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Abstract.  We investigate simple strategies that embody the decisions that 
one faces when trying to park near a popular destination. Should one park far 
from the target (destination), where finding a spot is easy, but then be faced 
with a long walk, or should one attempt to look for a desirable spot close to the 
target, where spots may be hard to find? We study an idealized parking process 
on a one-dimensional geometry where the desired target is located at x  =  0, 
cars enter the system from the right at a rate λ and each car leaves at a unit 
rate. We analyze three parking strategies—meek, prudent, and optimistic—and 
determine which is optimal.
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1. Introduction

When driving to a popular destination, nearby parking spots are hard to find. Where 
should one park? Should one park far from the destination, or target, where spaces are 
likely to be plentiful and then walk a long way to the target? Alternatively, should one 
be optimistic and drive close to the target and look only for nearby parking? If one uses 
the latter strategy, it is possible that there are no nearby parking spots and then one 
has to backtrack to find a more distant parking spot, thereby wasting time. 

As one might anticipate, this practical problem has been the focus of considerable 
study in the transportation engineering literature (see, e.g. [1–7] and references therein). 
These practically minded studies include many real-world eects, such as parking costs, 
parking limits, and urban planning implications, that cannot be accounted for in mini-
malist physics-based modeling. In the context of granular compaction, the ‘parking 
lot model’ describes how a finite interval with input and output of cars progressively 
densifies due to various compaction mechanisms [8–14]. In this work, we explore simple 
parking strategies in an idealized one-dimensional geometry and determine their rela-
tive advantages.

In our modeling, we assume that cars enter the system from the right at a fixed rate 
λ and park at integer points along a one-dimensional semi-infinite line, which plays the 
role of a parking lot. Cars also independently leave the lot at a unit rate. For a lot that 
contains N parked cars, the total car departure rate therefore equals N. The first car 
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that enters will park at x  =  1, the closest spot to the target. The second car will park at 
x  =  2 if the first car has not left at the moment when the second car arrives. We assume 
that all cars are the same size and fill exactly one parking spot. As the parking lot fills, 
the parked cars form contiguous groups that are interspersed with gaps (figure 1). The 
most interesting situation is λ � 1, so that the number of parked cars is large. We also 
assume that when a car enters the lot, it has time to find a parking space before the 
next car enters.

In the steady state, the number of parked cars is a random quantity that fluctuates 
around its average value that is equal to λ. In this state, cars enter and leave the lot 
at the same rate, but the spatial distribution of parked cars is continually rearrang-
ing. This situation has some commonality of continually writing and erasing files on a 
comp uter disk. As the disk becomes more full, one faces the problem of disk fragmen-
tation, which can significantly degrade its performance (see, e.g. [15]). In our parking 
model, all cars occupy a single open spot and the problem of parking lot ‘fragmenta-
tion’ is generally minor.

At first sight, our parking problem resembles optimal stopping problems for which 
a vast literature exists (see, e.g. [16–21]). A crucial aspect of our work, however, is that 
the spatial distribution of parked cars depends on the strategy, while in optimal stop-
ping problems these occupancies are random. Another distinction is that, according to 
our rules, the driver cannot ‘see’ the state of closer parking spots (except for a contigu-
ous string of open spots if the current spot is open).

In the next section, we outline the three parking strategies that will be studied in 
this work. We then turn to the dynamics of the number of parked cars, which does 
not depend on the parking strategy. In section 4, we determine the spatial distribu-
tion of cars in the strategy where all drivers are meek and park behind the first car 
encounter ed. There is a mapping between this strategy and a model [22] of microtubule 
dynamics, so we describe the mapping and present some asymptotic results from [22]. 
We next turn to two more realistic strategies that we term as ‘optimistic’ and ‘pru-
dent’ and determine their relative merits.

2. Parking strategies

Cars arrive one at a time at rate λ, and each arriving car parks in one of the available 
parking spots. We postulate that the drivers have no information about available spots; 
otherwise they would go straight to the closest available spot. With this uncertainty, 
there are various natural parking strategies. We analyze three strategies (figure 2):

 (i)  Meek: Park at the first available spot just behind the rightmost parked car.

