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Abstract
We study consensus formation in interacting systems that evolve by multi-state
majority rule and by plurality rule. In an update event, a group of G agents (with
G odd), each endowed with an s-state spin variable, is specified. For majority
rule, all group members adopt the local majority state; for plurality rule the
group adopts the local plurality state. This update is repeated until a final
consensus state is generally reached. In the mean field limit, the consensus
time for an N-spin system increases as ln N for both majority and plurality
rules, with an amplitude that depends on s and G. For finite spatial dimensions,
domains undergo diffusive coarsening in majority rule when s or G is small. For
larger s and G, opinions spread ballistically from the few groups with an initial
local majority. For plurality rule, there is always diffusive domain coarsening
towards consensus.

PACS numbers: 02.50.Ey, 05.40.−a, 89.65.−s

1. Introduction

A simple description for consensus in an interacting population is based on endowing each
individual, or agent, with discrete opinion states that evolve by kinetics in which neighbouring
agents tend to agree. Perhaps the best studied such example is the two-state voter model [1],
in which a randomly selected agent adopts the state of one of its neighbours. This update is
repeated until a finite system necessarily reaches consensus. When the densities of agents of
each state are equal, the time to reach consensus in d dimensions scales linearly in the number
of agents N for d > 2, as N ln N for d = 2, and as N2/d for d < 2 [1, 2]. Another classical
description for consensus formation is the Ising model with zero-temperature Glauber kinetics
[3]. Here, a randomly picked agent adopts the state of the majority in its local interaction
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Figure 1. Illustration of a single update in majority and in plurality rule for a three-state system
with group size G = 7.

neighbourhood; in the case of a tie, the initial agent flips with probability 1/2. While this
updating promotes agreement, consensus does not necessarily arise. In fact, the system almost
always gets stuck in infinitely long-lived metastable states for spatial dimension d � 3 [4].

Recently, another prototypical model for consensus formation, majority rule (MR), was
introduced [5]. In MR, a system consists of two-state agents, corresponding to two distinct
opinions. Agents evolve by the following two steps: first, pick a group of agents with fixed
odd size G; this group is an arbitrary set of agents in the mean-field limit, or a contiguous group
for finite spatial dimension. Second, all agents in this group adopt the local majority state.
These two steps are repeated until consensus is reached [6, 7]. The MR model is analogous
to the majority rule of the Ising model with zero-temperature Glauber kinetics, except that
more than one agent can flip in a single update step. A related multi-spin kinetics occurs
in the Sznajd model [8], where a small contiguous group of same-species spins induces all
spins on the group boundary to flip. A perhaps desirable feature of the MR model is that the
group-based kinetics ensures that consensus is always reached in a finite system.

In this work, we study two natural extensions of majority rule (figure 1). The first is to
allow each agent to have more than two equivalent states, i.e., each agent possesses a Potts-like
opinion variable that may be in any of s states a, b, c, . . . , s [9]2. The update step is similar to
that in the original MR model. A group of G agents, with G an odd number, is first identified.
If a local majority in this group exists, that is, if (G + 1)/2 or more agents in the group are
in a single state, then all agents adopt this local majority state. However, if there is no local
majority, then the group does not evolve. A new feature of the multi-state compared to the
two-state model is the possibility of static groups in which there is no local consensus. Because
of this feature, a finite system does not necessarily reach consensus. One of our goals will
be to characterize the dynamics of MR with more than two states and to determine whether
the final outcome is a consensus or a frozen state.

A second extension is plurality rule (PR), which is meaningful only if the number of spin
states is three or greater. In a single update step of PR, a group of size G is first identified.
Next the state with the most representatives in that group—the plurality state—is determined.
All agents in this group then adopt this plurality state. In the case of a tie, the agents all
adopt one of the multiple plurality states equiprobably. This type of evolution mimics how
consensus might be achieved in parliamentary systems when there are more than two parties.
Clearly, the PR model avoids the freezing phenomenon that can occur in the multistate MR
model. We will investigate how the PR model approaches consensus and the basic differences
between MR and PR dynamics.

2 A related 3-state model where tie-breaking plays a major role in the dynamics was recently studied by [9].
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In section 2, we study the MR and PR models in the mean-field limit and show generically
that the consensus time grows logarithmically with N. Then in section 3, we discuss the change
from diffusive domain coarsening, when the number of opinion states s and the group size G
are small, to ballistic domain evolution, and finally to no evolution as s and G increase. In
section 4, we present simulation results about the consensus time distribution for the multi-
state MR model that illustrates these two regimes of behaviour. In section 5, we discuss the
dynamical behaviour of the PR and compare with the MR model. We conclude in section 6.

