P

k AkNk ¼
P

k kNk ¼ 2N.

Substituting this value of l ¼ 2 into Eq. (14a) and per-

forming some simple algebra immediately leads to the

discrete power-law form of the degree distribution

Fig. 3 Creation of a ‘‘bible’’ in which each new node attaches only to

the bible (red) (color figure online)

Fig. 4 Illustration of the sequence of phase transitions that arise in

superlinear preferential attachment. Starting with an ultra-condensed

network for c[ 2, the network contains progressively more low-

degree nodes each time c passes through m=ðm� 1Þ. The network

becomes sparse when c reaches 1, where the number of nodes of any

degree are all proportional to N

The magic of networks



nk ¼
4

kðk þ 1Þðk þ 2Þ ¼
4CðkÞ

Cðk þ 3Þ ; ð17Þ

where C is the Euler gamma function. From this power-law

degree distribution, the mean degree hki ¼
P

k� 1 knk ¼ 2,

as it must, but the mean-square degree hk2i ¼ 1. Thus

fluctuations in the mean degree, namely, the spread in the

mean degree for different realization of large networks of N

nodes, diverges for N ! 1.

The surprising feature of asymptotically linear prefer-

ential attachment growth is that the degree distribution

exponent is non-universal. This non-universality is at odds

with the common wisdom of statistical physics in which

the absence of a characteristic scale leads to universal

scaling properties. One natural form for an asymptotically

linear attachment rate is Ak ¼ k þ k, with k a constant. This
modification implies that the amplitude l in A ¼ lN is no

longer equal to 2, but assume a wide range of values (see

below). Now Eq. (14a) becomes

nk ¼
l
Ak

Y

1� j� k

1þ l
Aj

� ��1

� l
k
exp �

Z k

1

ln 1þ l
j

� �

dj

 �

� l
k
exp �l

Z k

1

dj

j

 �

� k�ð1þlÞ :

ð18Þ

Thus the degree exponent m ¼ 1þ l can take any value

larger than 2 merely by tuning the amplitude l.
As an explicit and surprising example, consider the

attachment rate Ak ¼ k for k� 2, while A1 � a is arbitrary.

It is now convenient to separate A1 and Ak for k� 2 in

Eq. (14a) to recast this equation as

l ¼ A1

X1

k¼2

Yk

j¼2

1þ l
Aj

� ��1

¼ a
X1

k¼2

Cð2þ lÞ Cð1þ kÞ
Cð1þ lþ kÞ ;

ð19Þ

where we express the product as the ratio of gamma

functions.

The sum can be evaluated by employing the identity

[26]

X1

k¼2

Cðaþ kÞ
Cðbþ kÞ ¼

Cðaþ 2Þ
ðb� a� 1ÞCðbþ 1Þ ;

so that Eq. (19) becomes lðl� 1Þ ¼ 2a, with solution

l ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8a

p
Þ=2. Thus the degree exponent m ¼ 1þ

l is

m ¼ 3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8a

p

2
: ð20Þ

As examples, the degree distribution exponent is m ¼ 4 for

a ¼ 3 and m ¼ 5=2 for a ¼ 3=8. For 0\a\1, the exponent

lies in the range 2\m\3, while for a[ 1, m[ 3. While the

degree distribution exponent must satisfy the lower bound

m[ 2, there is no upper bound for m; in particular, m !
ffiffiffiffiffi
2a

p
as a ! 1. We emphasize that changing just a single

attachment rate leads to a global effect on the degree dis-

tribution. This global effect arises because the amplitude l
appears inside the infinite product in Eq. (14a). This mul-

tiplicative nature strongly affects the degree distribution

itself and thereby the degree distribution exponent.

4. Network growth by redirection

We now discuss a deceptively simple modification of the

RRT with profound consequences. This is the notion of

redirection where a new node may attach to a pre-existing

target node, or it to a neighbor of this target [4, 5].