Figure 1. Parking in a one-dimensional lot where cars (squares) enter from the 
right. Circles represent empty spots, and empty spots to the right of the furthest 
car are not shown. The spatial range of the parked cars is defined as the span.

https://doi.org/10.1088/1742-5468/ab3a2a
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 (ii)  Prudent: Go to the first gap and park at the left end of this gap. If there are no 
vacancies, go all the way to x  =  0, then backtrack, and finally park behind the 
rightmost parked car.

 (iii)  Optimistic: Go all the way to x  =  0 and then backtrack to the closest available 
spot. If there are no vacancies, this backtracking ends by parking behind the 
rightmost parked car.

The meek driver wastes no time looking for a parking spot and just parks at the first 
available spot that is behind the most distant parked car. This strategy is risibly 
inecient; many good parking spots are unfilled and most cars are parked far from the 
target. The prudent driver bets that there is at least one vacancy in the lot. If this bet 
is wrong, the prudent driver wastes the time to travel to x  =  0 and then backtracks to 
where it would have parked by employing the meek strategy. The optimistic driver bets 
that there is a spot close to the target and thus drives to the target and parks at the 
first vacancy encountered by backtracking (figure 2(c)). If a vacancy does not exist, the 
optimistic driver must also backtrack and park at the end of the line of parked cars.

3. Dynamics of the number of cars

A basic characterization of this parking process is the total number N(t) of parked cars 
at time t. If we ignore the time spent in actually parking, the random variable N(t) is 
independent of the parking strategy. The probability distribution PN(t) that there are 
N parked cars at time t satisfies the master equation

dPN

dt
= λPN−1 + (N + 1)PN+1 − (λ+N)PN . (1)

1st gap

Target

(a)

Target

(b)

Target

(c)

Figure 2. Illustration of dierent parking strategies for the same state of the 
parking lot: (a) meek, (b) prudent, and (c) optimistic. The red square denotes the 
newly parked car.

https://doi.org/10.1088/1742-5468/ab3a2a
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The first term on the right accounts for the gain in PN because a car parks in a lot with 
N  −  1 cars, the second term accounts for the gain in PN because a car leaves when the 
lot contains N  +  1 cars, and the last term accounts for the loss of PN because either a 
new car parks or a car leaves when the lot contains N cars.

The solution to equation (1) can be obtained by the generating function method for 
an arbitrary initial condition (the derivation is given, e.g. in [22]). If the parking lot is 
initially empty, PN(0) = δN ,0, the distribution of the number of parked cars is given by 
the Poisson distribution

PN(t) =

[
λ(1− e−t)

]N
N !

e−λ(1−e−t) −→
t→∞

λN

N !
e−λ. (2)

From (2), the average number of parked cars is 〈N(t)〉 = λ(1− e−t), which approaches 
λ in the long-time limit.

The actual number of parked cars fluctuates about the steady state value 〈N〉 = λ, with 

the mean deviation from the average equal to 
√

〈N2〉 − 〈N〉2 =
√
λ. Huge fluctuations 

are also possible; for example, the parking lot empties with probability P0 = e−λ. The 
average time T between successive lot emptying events roughly scales as the reciprocal 
of this probability: T ∼ P−1

0 = eλ. Thus the emptying time is exponentially large in λ 
for the interesting case of λ � 1; it is extremely unlikely that the lot is empty when the 
arrival rate of new cars is high.

One can determine the emptying time by employing the backward Kolmogorov 
equation (see, e.g. [14, 23]) that relates the emptying time for a lot with n cars to the 
emptying time for a parking lot with n± 1 cars. Let tn be the average time for the lot 
to empty starting from the state where n cars are parked. This emptying time satisfies

tn = pntn+1 + qntn−1 + δtn. (3)
The first term on the right-hand side accounts for the parking of a new car, an event 
occurs with probability pn = λ/(λ+ n). After this event, the average time for the park-
ing lot to empty is tn+1. The second term accounts a car leaving, which that occurs with 
probability qn = n/(λ+ n). Finally, δtn = 1/(λ+ n) is the average time for the number 
of parked cars to change from n to n± 1.