2. Mean-field limit

2.1. Two-state model

We begin with the mean-field solution for the two-state MR model in the continuum N → ∞
limit. While the mean-field solution for the two-state MR model with a finite number of agents
was obtained previously [6], the continuum solution is much simpler, while still exhibiting
nearly all the features of the discrete solution.

For simplicity, consider first the case of group size G = 3. In an update step, the number
of agents in state a,Na , increases by 1 if the group state is aab, while this number of agents
decreases by 1 if the group state is bba. Thus dNa = 3(a2b − ab2), where a and b now
denote the global densities of agents of each type, and the factor of 3 accounts for the three
permutations of agents in the group. If there is a local consensus in a group, then Na does
not change in an update. We increment the time by dt = 3/N in an update so that each agent
typically flips once in a single time unit. With these preliminaries, the rate equations for the
agent densities are

ȧ = a2b − b2a ḃ = b2a − a2b. (1)

Since the total density a + b = 1, we rewrite equation (1) as

ȧ = ab(a − b) = −2a(a − 1/2)(a − 1). (2)

In the latter form, we see that a = 0, 1 are stable fixed points, while a = 1/2 is unstable. Thus
starting from any a �= 1/2, the system is quickly driven to consensus because of the non-zero
bias inherent in equation (2). The existence of a bias contrasts with the voter model, where the
average magnetization is conserved [1], and purely diffusive dynamics governs the evolution.

To determine the time until consensus is reached, we rewrite equation (2) in the partial
fraction expansion[

1

a
+

1

a − 1
− 2

a − 1
2

]
da = −dt (3)

and integrate this equation of motion between suitable initial and final states. To describe
a finite system of N agents, we chose a0 = 1

2 + 1
N

and a∞ = 1 − 1
N

, corresponding to the
initial densities of the two species being equal and a final state of consensus. Integrating
equation (3) over this range, we obtain

t ∼ 3 ln N. (4)

Thus, as previously found in the exact discrete solution [6], the consensus time t scales as
ln N . This dependence is a consequence of the driving force in equation (2) vanishing linearly
as a function of the distance to the fixed points a = 0, 1/2 and 1. However, the dependence
of the amplitude in the consensus time is different in the discrete and continuum solutions. In
the former case, the amplitude suddenly drops from 2 to 1 as |a − 1/2| becomes larger than
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Figure 2. The phase plane a + b + c = 1 in density space, showing the unstable fixed point (◦),
saddle points (�) and stable fixed points (•). Separatrices are shown dashed. Typical flows near
the separatrices are also shown.

O(1/
√

N) [6], while in the continuum solution, the amplitude changes from 3 to 1 as a − 1/2
becomes comparable to either a or 1 − a.

The above considerations can be extended to larger group sizes. By laborious enumeration
of all states up to G = 11, it appears that the extension of equation (2) to general group size is

ȧ = ab(a − b)

[
1 + 3ab + 10(ab)2 + · · · +

(
j

j+1
2

)
(ab)(j−1)/2

]
, (5)

where j = G − 2. Using Stirling’s approximation, the higher-order terms are all O(1/
√

G)

and there are O(G) such terms. Thus near the unstable fixed point, namely a = 1
2 (1 + ε), the

equation of motion reduces to

ε̇ ∝ ε

2

√
G. (6)

Thus for general group size G � N , the time to reach consensus should scale as (ln N)/
√

G.

2.2. More than two states

We now extend our considerations to the multi-state MR model. Consider first the simplest
case of three states (s = 3) and group size G = 3. In the same spirit as equation (2), the rate
equations for this three-state model are

ȧ = a2(b + c) − a(b2 + c2)

ḃ = b2(c + a) − b(c2 + a2) (7)

ċ = c2(a + b) − c(a2 + b2),

with the densities of these states subject to the normalization condition a + b + c = 1.
To understand the resulting dynamics, we examine the stability of the fixed points in these

rate equations. There are seven such points; a globally unstable fixed point at U ≡ (
1
3 , 1

3 , 1
3

)
,

three saddle points Sab ≡ (
1
2 , 1

2 , 0
)
, Sac ≡ (

1
2 , 0, 1

2

)
, and Sbc ≡ (

0, 1
2 , 1

2

)
, and three stable

points A ≡ (1, 0, 0), B ≡ (0, 1, 0), and C ≡ (0, 0, 1) (figure 2). There are three separatrices
that join the unstable fixed point to each of the saddle points.

