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From pathogens and computer viruses to genes and memes, contagion models have found
widespread utility across the natural and social sciences. Despite their success and breadth of
adoption, the approach and structure of these models remain surprisingly siloed by field. Given the
siloed nature of their development and widespread use, one persistent assumption is that a given
contagion can be studied in isolation, independently from what else might be spreading in the
population. In reality, countless contagions of biological and social nature interact within hosts
(interacting with existing beliefs, or the immune system) and across hosts (interacting in the
environment, or affecting transmission mechanisms). Additionally, from a modeling perspective, we
know that relaxing these assumptions has profound effects on the physics and translational
implications of the models. Here, we review mechanisms for interactions in social and biological
contagions, aswell as themodels and frameworksdeveloped to include these interactions in the study
of the contagions. We highlight existing problems related to the inference of interactions and to the
scalability of mathematical models and identify promising avenues of future inquiries. In doing so, we
highlight the need for interdisciplinary efforts under a unified science of contagions and for removing a
common dichotomy between social and biological contagions.

The science of contagions
Arguably, no scientific concept encapsulates the human experience asmuch
as contagions.That is in largepart because the situations inwhichpeopleuse
the word “contagion” are so varied, referring to any process where a
property is passed from one or many agents to others. Mathematically, the
concept of contagion then inspires different forms of branching processes1,
dynamical systems2, cascademodels3, and network systems4. These are used
to model human genealogies5, teaching6,7, culture and language8, viral
trends9,10, scientific ideas11, innovation12, rumors9,13, misinformation14,15,
social movements16,17, and obviously infectious diseases2. Although all of
these phenomena interact to shape human life, they are unfortunately often
studied in isolation, one at a time. Even simple classifications, such as
distinguishing biological and social contagions, may create a false dichot-
omy and obfuscate their complexity. For instance, epidemics are generally

shaped by multiple factors drawn from biological sciences (pathogens,
genetics, microbiome) to social sciences (information, culture, behavior)
and anywhere in between (nutrition, life history, living environment). All of
these factors can affect both the local mechanisms by which a contagion is
transmitted and its global, population-level presentation that we get to
observe.

How do contagions spread? For biological contagions like infectious
diseases, our intuition tends to be that if a pathogen occurs in every positive
case and is not found in negative cases, it is causally responsible for the
contagion as it gets transmitted from one individual to the next. Memes, as
self-replicating cultural elements, might play a similar role in social
contagions18. This intuition is the basis for the 19th-century postulates of
Robert Koch’s19, which established both microbiologic methods and the
necessary scientific framework of causality. This framework ushered in the
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golden age of microbial discovery in which many of the pathogens
responsible for humanity’s worst diseases (tuberculosis, cholera, anthrax,
rabies, diphtheria) were identified.While initially useful, the one-pathogen,
one-diseasemodel ceases to accurately describe theway inwhich pathogens
interact not only with each other but with the host, environment, and
societies in which they exist.

Koch’s postulates are too simplistic as they imply that every contagion
is caused by a single, sufficient, and necessary pathogen, which is contra-
dicted by empirical evidence20,21. For example, many microbiota-related
bacterial populations can improve immunedefense andprevent infectionby
intestinal pathogens22. Similarly, genetic conditions can spread vertically
(from parent to offspring) but also interact with pathogens transmitted
horizontally (within a generation), such as resistance conferred against
malaria by the gene responsible for sickle haemoglobin23. Pathogens might
therefore be found innegative cases because someother spreading process is
interacting with the contagion. Conversely, one can imagine that pathogens
can also be found in negative cases because it has yet to interact with some
other synergistic contagion; this is the case, for instance, with opportunistic
pathogens24. We detail documented biological mechanisms of pathogen
interactions further in Box 1.

Similar arguments can explain why the modeling of social contagions
should also move away from the assumption that one pathogen equals one
contagion25. Obviously, no single piece of information, no singlememe, and
no single idea spreads in a vacuum. Different people can adopt the same
ideology for different reasons. Information, ideas, or behaviors are related to
eachother, and they interactwith eachother, obfuscating classical notionsof
causality. For example, can a single piece of information cause anyone to
develop an anti-vaccination sentiment?Probablynot26,27, especially since the
discourse surrounding epidemics can be quite complicated and nuanced28.

There is a dire need for unifying the different contagion frameworks
and moving beyond the paradigm of “isolated contagion” and the classic
distinction between “simple” and “complex” contagions. Indeed, modeling
of biological contagions often uses a paradigm called “simple contagions”
which assumes a linear relationship between exposure and transmission,
while modeling of social processes often assumes more general “complex
contagions”. These complex contagions take different nonlinear functional

forms to relate exposure to transmission29, and they can also rely on
mechanisms from social diffusion12, sensing30, adaptation31, or learning32.
This conventional approach to modeling biological or social contagions
creates a false dichotomy; contagions almost always interact, and these
interactions blur the distinction between contagions of different natures
(and models thereof). Regardless of its nature and transmission mechan-
isms, a contagion is often shaped by multiple factors that can be biological,
ecological, or social. The effects we wish to consider can be direct interac-
tions between different contagious processes (e.g., two infectious diseases or
rumors) or indirect interactions through important covariates (e.g., edu-
cation or norms). These different types of effects are not always easy to
distinguish, given that covariates like education, norms, or culture can
themselves be considered as contagious at some level.We provide examples
of how contagions interact across scales and scientific domains in Box 2.