Recurrences of the form (3) for general pn, qn and δtn, are solvable (see, e.g. chapter 
12 of [14] and also [24]). Specializing the solution given there to the present case, the 
emptying time of the lot when n cars are parked is

tn =
1

λ

n−1∑
j=0

j!

λ j

∑
i�j

λi

i!
. (4)

In the case where a single car is parked, this result simplifies to t1 = (eλ − 1)/λ. In the 
relevant case of λ � 1, all tn with n � λ exhibit this same asymptotic behavior. For 
λ � 1, it is overwhelmingly likely that starting from a lot with a single parked car, the 
lot will quickly fill in a time of the order of one to its stationary value of λ parked cars.

https://doi.org/10.1088/1742-5468/ab3a2a
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4. Meek strategy

Models that resemble the meek strategy arise in various contexts, e.g. they have been 
used to mimic the evolution of genomic DNA [25–27] and they have been applied to 
modeling microtubule dynamics [22, 28–30]. The meek strategy is actually identical 
to the microtubule model discussed in [22, 28]: a car that parks after the rightmost 
car corresponds to the addition of a GTP (guanosine triphosphate) monomer to the 
microtubule, and the departure of a car corresponds to the conversion for GTP to GDP 
(guanosine diphosphate). A catastrophe arises when the active end of a microtubule 
consists of only GDP monomers; these detach quickly, leading to a rapid decrease in 
the microtubule length. This latter event corresponds to a sudden drop in the span of 
parked cars when the rightmost car leaves and the next parked car is much closer to 
the target. The microtubule model is tractable, and the available analytical results [22, 
28] provide a rather complete description of the car distribution that arises in the meek 
strategy. Below we outline some basic results and outline their derivations.

The meek strategy is ridiculously inecient for λ � 1: the typical span, namely the 
distance from the target to the rightmost parked car, is huge, L ∝ eλ, while all cars are 
parked within a narrow populated region of length � � λ lnλ near the right edge of the 
span (see figure 3). At any given moment the populated region moves nearly systemati-
cally to the right at speed λ because of the continuous arrival of cars at this rate. Since 
the number of parked cars is roughly constant and they occupy a fixed-length region �, 
there typically is a huge empty space to the left of the populated region. This pattern 
is disrupted when a rare event occurs in which all cars in the populated region leave 
before a new car enters. When this happens, the parking process begins anew from an 
empty lot. The span therefore has a sawtooth time dependence (figure 4). When λ � 1, 
the emptying time is T � eλ/λ, and this gives an estimate L ∝ eλ: the emptying time 
is so large that we can only observe the growth of the span in simulations.

Let us estimate the behavior of the length � of the populated region in the λ → ∞ 
limit. Since cars leave the lot at rate one, the probability that the car that is a distance 
x from the rightmost car has not left the lot is p(x) = e−τ = e−x/λ. To estimate the size 
of the populated region, we use the fact that the probability that there is a parked car 
located a distance � or greater from the rightmost car is∑

x��

e−x/λ = e−�/λ/
(
1− e−1/λ

)
� λ e−�/λ.

 (5)

Setting this quantity to 1 gives a simple extreme statistics estimate for the size of the 
populated region (see, e.g. [31, 32]).

� = λ lnλ. (6)
Thus the length of the populated region is tiny compared to the span.

In the optimistic and prudent strategies the spatial distribution of parked cars 
quickly reaches and remains in a quasi-stationary state until the parking lot empties. 
Because newly arriving cars can park in the interior of the lot, spatial fluctuations 
in the span are of the order of 

√
λ. Once again, a typical simulation with λ � 1 does 

not extend to the emptying time, so all that can be observed is the quasi steady-state 

https://doi.org/10.1088/1742-5468/ab3a2a
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behavior. We now study the spatial distribution of parked cars and related features for 
these two parking strategies.

5. Optimistic strategy

The key feature of the optimistic strategy is that the dynamics of occupancy at any 
spot i depends only on spots 1, 2, . . . , i; all spots to right can be ignored. This property 
occurs in a number of one-dimensional systems that enjoy spatial causality, see e.g. 
[34–38], and it allows us to treat the optimistic strategy analytically.