We now compute the time to reach consensus starting from the unstable fixed point. There
are two natural choices for the path to consensus. One is to run from the unstable fixed point to
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a saddle point close to a separatrix, and then flow to the stable fixed point, as shown in
figure 2. This path,

(
1
3 , 1

3 , 1
3

) → (
1
2 , 1

2 , 0
) → (1, 0, 0), corresponds to one species

disappearing first, while the other two have the same density, before ultimate consensus
is reached. The other is the direct route

(
1
3 , 1

3 , 1
3

) → (1, 0, 0) along a path where b = c. That
is, b and c both disappear at the same rate as consensus is reached.

For the indirect route, we first calculate the time required to go from U to Sab. With the
conditions a = b and c = 1 − 2a, the first of equations (7) can be rewritten as

ȧ = a2[a + (1 − 2a)] − a[a2 + (1 − 2a)2]

= −6a(a − 1/2)(a − 1/3). (8)

Thus the time until the c density vanishes is

tc ≈
∫ 1

2 − 1
N

1
3 + 1

N

[
−1

a
− 2

a − 1
2

+
3

a − 1
3

]
da

= −2 ln(6/N) + 3 ln(N/6) − 6 ln(3/2)

≈ 5 ln N. (9)

Once again, the integration limits are chosen to correspond to the system being infinitesimally
close to, but not exactly at, the fixed points at either end of the trajectory. Similarly, the
time to go from Sab to A asymptotically scales as 3 ln N . Thus the total time to go from(

1
3 , 1

3 , 1
3

)
to consensus asymptotically scales as 8 ln N . Following the same line of reasoning,

the consensus time from
(

1
3 , 1

3 , 1
3

)
to (1, 0, 0) directly along the path where b = c always,

asymptotically scales as 4 ln N .
For the case G = 3, we may generalize to obtain the consensus time for an arbitrary

number of states s. The rate equations (7) become

ȧ1 = a2
1(a2 + a3 + · · · + as) − a1

(
a2

2 + a2
3 + · · · + a2

s

)
, (10)

plus cyclic permutations. Here ak now denotes the density of the kth species. Again, we
compute the consensus time along a sequential path in which one species disappears first
while the remaining species have equal densities, as well as along a direct path in which s − 1
species have equal densities that all go to zero simultaneously.

For the first leg of the sequential path, the densities satisfy the conditions a1 = a2 = a3 =
· · · = as−1 = a and as = 1 − (s − 1)a. Then equation (10) reduces to

ȧ = −s(s − 1)a

(
a − 1

s − 1

) (
a − 1

s

)
. (11)

Integrating from the unstable fixed point to the fixed point where the density of one species
is zero, the transit time equals (2s − 1) ln N . Repeating this calculation as each species is
eliminated, the consensus time is

t =
s∑

k=2

(2k − 1) ln N = (s2 − 1) ln N. (12)

Similarly, for consensus via a direct path, the densities satisfy the constraints a1 = a and
a2 = a3 = · · · = as = (1 − a)/(s − 1). Now equation (10) becomes

ȧ = − s

s − 1
a

(
a − 1

s

)
(a − 1) , (13)

from which the consensus time equals (s + 1) ln N .
In summary, the consensus time always scales as ln N , with a prefactor that is an increasing

function of the number of states. This coefficient depends on the actual route to consensus.
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If species are eliminated one by one, the coefficient grows quadratically with s, while if one
species dominates and the remaining s − 1 all disappear at the same rate, the coefficient grows
linearly with s. Qualitatively similar results arise for larger group sizes.

2.3. Plurality rule

Finally, we study plurality rule (PR) which first becomes distinct from MR when the number
of states s � 3 and the group size G � 5. Let us study this case s = 3,G = 5 for simplicity.
By enumerating all group states, the rate equations for the PR model are

ȧ = a4(b + c) + 4a3(b + c)2−4a2(b3 + c3)−4abc(b2 + c2)

− a(b4 + c4) + 3a2bc(b + c) − 6ab2c2, (14)

plus cyclic permutations for ḃ and ċ. The rate equations for the MR model for s = 3 and
G = 5 are identical to equation (14) except that the last two terms, corresponding to states
with no global majority, are absent.