The renewed interest in interacting contagions bringsmore to the table
than new keywords like “syndemics” for synergistic epidemics and “info-
demics” for epidemics of (mis-)information33. It also brings a fresh post-
disciplinary perspective on the problem and a call for integrated efforts34.

Inwhat follows, we do a targeted review of the techniques formodeling
interaction contagions in an attempt to highlight some key elements from
that literature and map a way forward. In the section “The physics of
interacting contagions,”wefirst explainhow, following lessons learned from
other complex systems35,36, “more contagions are different contagions.”We
discuss how the behavior of interacting contagions differs from the con-
ventional wisdom built on models of individual contagions. This makes
contagion forecasting, an inherently noisy process37, even more intractable
in the face of unknown interactions. In the section “Modeling social con-
tagions and their interactions,” we then review novel empirical and data-
driven efforts,mostly coming from interacting cascades of social contagions
on social media and in the science of stories. In the section “The spread of
beliefs as interacting contagions,”wegive one particularly potent example of
how contagions can interact within hosts using the study and dynamics of
beliefs. Finally, in the section “The ecology of interacting contagions,” we
attempt to outline promising ecological perspectives that might help the
science of interacting contagions avoid the trap of high model
dimensionality.

Box 1 | Biological interactions within hosts

It is increasingly apparent that interactions betweenmicrobes within and
across kingdoms play a critical role at the host-pathogen interface.
Infection with the hepatitis D virus (HDV), for example, requires co-
infection with the hepatitis B virus (HBV) due to its need for HBV-derived
replicative machinery to complete its viral lifecycle. Co-infection with
these twovirusespotentiatesone another, leading tomore severeclinical
disease197. Microbial interactions become even richer in the context of
infectious disease syndromes (pneumonia, diarrhea, skin and soft tissue
infections), which are often polymicrobial or the result of simultaneous or
consecutive co-infection with multiple pathogens, as exemplified by
post-viral bacterial pneumonia following influenza virus infection198.

Things grow even more complicated when considering the impact of
diversemicrobial community structures, themicrobiome. Introduction of
bacteriophages can directly shape bacterial community structures while
commensal bacteria directly and indirectly support or inhibit growth of
other pathogens through nutrient competition, iron scavenging, and
secretion of antimicrobialmolecules (bacteriocins) that directly inhibit the
replication of other pathogens, leading to antagonistic microbial
dynamics inwhich the growthof oneorganismdirectly inhibits the growth
of another191. Theseparasiticmicrobial interactions inwhich thegrowthof
one organism reduces that of another are underscored by diseases such
as Clostridium difficile infection, which is a result of a dysbiosis or
imbalance in the gastrointestinal microbiome193.

Host immunedysfunctioncanalsoalter pathogensusceptibility, disease
severity, and onward transmission dynamics.Within developed regions, the
most common cause of immunosuppression is iatrogenic, resulting directly
from the use of immunosuppressing medical therapies199,200. Globally,
however, the most common cause of immunosuppression is malnutrition,
with 230 million children considered nutritionally deficient in 2023201. The
impact of immunosuppression on the differential spread of infectious dis-
eases across global populations is perhaps best highlighted by HIV, which
directly infects key cells of the immune system, resulting in acquired
immunodeficiency syndrome (AIDS). The synergistic impact of HIV infection
on the spread of other pathogens, notablyMycobacterium tuberculosis and
Treponema pallidum (causative agent of syphilis), results in regional syn-
demics.TheoverlappingprevalenceofHIV/AIDSand tuberculosis isnotable
due to the direct immunologic effects of HIV infection, which reducesCD4+
T cell-mediated control of the intracellular bacterium,M. tuberculosis, pro-
moting its spread across populations and distinction as the number one
cause of death in HIV-infected individuals202. In the case of syphilis, HIV
transmission is enhanced by the ulcerative lesions occurring during primary
infection with T. pallidum, and HIV-induced immune suppression in turn
enhances syphilitic disease progression and onward transmission of the T.
pallidum bacterium189. The dynamic transkingdom interactions highlighted
here illustrate the need to evolve beyond a one-pathogen one-
disease model.
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The physics of interacting contagions
Mathematical modeling of contagions has a long history going back at least
to the 1700s, with the creative work of Daniel Bernoulli38 among others. In
Bernoulli’swork, amathematical systemof smallpoxdynamics is developed,
but already, the text highlights the interaction of the disease with indirect
factors such as the age of individuals and the dynamics of inoculation as a
method of prevention. Most modern mathematical models borrow a
structure and a set of assumptions fromamodel calledSusceptible-Infected-
Removed (or susceptible-infectious-recovered, the SIRmodel) published in
1927 byKermack andMcKendrick39. In thismodel, infected agents transmit
the contagion to their susceptible neighbors at a given rate and are removed
from the dynamics through death or immunity at some other rate. One can
easily generate variants of this model. For example, the SIS process assumes
that the disease does not confer long-lasting immunity, such that recovered
individuals return directly to the susceptible state. The SI process, in turn,
assumes that there is no recovery at all.