Denote by σj the occupation number of spot j :

σj =

{
1 if j is occupied,

0 if j is empty.

The density ρ1 = 〈σ1〉 at the first parking spot satisfies

dρ1
dt

≡ ρ̇1 = λ(1− ρ1)− ρ1, (7)

which simply states that if the first spot is empty, it refills at rate λ, while if this spot 
is occupied, it empties with rate 1. The solution to this equation is

ρ1 =
λ

1 + λ

[
1− e−(1+λ)t

]
−→
t→∞

λ

1 + λ
. (8)

Figure 4. Schematic picture of the time dependence of the span in the meek 
parking strategy in the large λ limit.

Figure 3. Schematic of the distribution of parked cars for the meek strategy in the 
large λ limit. The span increases linearly in elapsed time from the last emptying 
event.

https://doi.org/10.1088/1742-5468/ab3a2a
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Following the same logic as in (7), the density ρk satisfies the equation of motion

ρ̇k = λ
〈
(1− σk)

k−1∏
j=1

σj

〉
− ρk (9)

for any k � 2. These exact equations are not closed, viz., they involve the multisite 
averages 〈σ1σ2 . . . σk−1〉 and 〈σ1σ2 . . . σk−1σk〉. Writing evolution equations for these two 
averages involve other multisite averages. However, since the occupancy dynamics of 
the spots 1, 2, . . . , k does not depend on the spots i  >  k, the system of dierential equa-
tions for 2k  −  1 multisite averages 〈σa . . . σb〉, with 1 � a < . . . < b � k, is closed. While 
the number of equations rapidly grows with k, they are linear, solvable, and can be 
treated recursively. We now illustrate this approach for k  =  2 and k  =  3.

5.1. k  =  2

When k  =  2, equation (9) becomes

ρ̇2 = λρ1 − ρ2 − λ〈σ1σ2〉 = λρ1 − ρ2 − λρ12 (10a)

ρ̇12 = λ〈(1− σ1)σ2〉+ λ〈σ1(1− σ2)〉 − 2ρ12 = λ(ρ1 + ρ2)− 2(1 + λ)ρ12, (10b)
where ρ12 ≡ 〈σ1σ2〉. The full time-dependent solutions to these equations are elemen-
tary but cumbersome. In the steady state

0 = λρ1 − ρ2 − λρ12 (11a)

0 = λ(ρ1 + ρ2)− 2(1 + λ)ρ12, (11b)
from which

ρ12 =
λ2

λ2 + 2λ+ 2

ρ2
ρ12

=
λ+ 2

λ+ 1
. (12)

5.2. k  =  3

The equation for the density at site three is

ρ̇3 = λ(ρ12 − ρ123)− ρ3, (13)
which involves the three-site average ρ123 = 〈σ1σ2σ3〉. This average satisfies

ρ̇123 = λ〈(1− σ1)σ2σ3〉+ λ〈σ1(1− σ2)σ3〉+ λ〈σ1σ2(1− σ3)〉 − 3ρ123

= λ(ρ12 + ρ23 + ρ13)− 3(1 + λ)ρ123.
 (14)

From (10b) we already know the nearest-neighbor two-site average ρ12 = 〈σ1σ2〉, and we 
also need the equations for ρ13 = 〈σ1σ3〉 and ρ23 = 〈σ2σ3〉:

ρ̇13 = λ〈(1−σ1)σ3〉+ λ〈σ1σ2(1−σ3)〉 − 2ρ13 = λ(ρ3+ρ12−ρ123)− (2+λ)ρ13

ρ̇23 = λ〈σ1(1−σ2)σ3〉+ λ〈σ1σ2(1−σ3)〉 − 2ρ23 = λ(ρ13+ρ12−2ρ123)−2ρ23.
 (15)

Solving equations (13)–(15) in the steady state gives

https://doi.org/10.1088/1742-5468/ab3a2a
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ρ123 =
λ3

λ3 + 3λ2 + 6λ+ 6
, (16a)

and in terms of this quantity, the remaining densities can be written as

ρ3
ρ123

=
λ2 + 4λ+ 6

λ2 + 2λ+ 2
 (16b)