The MR and PR models both share the same global fixed point structure and stability.
Let us now determine the transit time from

(
1
3 , 1

3 , 1
3

) → (
1
2 , 1

2 , 0
)

along the path a = b for the
case s = 3,G = 5 for both the PR and MR models. Using a = b and c = 1 − 2a, the rate
equation for ȧ reduces to

ȧ = 48a5 − 66a4 + 25a3 − a (MR)
(15)

ȧ = 36a5 − 60a4 + 25a3 − a (PR).

To determine the transit time simply, note that the driving flow in the rate equation vanishes
linearly near the fixed points and that the coefficient of the linear dependence determines the
coefficient of ln N in the transit time. We thereby find t ∼ 5 ln N for PR, while t ∼ 43

5 ln N for
MR. As expected, PR evolves faster than MR because there are fewer possibilities for frozen
groups. Finally, to reach consensus via

(
1
2 , 1

2 , 0
) → (1, 0, 0), the rate equations for both the

PR and MR models are ȧ = 6a5 − 15a4 + 10a3 − a, so that the time to go from Sab to A is
23
7 ln N . Thus the consensus time from U is 58

7 ln N for PR and 86
7 ln N for MR. Thus there is

only a quantitative difference between the PR and MR models in the mean-field limit.

3. Diffusive versus deterministic consensus

We now investigate the multi-state MR model on the square lattice. While the rate equations
predict that the number of states and the group size do not qualitatively affect the evolution,
simulations on the square lattice show very different types of behaviour for systems with small
s and/or G and those with large s and G (figures 3 and 4). In the former case, a coarsening
domain mosaic evolves diffusively. However, when both s and G are large, it is improbable
that a small system will contain even a single group with an initial local majority, and such a
system will be static. At the boundary between these two regimes, there will typically be a
single initial local majority group. When this occurs, there is nearly deterministic evolution
in which this group grows ballistically and overruns the system (figure 4).

To delineate these two regimes, we determine the criterion for the existence of at least one
group with a local majority in the initial state. As a preliminary, we determine the probability
P> that a local majority exists in a single group of size G, i.e., n > G/2 of the agents in the
group all have the same opinion. The probability for this event is

P> = s

G∑
n>G/2

G!

n!(G − n)!

(
1

s

)n (
1 − 1

s

)G−n

. (16)
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Figure 3. Evolution of a 60 × 60 three-state MR model with group size G = 3 at times t = 1, 20,

80, and 640.

Using Stirling’s approximation, this expression reduces to

P> ≈ 2G (s − 1)G/2

sG−1

√
2

πG

∫ ∞

0
e−2x2/G e−x ln(s−1) dx, (17)

where x = n − G/2 and we extend the upper limit of x from G/2 to ∞.
For s = 2, equation (17) gives P> = 1, the obvious exact result, suggesting that this

Gaussian approximation may be reasonably accurate. Conversely, for large s, the exponential
in the integrand of equation (17) decays more rapidly than the Gaussian factor, and we obtain

P> ≈ s√
G ln s

(
2√
s

)G

s → ∞. (18)

In fact, for s = 3, the exponential cutoff controls the integral in equation (17) already for
G ≈ 4; for s = 4, the exponential cutoff dominates for G ≈ 2.23. Thus the approximate
form equation (18) is accurate, except for the special case s = 2. Clearly, the probability that
a randomly populated group of size G has a majority decreases rapidly when either s or G
increases.

The condition on the number of agents N for there to be at least one initial group in the
system that contains a local majority is thus MP> > 1 (figure 5), where M is the number
of independent groups in the system. While we do not know M exactly, trivial bounds are
N/G � M � N . The lower bound is based on counting the N/G contiguous groups that
tile the system as independent, while the latter is based on considering all N embeddings of
the group on the lattice as independent. Since P> varies rapidly with s and G, this small
indeterminacy in M does not play a major role in the condition for the existence of a group
with a local majority.
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Figure 4. Evolution of a 60 × 60 nine-state MR model with group size G = 25 at times
t = 0.1, 1.5, 1.8 and 2.
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Figure 5. Phase diagram for the majority rule model as a function of the number of states s and
the group size G. The curves are defined by the criterion NP> = 1 and they separate a region
of diffusive dynamics (multiple initial majority groups) from a static region (no initial majority
groups). The dots correspond to the two parameter values simulated in section 4.

From equation (18), the criterion MP> > 1 becomes

M > Mc ≈
√

G ln s

s
eG ln(

√
s/2). (19)

For M > Mc, the number of initial groups with a local majority is non-zero so that evolution
occurs. If M < Mc, no groups have a local majority and the system will therefore be static.
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Figure 6. Probability for a successful realization versus system size for s = 9,G = 25 MR model
based on using M = N/8. The error bars are based on a 5% significance level.