Early studies of multiple contagions built on the SIR and SIS founda-
tions to couple the dynamics of contagion with the evolutionary dynamics
or cross-immunity between biological pathogens40,41 or the social process of
disease awareness42. These newmodels often assumed that contagions were
unaffected by each other 40, or that one was necessary for the other43, or that
theywere competing for a chance to spread41,44–50, or directly inopposition to
each other42,51–54. These efforts have previously been reviewed in detail55.
And while there have been studies on a broader definition of interactions
between contagions56–62, the mathematical modeling community has not
quite moved beyond the simplest case of two contagions interacting in
simple, often symmetric, and deterministic ways. This is due in part to the
richness of the behaviors that emerge even in this simple case, and in part
because consideringmore interacting contagions makes the dimensionality
of our models grow exponentially.

Importantly, the physics of interacting contagions is more than that of
the simple sum of independent contagions, especially when contagions

interact synergistically as they spread63–70. In a simple contagion model, say
the SIR model described above, there is a monotonic relationship between
the transmission rate and the final size of the contagion2. Interestingly,
depending on the density of contacts in the population, there exists a critical
value of transmissibility below which the expected size of the contagion is
zero, and above which it increases monotonically. But importantly, this
phase transition between a contagion-free state and an endemic contagion is
typically continuous. That is not the case for synergistic64 or cooperative65

contagions, where two spreading processes can increase each other’s
transmissibility. These models can assume, for example, that a contact
between a contagious agent and a susceptible agent transmits at a fixed rate
λ, or a higher rate λ0 > λ if a second contagion is involved. This effect might
be the same if the second contagion affects the contagious agent (e.g., a
superspreader) or the susceptible agent (e.g., increased susceptibility).
Regardless of the details, the system can get into a frustrated state where
many contagious agents can only transmit the contagion to their susceptible
neighbors if a second contagion also reaches them (see Fig. 1A). These
frustrated transmissions are similar to latent heat in physical systems,
leading to discontinuous phase transitions. Or, in this case, the dis-
continuous emergence of a large contagion as we tune the transmission rate
(see Fig. 1B).

There are other elements of conventional wisdom from simple inde-
pendent contagions that do not transfer to the dynamics of interacting
contagions. Features of the structure of the underlying contact network that
tend to slow down contagions, like triangles or any form of clustering, can
now hasten the spread of synergistic contagions64. The intuition behind this
phenomenon is simple. For an independent contagion, the optimal struc-
ture on which to spread is a tree-like network where it is impossible to
backtrack when starting from a single patient zero. In that case, all con-
nections lead to new, and therefore susceptible, agents. Clustering of con-
nections can instead trap a contagion and cause transmission efforts to be
“wasted” on already contagious agents. However, synergistic contagions

Box 2 | Interacting contagions across domains

Epidemics can be the result of multiple interacting contagions involving
both the biological and social realms. The paths bywhichmisinformation
and disinformation can lead to worse outcomes are complex and many,
but include reducing the willingness of an individual to vaccinate,
obstructing efforts to contain outbreaks, amplifying political discord,
increasing fear and panic, and worsening the misallocation of
resources203. The interplay between infectious pathogens and social
elements leading to the spread of both disease and infodemics is far from
new. For example, concern that cow headsmight sprout from the sites of
inoculation led to vaccine hesitancy, which hindered attempts to control
smallpox204.

More modern examples involving the spread of infectious diseases
are also plentiful: many of these involve measles, a disease which
spreads so effectively in humans that small drops in a population’s
vaccine coverage can lead to dramatic outbreaks. The 2019 measles
outbreak in the Philippines, which caused over 30,000 cases, was likely
sparked by an increase in anti-vaccination sentiments205 fueled in part by
the issues with a tetravalent Dengue vaccine, which increased the risk of
severe illness when infected with Dengue in those who had not had
Dengue prior to vaccination206. Similarly, anti-vaccine sentiment
spreading in Samoa after the tragic deaths of two children following
nurses administering vaccine with an expired muscle relaxant instead of
water207 precipitated a drop inMMRvaccination coverage fromover 75%
for the first dose in 2017 to about 40% coverage in 2018, resulting in a
measles outbreak that killed over 80 children in 2019208.

Examples need not be restricted to infectious diseases. For example,
multiple stunts and “challenges” have been fueled by memes and social

media and can cause a range of adverse health outcomes. Examples
include pulmonary damage from consuming spoonfuls of cinnamon in
the “Cinnamon Challenge”209, burns caused by applying salt and ice
cubes to the skin in the “Salt and Ice Challenge”210, and antihistamine
overdoses causing deaths in teenagers participating in the “Benadryl
Challenge”211.

While these examples showcase interactions between the biologic and
the social leading to worse outcomes, this interaction does not need to be
negative: messaging, for example, can help people make decisions that
lead to better health outcomes and could make epidemics less likely to
occur. While studies have attempted to identify components that may lead
to successful and productive public health messaging campaigns212,213,
epidemics are rare enough events that it is difficult to truly evaluate and
generalize the requirements for a successful campaign.