4.1. Constant redirection probability

First we treat the redirection algorithm [5] that was out-

lined in the introduction. There is one subtlety in this

algorithm because redirection requires that every node has

an ancestor. To ensure this condition always holds, the

initial state, for example, could consist of at least two nodes

and one link, with each node defined as the ancestor of the

other. Other simple starting graphs are equally suitable,

such as a triangle with cyclic links.

According to the redirection algorithm, the degree dis-

tribution evolves according to

_Nk ¼
1� r

N

h
Nk�1 � Nk

i
þ r

N

h
ðk � 2ÞNk�1 � ðk � 1ÞNk

i
þ dk;1 :

ð21aÞ

The terms within the first square brackets correspond to

attachment to the initially selected node, whose evolution

equation is just that of the RRT (Eq. (12a)) for redirection

probability r ¼ 0. The terms within the second square

brackets account for the change in Nk due to redirection. To

understand their origin, consider first the gain term. Since

the initial node is chosen uniformly, if redirection does

occur, then the probability that a node of degree k � 1

receives the newly redirected link is proportional to the

number of its upstream neighbors (green nodes in Fig. 1),

which equals k � 2. A parallel argument applies for the

redirection-driven loss term. The crucial point is that the

rate at which attachment occurs to a given node is pro-

portional to the number of its upstream neighbors, which,

in turn, is proportional its degree. Thus linear preferential

attachment is implicit in this purely local redirection rule.

P L Krapivsky and S Redner



The redirection mechanism has an unexpected connec-

tion to the friendship paradox [27, 28], which states that the

neighbors of a randomly selected node are more popular

(have higher degrees), on average, than the initially

selected node. As illustrated in Fig. 1, there are three dis-

tinct ways to attach node y by redirection from upstream

nodes. The higher the degree of node y, the more likely

attachment to it by redirection occurs. Thus we expect that

node y will have more neighbors, on average, than the

initial node x

By a straightforward rearrangement of terms, (21a) may

be re-expressed as

_Nk ¼
r

N
k � 1þ 1

r
� 2

� � �

Nk�1

�

� k þ 1

r
� 2

� � �

Nkg þ dk;1

� 1

A

n
k � 1þ kð ÞNk�1 � k þ kð ÞNk

o
þ dk;1 ;

ð21bÞ

with k ¼ 1
r � 2 and total attachment rate

A ¼ N=r ¼ ð2þ kÞN. Thus uniform attachment, in

conjunction with redirection, generates shifted linear

preferential attachment, with Ak ¼ k þ k. The particular

case of strictly linear preferential attachment arises for the

choice r ¼ 1
2
. When we now substitute attachment rate

Ak ¼ k þ k and l ¼ 2þ k into the general formula (14a)

for the degree distribution, we obtain

nk ¼
l
Ak

Y

1� j� k

1þ l
Aj

� ��1

¼ ð2þ kÞCð3þ 2kÞ
Cð1þ kÞ

Cðk þ kÞ
Cðk þ 3þ 2kÞ � k�ð3þkÞ :

ð21cÞ

Since the redirection probability lies between 0 and 1, the

additive shift k lies between �1 and 1. Thus the degree

distribution exponent can take on any value that is greater

than 2. In the extreme case of r ¼ 1 a star-like network

arises whose detailed structure depends on the initial

condition.

It is also worth mentioning the many intriguing results

that emerge from simple extensions of this redirection

mechanism. Starting with the RRT, each node has a

genealogical tree of ancestors. It is natural to grow a net-

work in which redirection can occur equiprobably to any

node in the genealogical tree of an initial target node [29],

or to all nodes in this genealogical tree [30]. The latter

leads to a network that is no longer sparse, as the number of

links L grows as N lnN. Amusingly, this redirection

mechanism to all ancestors is isomorphic to a basic

hypergraph model, known as the random recursive hyper-

graph [31].