When M � Mc, majority groups are widely separated and there is a two-stage approach to
consensus. First, initial majority groups grow ballistically until they meet, after which domain
interfaces evolve diffusively towards final consensus. The case M ≈ Mc is exceptional as
there is typically a single initial group with a local majority that quickly overruns the system
(figure 4). It is also noteworthy that for moderate values of s and G, an astronomically large
system is needed for there to be at least one group with a local majority.

To test equation (19), we compare our analytical prediction for the ‘success’ probability
Psuccess = 1 − (1 − P>)M , defined as the probability that a randomly prepared configuration
contains at least one majority group, with corresponding simulation data from the s = 9,G =
25 MR model (figure 6). We observe that Psuccess increases quickly when the system size
passes through the threshold value Mc, and that there is excellent agreement between the data
and our analytics.

4. Consensus time distribution in two dimensions

We now study the evolution of the multi-state MR model on the square lattice by numerical
simulations. We construct a group by incorporating successive diamond-shaped shells with
increasing values of |x| + |y|, where x and y are the horizontal and vertical distances from the
central agent. Thus for a given G, the group is defined as the initial agent, plus the four agents
in the first shell, the eight agents in the second shell, etc, until a total of G agents are included.
To ensure that a group contains precisely G agents, a randomly selected set of agents in the
last shell are typically included. We then evolve the system according to majority rule until
consensus is reached.

As in our previous study of the two-state MR [7], we focus on the distribution of consensus
times, PN(t). To illustrate the behaviour in the two regimes of figure 5, we consider the
representative cases s = 3,G = 3 and s = 9,G = 25, with N = 3600 agents for both
examples (heavy dots in figure 5), in which the initial concentrations of all species are equal.
As shown in figure 7, there is a long-time tail in PN(t) for the three-state model that is
qualitatively similar to that in the two-state model. For three states, approximately 1/5 of all
configurations get stuck in long-lived coherent stripe states, compared to approximately 1/3 of
all states in the two-state model [7]. Analogous coherent states, albeit with infinite lifetimes,
also occur in the Ising model with zero-temperature Glauber kinetics [4].
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Figure 7. Probability distribution for the consensus time PN(t) versus t on a square lattice of
N = 3600 sites by majority rule for the two cases of s = 3, G = 3 with data integrated over bins
of width 200 (top), and s = 9,G = 25, and bin size 0.05 (bottom). The inset shows detail near
the peak where the width of the data bins is 2.

For the three-state model, we also measure the N-dependence of the two basic time scales:
(a) the most probable consensus time, Tmp ≡ e〈ln t〉, corresponding to the location of the peak
in PN(t), and (b) the characteristic decay time in the exponential tail of PN(t) ∼ e−t/τ . As
found previously for the two-state model [6, 7], these time scales have power-law dependences
on N with different exponents (figure 8). By fitting the data to straight lines, we find that Tmp

varies as Nα , where α = 1.18 ± 0.03, while τ varies as Nβ , with β = 1.77 ± 0.05. All error
bars correspond to a 5% significance level. These exponents are close to the corresponding
values of 1.24, and 1.7 respectively, quoted for the two-state model [7]. We conclude that the
same underlying domain wall diffusion mechanism governs the approach to consensus in both
the 2- and 3-state MR models.

In contrast, for the s = 9,G = 25 MR model, the consensus time distribution is sharply
peaked about its most probable value (figure 7), so that there is only a single characteristic
time scale. The absence of a second longer time scale is due to the fact that long-lived
configurations, such as stripe states, no longer occur. We find that the average consensus
time grows only as Nα , with α = 0.48 ± 0.04 (figure 9). Since we are interested in the
N-dependence of the consensus time for large N, where almost all configurations are successful,
we define this average only for successful realizations.

We can justify the slow growth of the consensus time for the case s = 9,G = 25 by a
simple-minded argument. Since the evolution is determined by the growth of a single domain,
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Figure 8. Dependence of the two characteristic times Tmp (�) and τ (◦) on N for the three-state
G = 3 MR model.
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Figure 9. Dependence of the mean consensus time 〈tN 〉 versus N for the nine-state G = 25 MR
model.

the consensus time is essentially the time for this domain to overrun the system. According to
majority rule, a randomly selected group typically evolves when more than half of its area is
within the dominating domain. Thus after each time step, the radius of this domain grows by
an amount that is of the order of G. When the domain radius equals the linear dimension of
the system, Gt = √

N , and consensus is reached. Thus we obtain t ≈ √
N/G, which appears

to account for the N-dependence of the consensus time in figure 9.