Importantly, public health messages and data interact with ongoing
epidemics and can contribute to the inaccuracy and inconsistency of
models. Recent work studies the resulting stochastic dynamics in the
fundamental epidemic reproductive number R0

37. If the epidemic is per-
ceived as acute, the public may readily acquiesce to behavioral restric-
tions, such as isolating, masking, vaccinating, etc., so as to reduce the
reproductive number. If the epidemic is perceived as decaying, then the
public will want to relax their vigilance. This latter aspect was reflected in
the extensive and sometimes vitriolic debate about the efficacy, or even
the utility, of variousmitigation strategies. This interaction results in a tug-
of-war between public-health mandates and social opinions about how
to respond to an epidemic, resulting in huge fluctuations in temporal
dynamics37.

https://doi.org/10.1038/s44260-025-00050-2 Review

npj Complexity |            (2025) 2:26 3

www.nature.com/npjcomplex


benefit from being kept together. On a tree-like network, a co-infected
patient zero might transmit one contagion to one branch of the tree and
another to a different branch. These contagionsmight thennot interactwith
one another for a long time and, therefore, not benefit from their synergy. A
small amount of clustering helps them stay together.

A similar effect is found in parasitic contagions, where one contagion
benefits from thepresenceof another contagionbut hinders its transmission
in return. This is the case, for example, of positive messaging around a
negative contagion, like the spread of preventive awareness against an
infectious disease. The awareness ismore likely to spreadwhen the disease is
spreading, and individuals exposed to the disease are more likely to be
receptive to relevant information. Conversely, the preventive message is
likely to reduce the transmission risk of the disease. The awareness is thus a
parasitic contagion to the epidemic71. With asymmetric interactions, clus-
tering can hurt awareness more than the disease, leading again to a larger
epidemic than expected without clustering (Table 1).

Finally, synergistic contagions canalso spread superexponentially since
the more contagions spread, the more likely they are to interact and benefit
from their synergy, thus further accelerating their spread (see Fig. 1C). This
dynamic clashes with most mechanistic prediction models69. As contagions
spread and the number of contagious agents grows, the more likely co-
infections become, such that positive interactions become more frequent
and important. For a time series of either contagion, this simple statistical
effect leads to what looks like an accelerating spread or a transmission rate
that increases with time. Altogether, basic intuition built by focusing on a
single pathogen might not hold when looking at an ecology of interacting
contagions. New modeling approaches are needed. Thankfully, ideas from
the social sciences might again come into play.

All of the features described above are also signatures of complex
contagions, as introduced in the previous section. In complex contagions,
also called frequency-dependentmodels, transmission depends nonlinearly
on the number or frequency of exposures such that the growth rate of a
contagion can vary as it spreads12,29. Recent results show that synergistic

Table 1 | Examples of interacting contagions across domains

Interaction Biological example Social example Mixed example Synonyms

Synergistic HIV and syphilis189 Related memes/ideas104 Disease and anti-vaccines190 Cooperative

Antagonistic Bacterial competition191 Political opinions192 Influenza and vaccines61 Competitive/dueling

Parasitic C. difficile and commensal enteric bacteria193 Fake news and fact checking194 Disease and awareness of the disease71 Asymmetric

Directionality and strength of the association are not always easy to assess. For example, vaccination against influenzamight remain strong even after or during a weak flu season, but awareness of a new
emerging pathogen will only spread if the pathogen does as well.

Fig. 2 | Interactions across domains and scales. Biological and social contagions
(here represented by colored viruses and different light bulbs, respectively) spread
through contact networks and shared physical or digital environments. Contagions
can interact directly in the environment or during contact.When an agent is exposed
to new viruses or ideas, the potential transmission is mediated through other layers
of interactions, now internal. New beliefs or ideas interact with an existing belief
system. Likewise, new pathogens interact with an existing microbiome and immune
system. These multi-layered interactions can all drive the observed dynamics of
contagions195,196.

Fig. 1 | Illustration of the dynamics of interacting contagions. A Schematic
representation of two synergistic contagions (blue and orange) spreading syner-
gistically through a network. Co-infections, shown in pink, are needed to sustain the
contagion and are aided by clustering. B Phase transition of various types of con-
tagions. While independent contagions display continuous transitions, synergistic

contagions can build up transmission potential, which leads to discontinuous
transitions reminiscent of physical systemswhere latent heat accumulates.CGrowth
rate of synergistic (pink), independent (black), and antagonistic (green) contagions.
Synergistic contagions tend to grow superexponentially since they get more likely to
interact as they spread further.
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contagions can be mathematically indistinguishable from these nonlinear
effects in complex contagions, such as the psychological phenomenon of
social reinforcement69. Like peer pressure, this phenomenon means that a
second exposure to an idea or behavior through a second source is more
effective than the first exposure29,72. For example, ten friends telling you to
read an article aremore likely to convince you thanone friend telling you the
same thing ten times. That is usually not true for biological contagions,
where our models assume a linear relationship between infection rate and
exposure regardless of the source. Indeed, researchers oftenuse simple linear
contagions for biological applications and complex nonlinear contagions
with reinforcement for social applications. Studies suggest the distinction
breaks down once contagions interact.