ρ23
ρ123

=
λ+ 3

λ+ 2 (16c)

ρ13
ρ123

=
(λ+ 1)(λ2 + 4λ+ 6)

(λ+ 2)(λ2 + 2λ+ 2)
. (16d)

5.3. Decoupling approximation

While the exact results quickly become unwieldy, they greatly simplify in a decou-
pling approximation, in which we replace multi-site averages by the product of corre-
sponding single-site averages (see, e.g. [33] for a general discussion of such decoupling 
approaches). For example, using ρ12 = ρ1ρ2 in (11a) gives

ρMF
2 =

λ2

λ2 + λ+ 1
ρMF
12 =

λ3

(λ2 + λ+ 1)(λ+ 1)
, (17)

where the superscript MF denotes the mean-field densities that arise from the decou-
pling approximation. Similarly using ρ12 = ρ1ρ2 and ρ123 = ρ1ρ2ρ3 in (14) gives

ρMF
3 =

λ4

λ4 + λ3 + 2λ2 + 2λ+ 1
. (18)

To gauge the accuracy of the decoupling approximation we compare the exact and 
approximate densities ρ2(λ) and ρ3(λ) in figure 5. The decoupling approximation is gen-
erally accurate and becomes more so accurate as λ → ∞. To show this analytically, we 
define ε ≡ 1/(λ+ 1) as a small parameter, so that ρ1 = 1− ε. The expansion in ε yields

ρ2 = 1− ε− 2ε2 + 2ε3 + 2ε4 + . . .

ρMF
2 = 1− ε− ε2 + ε4 + . . .

for the density and

ρ12 = 1− 2ε+ 2ε3 − 2ε5 + . . .

ρMF
12 = 1− 2ε+ ε3 + ε4 + . . .

for the two-site correlation function. For ρ2, the decoupling approximation expression 
is exact to second order in ε, and ρ12 is exact to third order. This pattern seems to hold 
for dierent sites; e.g. for the density at site three we expand (16a) and (18) and find 
that two leading orders of the expansion are again exact:

ρ3 = 1− ε− 4ε2 − 2ε3 + . . .

ρMF
3 = 1− ε− 2ε2 − 2ε3 + . . . .

https://doi.org/10.1088/1742-5468/ab3a2a
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5.4. Large-k behavior

Because the multisite correlation functions are cumbersome and the decoupling approx-
imation is accurate, and even asymptotically exact in the most interesting λ → ∞ 
limit, we now focus on the large-k behavior using the decoupling approximation. In the 
steady state we obtain

ρk+1 =
λ
∏

1�j�k ρj

1 + λ
∏

1�j�k ρj
, (19a)

which can be simplified to

ρk+1 =
ρ2k

1− ρk + ρ2k
. (19b)

Starting from ρ1 = λ/(1 + λ) and iterating (19b), we find

nk+1 − nk = εn2
k

[
1− ε2n2

k

1− εnk + ε2n2
k

]
, (20)

where ε = 1/(λ+ 1) and we have written the solution in the form 1− ρk = εnk.
Keeping only the leading term and replacing the dierence by the derivative gives

dnk

dk
= εn2

k,

whose solution, subject to the boundary condition n1  =  1, yields

nk =
1

1− ε(k − 1)
=

λ+ 1

λ+ 2− k (21a)

Figure 5. (a) The exact (blue) and decoupling approximation density (orange) 
at site two from (12) and (17), respectively. (b) Same for site three. Here the 
exact density from (16a) lies below the decoupling approximation (19b) when 
λ > 0.900 966.

https://doi.org/10.1088/1742-5468/ab3a2a
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or equivalently

ρk = 1− 1

λ+ 2− k
. (21b)

This solution applies in the ‘bulk’ region where λ− k � 1. For small k, the density 
remains close to 1, but with a deviation that slows grows as k increases.

Figure 6(a) shows simulation results for the steady-state density of parked cars 
for the optimistic strategy for representative value of λ. Our simulations start with 
an empty system and continue until roughly 105λ cars have parked. To give a more 
quanti tative sense of the accuracy of (21b), table 1 compares the prediction of this equa-
tion with simulation results.