5. Majority versus plurality rule

We now study the plurality rule (PR) model when the spatial dimension is finite. While the
MR and PR models behave similarly in the mean-field limit, they evolve quite differently
when the spatial dimension is finite, as seen by comparing single realizations of the system
that evolve according to PR (figure 10) and according to MR (figure 4), with s = 9,G = 25
for both examples.

By construction, all configurations in the PR model are active, since a plurality exists in
any group, independent of the number of states and the group size. Thus the PR model always
evolves by diffusive domain coarsening. When only two states remain, the ensuing evolution
is exactly that of the two-state MR model. As in the case of the two-state MR model, we
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Figure 10. Evolution of a 60 × 60 nine-state PR model with group size G = 25 at times
t = 0.1, 1, 4, and 20.

therefore expect that a non-negligible fraction of all realizations will get stuck in a stripe-like
state, an example of which is given in figure 10.

As a result of the correspondence with majority rule in the long-time limit, the distribution
of consensus times should again be characterized by two time scales—the most probable
consensus time and the time associated with the asymptotic decay of the consensus time
distribution itself. For the case of s = 3,G = 3, the consensus time distributions in the MR
and PR models are quantitatively similar (compare the top panels of figures 7 and 11) and
the behaviour of the two basic time scales in the distribution is also nearly the same. The
actual values of Tmp and τ in these two models are quite close, with T PR

mp

/
T MR

mp = 0.92 and
τ PR/τMR = 0.98. As expected, the times are smaller in the PR model because every group is
necessarily active, in contrast to the situation in the majority rule.

As the number of states is increased, the consensus time distribution in PR continues to
be described by two distinct time scales. An example for the case of the s = 9,G = 25 PR
model is shown in figure 11, whose behaviour strongly contrasts with that of the s = 9,G =
25 MR model (bottom panel in figure 7). A final feature worth noting is that the characteristic
time scales decrease with G, reflecting the fact that larger groups necessarily lead to quicker
consensus formation.

6. Summary and discussion

We studied two extensions of the two-state majority rule (MR) model for consensus formation,
namely, multi-state majority rule (MR) and plurality rule. In the mean-field limit, both these
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Figure 11. Probability distribution for the consensus time PN(t) versus t on a square lattice of
N = 3600 sites by plurality rule for the two cases of s = 3, G = 3, with data integrated over bins
of width 100 (top), and s = 9, G = 25, and bin size 0.2 (bottom). The inset shows detail near the
peak where the width of the data bins is 2.

models reach consensus in a time that grows logarithmically with the number of agents N.
Variations in the microscopic evolution rules, such as majority or plurality rule, the number of
spin states s and the group size G, merely lead to a quantitative difference in the amplitude of
ln N in the consensus time.

For finite spatial dimension, the MR model has two distinct regimes of behaviour that are
delineated by the relative values of s,G and N. For small s or small G, many groups have local
majorities in a typical initial state. These groups are the nuclei of domains whose long-time
dynamics is governed by diffusive coarsening. For this range of s and G, the multi-state MR
model thus evolves in a manner similar to that in the two-state MR model. The distribution
of consensus times has two widely separated time scales—the most probable consensus time
and the asymptotic decay time of the consensus time distribution. The dependences of these
two time scales on N is quite close to those in the two-state MR model.

On the other hand, for sufficiently large s and G, it becomes prohibitively unlikely that
a finite system will contain even a initial single group with a local majority. Thus essentially
all realizations of the system are frozen. As the boundary between these two regimes is
approached, a typical realization will contain either zero or one initial group with a local
majority. In the latter case, this domain quickly imposes its state on the entire system. This
phenomenon has a number of unfortunate historical examples, such as Germany in 1933, Italy
in 1922 and Russia in 1917, where a well-organized, extremist and initially minority party
ultimately imposed its will upon a deadlocked political system.
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We also investigated the dynamics of plurality rule (PR), where a group adopts the state of
its plurality members in an update event. In the mean-field limit, PR and MR were observed
to have qualitatively similar behaviour. For finite spatial dimension, however, all groups in PR
are active. Thus the evolution of the system for any s and G is qualitatively similar to that of
MR in which the number of states and the group size is small. As one should expect, a voting
system based on plurality rule facilitates the achievement of ultimate consensus.
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