In recent years, modeling studies have also broadened the concept of
interaction structure and focused on networks with different (multilayer)
interactions73 orwith group (higher-order) interactions74. Therehas therefore
been a rapid influx of studies generalizing these previous models. Given that
nonlinear group interactions alone create apparent complex contagions, the
phenomenology of higher-order and interacting contagions is only richer.
Studies have looked at competing contagions in multilayer networks where
different contagions spread on different sets of contact53,54,75,76, through
higher-order dynamics77–79, and even both80–84. These extensions are natural,
and in fact, someof the early studies oncooperating epidemics also assumeda
multilayer structure85 or a group structure64.

The rich dynamics of interacting contagions pose an important chal-
lenge: Is it possible to measure contagion mechanisms without explicitly
controlling for all possible interactions and covariates? Social reinforcement
can be defined andmeasured by the increase in infection probability caused
by repeated exposures compared to a null model of equivalent exposures.
However, this measurement might be impossible to distinguish from
interactions amongpathogens.Did someone share amemebecausemanyof
their friends liked it, or had they previously shared a relatedmeme? The flip
side of this challenge is thatmeasuring social reinforcement can thenbeused
as a proxy for interactions between contagions. Recent work has taken this
perspective to justify theneed for tractable nonlinearmodels86.Neweffective
models for interacting contagions are needed, especially since we know that
countless contagions of biological and social nature interact at all times and
that the dimensionality of our current models grows exponentially with the
number of contagions involved.

Modeling social contagions and their interactions
Attempts to operationalize and model social contagion processes first
appeared in the second half of the 20th century. In the 1950s, Katz and
Lazarsfeld87 published “Personal Influence”87, a book which would
become highly influential about the nature of influence. Their finding
were based on their in-the-field study of decision making by women in
the city of Decatur, Illinois. Their major contribution was to introduce
the “two-step” model of influence, whereby media reached local opi-
nion leaders who then influenced their friends and acquaintances.
Though Katz and Lazarfeld were clear that their two-step model was a
non-universal approximation of true social influence, the idea that there
exists a class of special, influential people—and consequently the
importance of identifying and engaging them for the means of large-
scale social change to whatever ends—would become a hardened,
enduring, and broadly popularized concept12,88,89. As the real-data-
informed field of network science developed in the late 1990s, the
notion of opinion leaders would be challenged with more sophisticated
social network models90. Nevertheless, the two-step model moved the
understanding of media influence beyond the traditional “hypodermic
model,” revealing and elevating the role of social networks in shaping
collective and individual opinions and beliefs.

In the 1960s, early considerations of how to mathematically oper-
ationalize social contagion fell to simply porting across the SIR model of
mathematical epidemiology39. In a 1964Nature article, Goffman andNewill
explicitly cast the spread of an idea as akin to the spread of a disease91. It is
worth reflecting on the scope and strength of their framing:

“For example, consider the development of psychoanalysis in the
early part of this century. Freud was no less host to the infectious
material of the ‘disease’ of psychoanalysis than the person carrying
the organism capable of transmitting a cold, nor is hiswriting less of a
‘vector’ carrying the ‘infectious material’ than the mosquito as a
carrier of malaria. Jung might represent an example of acquired
resistance to the disease while the resistance of the medical com-
munity of Vienna could represent innate immunity. The develop-
ment of the psychoanalytic movement …was in its way no less an
‘epidemic’ than the outbreak of influenza in 1917 and 1918.
One can argue similarly that Darwin and evolution, Cantor and set
theory, Newton and mechanics, and so on, were examples of ‘epi-
demics’ in theworld of scientific thoughtwhichwere instigated by the
introduction of a single infective into a population. The analogy is not
restricted to science; for examples such as Christ, Buddha,Moses and
Mohammed can be cited in the religious field…”

Of course, social contagions are inherently different from biological
contagions as there are no “cultural pathogens” easily identified and
cultured92. Instead, as recent studies suggest, social contagions are always
shaped by other effects such as homophily or cultural93, human biases and
demographic heterogeneity15, or because of dislike and distrust between
subpopulations94.

Clearmovement beyond SIRmodels began (at least) in the early 1970s,
when Schelling introduced his physical, checkerboard-based model of self-
organizing neighborhood segregation processes95. Schelling operationalized
social contagionwith the concept of thresholds: Individuals adopt (or reject)
a characteristic (action, belief, behavior, etc.) based on the fraction of those
around them with that characteristic or some other influential attribute.
While simple to run, Schelling’s model was non-trivial to address analyti-
cally. In 1978, Granovetter showed that, absent any interaction structure, a
mean-field threshold model produced informative stories of social
contagion96–99. Like Schelling’s model, a seemingly moderate population
could universally adopt a behavior. These models showed mechanistically
how collective uniformity could arise not from individual uniformity but
rather social following.

It is worth noting that while seemingly distinct, the essential models of
biological and social contagion canbe reconciled. For example, a generalized
contagion model incorporating memory successfully interpolates between
SIR-type models and threshold models100,101.