Finally, we wish to emphasize the extreme simplicity of

this redirection algorithm. Each node addition requires only

two elemental operations: (i) select a target node, and (ii)

choose to attach either to this target or to its ancestor. This

algorithm allows one to generate a network of N nodes in

roughly 2N algorithmic steps. It is therefore possible to

quickly generate very large networks. Crucially, a purely

local rule—tracking the ancestor of each node—is equiv-

alent to the global rule that underlies preferential attach-

ment. Ostensibly, one needs to know the degrees of all the

nodes in the network to implement preferential attachment.

As the redirection algorithm shows, this global information

is not needed.

4.2. Degree-based redirection

To illustrate the utility and generality of redirection, we

exploit the local information that is readily available—the

degree a of the initial target node and the degree b of the

ancestor—to efficiently generate sublinear preferential

attachment networks. In degree-based redirection [32], we

merely define the redirection probability r to be a suitably

chosen function of these two degrees a and b; that is r ¼
rða; bÞ (see Fig. 5).

To show how sublinear preferential attachment can be

achieved from this still-local information, we define fk as

the total probability that an incoming link is redirected

from a randomly selected target node of degree k to the

parent of this target. Similarly, we define tk as the total

probability that an incoming link is redirected to a parent

node of degree k after the incoming node initially selected

one of the child nodes of this parent. Formally, these

probabilities are defined in terms of the redirection prob-

abilities by

fk ¼
X

b� 1

rðk; bÞNðk; bÞ
Nk

; tk ¼
X

a� 1

rða; kÞNða; kÞ
ðk � 1ÞNk

;

ð22Þ

Fig. 5 Illustration of degree-based redirection. A new node (blue)

attaches to a random target of degree a with probability 1� rða; bÞ
and attaches to the ancestor node (degree b) of the target with

probability r(a, b) (color figure online)
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where Nk ¼
P

b� 1 Nðk; bÞ and N(a, b) is the correlation

function that specifies the number of nodes of degree a that

have a parent of degree b. Thus fk is the mean redirection

probability averaged over all Nk possible target nodes of

degree k. Likewise, since each node of degree k has k � 1

children, there are ðk � 1ÞNk possible target nodes whose

redirection probabilities are averaged to give tk.

In terms of these probabilities fk and tk, the master

equation that governs the evolution of Nk is

_Nk ¼
ð1�fk�1ÞNk�1 � ð1�fkÞNk

N

þ ðk�2Þtk�1Nk�1 � ðk � 1ÞtkNk

N
þ dk;1:

ð23Þ

The first ratio corresponds to instances of network growth

for which the incoming node actually attaches to the initial

target. For example, the term ð1� fkÞNk=N gives the

probability that one of the Nk target nodes of degree k is

randomly selected and that the link from the new node is

not redirected away from this target. Similarly, the second

ratio corresponds to instances in which the link to the target

node is redirected to the ancestor. For example, the term

ðk � 1ÞtkNk=N gives the probability that one of the ðk �
1ÞNk children of nodes of degree k is chosen as the target

and that the new node is redirected. Lastly, the term dk;1
accounts for the newly added node of degree 1.

By rearranging terms, we express (23) in the generic

form of Eq. (13), with the attachment rate

Ak

A
¼ ðk � 1Þtk þ 1� fk

N
: ð24aÞ

Since the quantities fk and tk are normalized probabilities,

the asymptotic behavior of the above expression is

Ak � k tk. Thus a redirection probability r(a, b) for which

tk is a decreasing function of k will asymptotically

correspond to sublinear preferential attachment. A natural

choice for such a redirection probability is rða; bÞ ¼ bc�1,

with 0\c\1, so that the redirection probability decreases

as the degree of the parent node increases. Because

r depends only on the degree of the parent node (Fig. 5),

Eq. (22) reduces to tk ¼ kc�1. Using this form of tk in

Eq. (24a) yields

Ak

A
¼ kc � kc�1 þ 1� fk

N
; ð24bÞ

whose leading behavior is indeed sublinear preferential

attachment, Ak � kc. This equivalence to sublinear prefer-

ential attachment allows to generate a network of N nodes

with a stretched exponential degree distribution in an

algorithmic time that is also of the order of N.

