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When arriving at a popular destination, where should you park your car? Distant

parking spots are typically plentiful, but then you must walk a long way. Conversely,

looking for a spot close to the venue is risky, as those spots are generally few and far

between. To shed light on this tradeoff, we study an idealized parking process on a

one-dimensional parking lot and determine the optimal strategy for parking in the best

spot.

Parking spots are labeled by k = 1, 2, . . . and the desired target is located at k = 0

(see Fig. 1). Cars enter one at a time from the right at rate λ and depart stochastically

at the equal rates that we set to 1. The real-life situation is λ� 1 when many (of the

order of λ) cars are parked. We seek a parking strategy that maximizes the probability

of parking in the best open spot.
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Figure 1. A one-dimensional lot where a car (blue square) enters from the right.

Circles represent open spots. The entering car ignores the passive zone (red area) and

begins looking for a parking spot in the active zone (green area). The car parks at a

distance k = 4 from the target, which happens to be the best open spot. Here the risk

threshold τ = 1
2 .

We focus on threshold strategies [1], which mimics what people often do. When the

most remote parked car is at k = L, an entering driver ignores the passive zone, begins

looking for vacancies upon reaching a distance τL from the target (the active zone), and

parks at the near end of the first gap encountered (see Fig. 1). Here τ characterizes the

riskiness of this strategy. If no open spots exist, the driver backtracks and parks at the

first vacancy encountered in the passive zone. In the limiting case of τ = 1, the driver

is “prudent” and starts looking for spaces immediately upon passing the most remote

car. In the opposite case of τ = 0, the driver is “optimistic” and goes all the way to

x = 0 before backtracking to the closest open spot [2]. As we will show, the optimum

strategy corresponds to τ = 1
2
.



Spatial Density Profile

When τ is strictly less than 1, the average density of parked cars at position k resembles

the Fermi-Dirac distribution for arrival rate λ → ∞ (see Fig. 2(a)). The density of

vacancies 1 − ρ(k) is of the order of 1/λ in the nearly filled region of the lot, and it

is revealing to concentrate on the scaled vacancy density N(X) = λ[1 − ρ(k)], where

X ≡ k/λ is the scaled location. The scaled vacancy density Na(X) in the active zone is

(Fig. 2(a)):

Na(X) = (X + 1− τ)−2 0 ≤ X ≤ τ , (1a)

from which the average number of vacancies in the active zone is remarkably simple:

〈n〉a =
∫ τ
0
dX Na(X) = τ/(1− τ).
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Figure 2. (a) Simulation data for the density profile of parked cars versus X = k/λ.

The scaled vacancy density profile for τ = 1
2 in: (b) the active zone X < 1

2 , and (c)

the passive zone X > 1
2 .

If there are no vacancies in the active zone, the driver backtracks and parks in the

passive zone. Parking in the passive zone is the mirror image of parking in the active

zone, so a natural hypothesis for the scaled vacancy density in the passive zone is

Np(X) = (1−X)−2 τ < X < 1 , (1b)

which provides an excellent fit to the data for most of the passive zone (Fig. 2(b)).

Many vacancies exist for τ → 1, and this threshold strategy causes the driver to

park far from the target. One would normally not begin looking for spots that far from

the target, but waiting too long may result in failure because almost nearly all spots are

filled when τ → 0. We now show that the probability to park in the optimal open spot

is maximized when τ = 1
2
. This 1

2
rule is the best compromise between actually finding

a spot without backtracking and settling for parking spot that is too far away.

The Optimal Strategy

The key to the optimal strategy is to determine the probability Pn(τ) that there are n

vacancies in the active zone. This quantity is simply related to the probability density
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Vn(X1, . . . , Xn; τ) to have n vacancies at 0 < X1 < . . . < Xn < τ :

Pn(τ) =

∫
· · ·

∫
0<X1<...<Xn<τ

dX1 . . . dXn Vn(X1, . . . , Xn; τ) . (2)

In the steady state, we can compute Pn without explicitly knowing the densities

Vn. To find V0 ≡ P0, namely, the probability that the active zone is full, we equate the

rate at which cars leave when this active zone is full and the rate at which cars park

when the active zone contains a single open spot. This balancing of rates yields

τV0(τ) =

∫ τ

0

dX1 V1(X1; τ). (3)

The integral equals P1 by definition, so that P1 = τP0.

To compute V1 we again must determine the change in this probability due to

the departure and the parking of cars. The principle is the same as that for V0;

only the bookkeeping is more involved (see [1] for details), and the final result is

simple: P2 = τ 2 P0. Continuing this reasoning ultimately leads to Pn = τnP0 and

the normalization condition,
∑

n≥0 Pn = 1, fixes P0 = 1 − τ . The distribution of the

number of vacancies in the active zone is thus

Pn(τ) = (1− τ)τn . (4)

The probability for one vacancy, P1(τ) = τ(1 − τ), coincides with the probability that

an entering car parks in the best open spot. This probability is maximized when τ = 1
2
,

and the probability of parking in the best spot is P1(τ = 1
2
) = 1

4
.

Parting Comments

Our threshold parking strategies resemble those that arise in optimal stopping problems

such as the famous “secretary problem” [3–7], and in decision theory more generally (see,

e.g., [8–10]). Techniques and tools that were developed in decision theory may therefore

provide additional insights into the parking problem. We conjecture that the 1
2

rule

is the best approach amongst all deterministic (not only threshold) parking strategies.

Proving or refuting this conjecture is an appealing challenge.

We close with some amusing observations about the extreme cases of the prudent

(τ = 1) and optimistic (τ = 0) parking strategies [2]. If all drivers are optimistic, the

probability to park without backtracking, i.e., that the most desirable spot (k = 1)

is empty, is (1 + λ)−1. An optimistic driver therefore almost always backtracks as

λ → ∞. If all drivers are prudent, they almost always avoid backtracking as λ → ∞.

However, a prudent driver typically parks near the most remote car. When walking

to the destination, this driver passes on the order of
√
λ better spots and frustratingly

realizes that the most desirable spot is empty about 90% of the time.
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