Abstract modeling of contagions, regardless of their nature, can only
get us so far. Turning to data to validate these theories in specific domains is
critical. A major, enduring problem with all empirical social network con-
tagion is missing data, either through limited sampling of a social network
(hence missing links and interactions) or due to interactions occurring
outside of the sphere of observation (e.g., through direct text messages
between individuals, or influence from other media across scales).

Modern social media platforms can control and monitor what people
see and how they behave with high precision. But the algorithms behind
major platforms are proprietary and hidden. Observational analyses of
online behavior and properly formalized academic experiments promise an
ethical way forward. Because of the massive data on offer, social media
provides a unique lab bench to both characterize social contagion and test
theoretical models.

As a first simple proxy for social contagion, one can look at cascades of
re-sharing of the same content on social media (re-sharing a post, keyword,
or a given URL). Under that lens, while co-infection data regarding biolo-
gical contagions can be rare, social media are essentially a messy soup of
countless interaction contagions102 shaped by each other and by the social
networks that support them103. Therefore, it is not surprising that online
social networks inspired some early studies of multiple spreading
processes104. These processes can interact by competing or complementing
each other105, and telling these mechanisms apart from noisy data can be
subtle but is not impossible106,107. For example, Zarezade et al.107 highlight
that incorporating interactions into models enhances their predictive

https://doi.org/10.1038/s44260-025-00050-2 Review

npj Complexity |            (2025) 2:26 5

www.nature.com/npjcomplex


accuracy of social media cascades, even when accounting for the added
model parameters. In their model, a contagion spreads to susceptible
individuals at a rate specified by a Hawkes process around each susceptible
individual108, a self-exciting process that relates the transmission rate of a
contagion to the sum of recent exposures to the contagion itself and to
related contagions. Related work focused on competition between memes
obtained similar results, showing that the competition for potential “hosts”
and their attention is sufficient to qualitatively explain the broad diversity in
popularity, lifetime, and activity of memes109. In that model, competition
betweenmemes occurs through amechanism of limited attention, through
which a susceptible agent is only really exposed to afinite number ofmemes
in its recent memory. The general idea being that signatures of online
behavior are a reflection of recent exposure to contagions, both online and
in the real world, and both social and biological. In fact, a whole subfield of
digital disease surveillance has also looked at the potential of using social
media data as a proxy to track the spread of infectious diseases through
keywords, posts, and searches related to a disease or its symptoms110.

Despite this abundance of data, monitoring of social contagions is
complicated by the fact that the signature of any contagion can mutate
quickly111. Early methods often focused on tracking specific hyperlinks or
proper names112,113, which is appropriate for short timescale before new
hyperlinks or names start describing the same information. Other
approaches tend to aggregate many cascades, such as mixture models or
dynamic topic models114, which by analogy would be similar to tracking
respiratory illnesseswithout tracking individual virus families115. To follow a
social contagion as it evolves, it is possible to track specific short phrases that
are unlikely to mutate111, but this approach is hard to generalize to visual
non-text memes. More recent work has therefore moved to multi-modal
deep learning models to identify memes116, classify them in families117, and
attempt to understand their relations118 or predict their potential for
virality119.

Beyond the spreading of internet memes and the modeling of social
contagions lies a developing, data-driven science of stories and beliefs. That
stories matter profoundly to people and societies seems to be both unclear
and obvious: Stories are portrayed by some as being just for entertainment,
while by others as the core of being human120–124. Even so, the centrality of
stories has gained ground, as has the conception and possibility of mea-
suring stories throughdistant reading125–131,131,132.Understandinghowstories
develop, spread, interact, and compete with each other is of utmost
importance to understanding social phenomena; from myths and con-
spiracy theories to hate speech and counter speech133. Operationalizing the
measurement of stories and interactions between story elements is critical to
advancing these aims (see Box 3).

The spread of beliefs as interacting contagions
Interacting contagions in social networks also differ from biological con-
tagions as they often spread in signed social networks that explicitly dis-
tinguish between positive links (representing trust and favoritism, generally
toward in-group members) and negative links (representing distrust and
enmity, generally toward out-group members). Positive links facilitate the
spread of contagions within the group of like-minded individuals, while
negative links can lead to rejection or counter-adoption of ideas from dis-
trusted sources. This sign-based framework provides essential structure for
understanding how contagions compete across partisan divides. Recent
dynamical modeling134 reveals that the relative strength of positive versus
negative links determines whether the social network converges toward
consensus or diverges towardpolarization, explaining the rapid polarization
of stance toward masking and lockdowns during the COVID-19
pandemic135.

Whilemuchof theworkwehave surveyed so far emphasizes the spread
of contagions across agents, beliefs rarely spread in isolation from other
beliefs and related cognitions such as knowledge, social norms, and
emotions136,137. Therefore, beliefs and opinions (which we here use some-
what interchangeably138) spread not only across social networks but also
within internal belief systems (Fig. 2). This interaction of contagions across

levels makes the study of beliefs a prominent and powerful example of
interacting contagions.