What happens in the opposite case of enhanced redi-

rection, in which the redirection probability is an increas-

ing function of the degree of the parent node [32, 33]? This

attachment rule leads to highly modular networks that

contains multiple macrohubs, with most nodes having

degree 1 (leaves). Furthermore, the degree distribution

exhibits the anomalous scaling given in Eq. (2), with m
strictly less than 2. Similar phenomenology also occurs in

the simpler example of redirection rule for undirected

networks (see below).

4.3. Complete redirection in undirected networks

Link directionality is important in social and technological

networks, but there are many situations where networks are

undirected [34–36]. The influence of redirection on undi-

rected networks is profound and there is little analytical

understanding of this enigmatic case.

The growth rule for isotropic redirection is nearly the

same as that given in Sect. 4 for directed networks, but

with a small but profound difference [37, 38] that is

embodied by the following growth rule:

1. Pick a pre-existing node x from the network uniformly

at random.

2. With probability 1� r, the new node n attaches to x.

3. Otherwise, with probability r, the new node n attaches

to any neighbor of x, chosen uniformly at random.

Repeat these steps a until a network of a desired size is

generated. The growth rules for directed and undirected

redirection are illustrated in Fig. 6.

We focus on the limit of r ¼ 1, which we term complete

redirection, because this limiting case leads to the most

striking phenomenology. Simulation data also suggest that

it is only the special case of r ¼ 1 that gives rise to

emergent modularity. The network realizations shown in

Fig. 7 for r ¼ 1 are highly modular and each consists of a

number of well-resolved modules. Each module contains a

central macrohub whose degree is a finite fraction of the

total number of nodes N; thus each macrohub is connected

to a large number of leaves (nodes of degree 1). Typical

networks consist almost entirely of leaves as N ! 1; that

is, the number of leaves satisfies N1=N ! 1 as N ! 1.

Nodes with degrees k� 2 constitute what we term the

Fig. 6 Comparison of redirection for (a) directed and (b) undirected

networks. (a) The new node (blue) attaches by redirection to the

unique ancestor (black) of the target (red). (b) With the same target in

an undirected network, the new node attaches to any one of the red

neighboring nodes (color figure online)
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network ‘‘core’’. This core comprises an infinitesimal

fraction of the network, viz., the number of core nodes

C ¼
P

k� 2 Nk grows as Nm�1, with m 	 1:567, as deter-

mined by numerical simulations [37].

The degree distribution for complete redirection has an

algebraic tail Nk / k�m with m 	 1:567. As discussed in the

introduction, a degree distribution with m\2 cannot occur

in sparse networks, which exhibit standard extensive Nk /
N scaling. However, a degree distribution with such a fat

tail can arise if the amplitude grows sub-extensively with

network size, that is, Nk �Nm�1=km. Thus the number of

nodes of any fixed degree k with k� 2 grows sublinearly in

N, with Nk �Nm�1.

Several features of networks grown by complete redi-

rection can be understood analytically [37], while others,

such as the exponent m currently appear to be beyond the

reach of available techniques. The difficulty in making

theoretical progress is that the change in the degree of a

specific node depends on the degrees of all its neighbors.

This inherent non-locality in the growth rule means that it

is not possible to write a master equation for the degree

distribution alone. Instead, the equation for the degree

distribution must involve degree correlation functions

between neighboring nodes, and this quantity, in turn,

involves higher-order correlation functions.

5. Conclusions

Preferential attachment networks have been the focus of

intense investigation for the past two decades. Part of the

reason for this explosion of interest stemmed from the

confluence of theoretical insights that were inspired by the

existence of new datasets about networked systems. The

network paradigm is alluring and a large number of

seemingly unrelated many-body systems are now studied

within the context of complex networks.