In social networks, the spread of some beliefs is often easier after a
group has already been “infected” with a related set of beliefs. During the
COVID-19pandemic, peoplewhogrewup in the formerEastGermany and
were thus more accustomed to the idea that the government can enforce
certain behaviors were more likely to support the idea of mandatory
vaccination139. Beliefs about whether abortion should be banned or not are
strongly related to prior “infections” of a group by particular political and
religious beliefs140. Beliefs about what is normal and desired in a group can
change in line with shifting perceptions of what the majority of group
members believe or do141, with examples ranging from the support for gay
rights142 to the support for extreme political views143.

Beliefs also spread within individual minds, affecting existing beliefs
and related cognitions and clearing the path for “invasions” of a belief
system with other novel beliefs. For example, when one becomes skeptical
about the safety of vaccinations, this can open doors to the development of
skepticism for those supporting vaccination, such as scientists and the
government. This distrust may make one more likely to accept further
related beliefs and conspiracies144. Emotions can further facilitate belief
spread within an individual’s mind. Even a temporary “infection”with fear
of death can lead one to adopt dislike and prejudice towards beliefs and
groups different than one’s own145.

Models of belief dynamics could profit from incorporating the effects
of interacting socio-cognitive contagions. Many existing belief dynamics
models focus on the spread of only one belief at a time138,146–148. Tomodel the
spread of several related beliefs or cognitionsmore broadly, one can proceed
in at least two ways149.

Oneway tomodel the dynamics of several beliefs is to assume that each
one is affected by a summary of all the others. Many plausible summary
measures have been proposed. Some are normative, such as Bayesian
reasoning150,151 or logic152. Others are more descriptive, aiming to mimic
actual cognitive processes. Examples are averaging strategies153, frequency-
based strategies such as plurality or tallying154, birth-death dynamics like
Moran processes155, or various non-compensatory strategies such as
deciding based on the most important belief or consideration156.

Another way to model interacting belief contagions is to model the
whole network of beliefs. This idea is not new157, but formal models of such
networks that can enable analyses of interacting contagions within belief
systems have started to be developed only recently. In these network
models, nodes are typically beliefs, and edges represent influence between
them158–161. However, nodes can also represent concepts, and edges repre-
sent beliefs about the relationship between them162. Empirical work has
been done to assess the assumptions of these models and their predictions,
but this is still a developing area of research163–165.

Modeling interactions as a network of contagions may provide a
unifiedway to explore a wide spectrum of contagion dynamics as emergent
behaviors. For example, models of interacting beliefs have been shown to
break the dichotomy between simple and complex contagions and integrate
both dynamics under a single framework166. Linear, simple contagion
dynamics occur when the existing belief system is primed to accept a new
belief, while complex contagion dynamics occur when a new belief chal-
lenges the coherence of the existing belief system, echoing the interacting
spreading processes discussed in the section “The physics of interacting
contagions.”

Recent work has coupled the dynamics of disease spread with a spec-
trumof internal states that can represent awareness or behavior and canvary
according to social contacts through some social sensing process167,168,169,
Incorporating the richness of internal belief interactions is a promising
direction for further study of the multiple interactions that occur between
and within individuals during social and biological contagions.

The ecology of interacting contagions
Across biological contagions, abstract models, stories, and beliefs, the pre-
vious sections have hinted at two important challenges in the modeling of
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interacting contagions. First, the numberof states that agents can take grows
exponentially with the number of contagions spreading in a population.
Therefore, the dimensionality of our models also tends to grow exponen-
tially with the number of contagions we wish to consider170. Second, con-
tagions can interact on multiple scales. Interactions can occur internally,
within agents, mediated by an agent’s immune system (biological con-
tagions) or cognition (social contagions). Interactions can also occur across
agents, mediated by the environment, transmission pathways, or local
culture and norms.

Despite these challenges, there is an obvious need to consider inter-
actions between largenumbers of contagions, in the thousands ormore, that
shape our everyday lives. Therefore, we need to be able to go beyond
individual-based models whose dimensionality grows exponentially and
start thinking in terms of an ecosystem of contagions. This call for an
ecology of contagion is a recent development29, and we here outline some
promising directions.

There already exist models to infer interactions in large numbers of
contagions from detailed time series of social data106 and biological data171.
More rarely, we also sometimes have access to co-infection data, often static

counts of individuals infected or involved in multiple contagions. From co-
infection data, previous studies have built inference frameworks based on
permutation tests172 or joint-species distribution models173.

Biologically, emerging technologies such as multiplex PCR panels,
high-throughput sequencing (metagenomics, metabolomics, single-cell
sequencing), and organoid model systems can allow us to begin to better
understand the rich interrelated dynamics occurring across microbial
communities at pathogen-host interfaces. Integrating these datasets and
their insights into contagionmodels can enhance their accurate reflection of
the true biology at play. In the social sciences, it is also a challenge to build
broaddatasets that includemultiple beliefs in a time-resolvedmanner. Large
languagemodels are providing newmethods for stance detections andbelief
quantification that could also resolve interrelated social dynamics174.

That being said, co-occurrence alone is not evidence of interactions175,
regardless of how many covariates are included in the analyses. The ideal
dataset would, of course, be a time series of individual co-infections, where
these existingmethods could be combined.Despite the scarcity of suchdata,
a significant number of approaches have already been developed176. Amore
spatial and ecological understanding of co-infections could also help

Box 3 | Narrative interactionswithin and across stories

In crisis situations, there is a strong predilection to construct narratives in
which some outside force threatens the integrity of an inside group214,215.
These narratives allow people to collaborate in shaping the story,
resulting in a consensus on who is “inside,” who is “outside” (and
therefore can pose a threat), the range of potential threats, and the
possible responses to those threats216,217. Evaluativecomments, either as
framing devices or within the narratives themselves, offer clues to the
stance of storytellers and their audiences about the acuity and severity of
the threat and endorsement of particular strategies or outcomes218.

Stories of this nature—and the conversations in which they are
embedded—can be modeled as an interactant narrative framework
graph, where the nodes consist of actants (individuals, groups, institu-
tions, places) and the edges consist of the relationships between those
actants219,220. The graph, extracted fromconversations,models the range
of possible actants and their interactions; and a story, either complete or
in part, can be modeled as a directed acyclic graph activating some
subset of the nodes and edges221.

As people react to the unfolding crisis and its attendant threats and
disruptors, new actants and relationships are proposed (e.g., by new
posts to the forum) and possibly added into the graph, while others are
less frequently activated and disappear. Several mechanisms limit the
graph from growing too large, including the concept of “tradition domi-
nants,” so that new actants who duplicate the role of existing actants in
the graph are subsumed into the existing actant’s role, and the “law of
self-correction” so that variations on assignations to insider/outsider
status, the range of threats and possible reactions are aligned with
existing conditions222–224. These mechanisms and constraints allow new
stories to contribute to the evolving conversation, while the constraints
on the graph provide support for the group’s beliefs and narrative moti-
vation for actions based on those beliefs. Consequently, the storytelling
environment not only reacts to changes in external conditions but affects
those external conditions through real-world actions while maintaining a
degree of narrative stability.

Apost about religious exemption to vaccination requirements, “A friend ofmy daughter got her “shots” for this one and nowhasmultiple health
issues. Anxiety attacks, rashes, and a lot of fatigue. My girl is not getting them. No way…” can be represented as an interaction subgraph
between concepts of the broader discussion forum, which comprises thousands of interlocking stories and story parts.
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improve inference. This question has been tackled in models170,177, but
separating spatial correlations from actual contagion is not a simple task178.
For social contagions, surveys can help sort these different effects92. For
biological contagions, the majority of studies of co-infections rely on
observational data or case notes, but aminority of studies attempt to survey
specific populations179.

On the modeling side, it is unclear what the ecology of contagions
should look like. Canmodels of food web stability inspire a new generation
of models of contagions? Recent models attempt to study the endogenous
emergence of interactions between contagions using a game-theoretic
perspective180, evolutionary models181, and co-evolutionary interactions
with measures to promote or hinder these contagions182. These models
encourage us to think of interactions as endogenous or emergent features of
contagions and not just as fixed parameters or model mechanisms.

The field of ecology itself is challenged by modeling interacting
contagions and currently faces significant analytical limitations related to
the issues reviewed above. Levins’metapopulation models, for instance,
are very similar to standard epidemiological models183, representing the
dynamics of individual patches that could either be empty (susceptible)
or occupied (infected) by a given species, and studied for the conditions
allowing species persistence at the regional level (outbreaks). Such
models have been extended to multiple interacting species184, but ecol-
ogists lost track of the rapidly growing number of potential community
states185. Solving thismodeling challengemay require a fundamental shift
in state variables; instead of representing the dynamics of a set of indi-
viduals, which could either be susceptible or infected, perhaps a solution
would be to represent the dynamics of the growth rates themselves as
functions of the entire community of contagious agents. Focusing
directly on the contagions rather than on their hosts might help relax
assumptions about the binary nature of contagious states or about the
different relative timescales of biological, social, and evolutionary con-
tagious forces.With a proper formulation of the dynamical functions, the
extensive toolbox of community ecology models could then be used to
investigate problems of coexistence, feasibility, stability, and higher-level
interactions among contagions.

We thus join our voices to themany recommending ecologicalmodels
of infectious diseases186 and contagions29. This perspective is necessary to
appreciate the intricate and dynamic web of interactions between viruses,
animals, parasites, humans, behaviors, and beliefs. Furthermore, under this
lens, the study of emerging beliefs, stories, or epidemics can then borrow
from known theories regarding invasive species in classic ecological
modeling187.

We end with a question not often posed in the context of these
increasingly detailed frameworks. To what end do we pursue these models?
The ecological and holistic approach argued above is an increasingly
common one, as different fields attempt to produce spatial and population-
level understanding in times where social, ecological, and biological vari-
ables are in constant flux188. Is our goal with these frameworks to actually
predict and forecast? Is that truly a litmus test of our understanding of these
rich, stochastic, and inherently noisy processes? Even then, what concrete
observables are we aiming to predict? New cases of a disease? New believers
in a conspiracy theory? Emergence of new contagions or stories? If we adopt
an ecological perspective, our goal should probably be to better understand
the structure of interactions and to predict their impact on the stability and
hierarchy of existing contagions. Importantly, this newobjective aims for an
ecological science of interacting contagions where we can study contagions
as a system in and of themselves, and not just through their individual parts
of pathogens and hosts.
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