While the field has advanced significantly, some basic

facts about the simplest network models seem under-ap-

preciated. One is that the degree distribution of linear

preferential attachment networks sensitively depends on

microscopic details of the network growth mechanism.

While the earliest theoretical studies of linear preferential

attachment networks found a degree distribution exponent

of m ¼ 3, any exponent value with m[ 2 can be achieved

by linear preferential attachment. This non-universality is

surprising because the standard lore from statistical physics

suggests that exponent values should be universal and

independent of the details of the network growth process.

Another important facet of complex networks that has

yet to be fully exploited is that they can be generated by

simple redirection algorithms. When a new node joins the

network, it either attaches with a given probability to a pre-

existing node that is chosen uniformly at random, or it

attaches to the ancestor this target node with the comple-

mentary probability. This algorithm is simple to implement

and efficient because it generates networks of N nodes in an

Fig. 7 Examples of tree networks of 104 nodes that are grown by complete redirection. Green: nodes of degree k ¼ 1 (leaves); yellow,

2� k� 10; cyan, 11� k� 99; blue 100� k� 500; violet ! red, k[ 501. The node radius also indicates its degree (color figure online)
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algorithmic time that is also of the order of N. We showed

how to generate networks that are equivalent to sublinear

preferential attachment and to shifted linear preferential

attachment by suitable redirection rules. Our redirection

perspective provides crucial insights that relate the random

recursive tree to preferential attachment networks.

We also briefly discussed undirected networks that are

grown by complete redirection. The resulting networks

have a highly modular structure (Fig. 7): the number of

core (nodes of degree � 2) scales sublinearly with the total

number of nodes, as Nm�1, with m 	 1:567. A natural

question here is: why does this redirection mechanism lead

to such singular networks? We really don’t know. The

master equation approach, which works so well for directed

networks, is inadequate to describe the structure this class

of networks. This inadequacy stems from the effective non-

locality in the growth mechanism, and different approaches

seem to be needed to truly understand the behavior of this

network. An even deeper reason is the lack of self aver-

aging: the random quantities Nk for any k[ 1 exhibit huge

fluctuations from realization to realization. Therefore

averages hNki incompletely characterize each Nk, and, by

construction, the master equation approach only gives

average quantities.

The oldest and perhaps still most famous complex net-

work is the evolving random graph or Erd}os-Rényi (ER)

random graph [39]. The same model appeared earlier in the

work of Flory and Stockmayer [40–42]; this model turns

out to be equivalent to aggregation with the product kernel

[25]. The percolation transition manifested by the emer-

gence of the giant component [43] in evolving random

graphs is equivalent to gelation in aggregation [25]. The

ER random graph initially consists of N disjoint nodes, and

it evolves by drawing randomly chosen pairs of nodes and

connecting them. Thus only the number of links increases.

Combining the ER graph with preferential attachment, one

may postulate that nodes of degree i and j connect with

probability proportional to ðiþ kÞðjþ kÞ. This evolving

graph undergoes a percolation transition and later a con-

densation transition when the entire system condenses into

a single component [44, 45] and then increment all fol-

lowing reference numbers by 1.

Closer to our modeling is a network that grows via two

distinct mechanisms: (i) a new node is added with proba-

bility p, and (ii) a new link between existing nodes is

created with probability 1� p. Both of these steps can

incorporate redirection in a natural way. Earlier work on

similar models [46] was focused on network characteris-

tics, such as the degree distribution. The distribution of

components remains mostly unexplored and it would be

interesting to analyze percolation and condensation tran-

sitions for this type of network. There are indications [46]

that the percolation transition could be different from the

standard Curie-type transition appearing in the ER graphs

[43], viz., a Berezinskii-Kosterlitz-Thouless infinite-order

transition [47–50] that often appears in growing networks.
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