As λ increases, the density of parked cars becomes more step-like and resembles the 
Fermi–Dirac distribution. To characterize the region near x = λ, figure 6(b) shows the 
derivative −dρ/dx. The increasing steepness of the density step at x = λ in figure 6(a) 
corresponds to the sharpening of the peak in figure 6(b). From the latter data, we also 
measure its width and find that this width shrinks roughly as λ−1/2.

5.5. Vacancies

Let us now determine the location of the nearest open parking spot, or vacancy. The 
probability Vk that the first vacancy is located at site k is

Figure 6. (a) The density of parked cars ρ(x) as a function of distance x from the 
target for the optimistic parking strategy for λ between 200 and 1000. (b) The 
derivative −dρ/dx. These curves have been smoothed over 1% of the data range.

Table 1. Comparison of ρk from simulations (second column) and from 
equation (21b) (third column) for the case λ = 1000.

k ρk (sim.) ρk (21b)

1 0.999 004 0.999 001
10 0.998 98 0.998 99
100 0.998 77 0.998 89
200 0.998 45 0.998 75
400 0.997 24 0.998 34

https://doi.org/10.1088/1742-5468/ab3a2a
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Vk =

〈
k−1∏
j=1

σj (1− σk)

〉
, (22a)

which becomes, in the decoupling approximation,

Vk = εnk

k−1∏
j=1

ρj. (22b)

Taking the logarithm, replacing the sum by integration, and using (21b) we get

k−1∑
j=1

ln ρj �
∫ k

1

dj ln

(
1− 1

λ+ 2− k

)
� −

∫ k

1

dj

λ+ 2− j
= ln

λ+ 2− k

λ+ 1
.

Comparing with (21a), the product is

k−1∏
j=1

ρj �
1

nk

. (23)

Thus the location of the first vacancy is uniformly distributed in the range [0,λ]:

Vk =

{
ε k < λ

0 k > λ, (24)

from which the average position of the first vacancy is

v1 ≡ 〈k〉 =
λ∑

k=1

kVk =
λ

2
. (25)

Our simulations are in excellent agreement with this simple result. The same approach 
can be applied to compute the joint probability Vk1,...,km to have m vacancies at sites 
k1 < k2 < . . . < km < λ. This probability is proportional to the product of the densities 
at the positions of all but the last vacancy, viz.,

Vk1,...,km = εm
m−1∏
a=1

nka (26)

with nk given by (21a). In general, the average position of the mth vacancy is

vm = (1− 2−m)λ.
 (27)

We anticipate that this result will hold as long as the mth vacancy is in the bulk of the 
density distribution.

6. Prudent strategy and comparison to optimistic strategy

The many-body nature of the parking process is more complicated for the case of the 
prudent strategy and our results for this case are simulational. Figure 7(a) shows the 
steady-state density of parked cars for the prudent strategy for representative value 

https://doi.org/10.1088/1742-5468/ab3a2a


Simple parking strategies

13https://doi.org/10.1088/1742-5468/ab3a2a

J. S
tat. M

ech. (2019) 093404

of λ. The salient feature of the prudent strategy is that there are lots of open parking 
spots very close to the target. This feature arises because a newly arriving car only 
penetrates to the first vacancy (or contiguous vacancy cluster) that it encounters. Thus 
parking spots that are close to the target are ‘screened’ by more distant spots. Because 
it is unlikely that a new car penetrates to close parking spots and these spots open up 
with rate 1, the density of open spots near the target are likely to be high.

To check this last hypotheses, we plot simulation data for the density of parked 
cars at site one as a function of λ (figure 7(b)). The data indicate that the average 
density of parked cars at the first spot, ρ1(λ), is a systematically decreasing function 
of λ that extrapolates to a non-zero value for λ → ∞. The quadratic fit shown in this 
figure extrapolates to ρ1(∞) ≈ 0.11.

For both the optimistic and prudent strategies, the average span L appears to have 
the asymptotic behavior L � λ+ aλ1/2; more precisely

lim
λ→∞

L− λ√
λ

= a. (28)

The amplitude a  >  0 is larger for the prudent strategy. Equation (28) implies that 
the number of vacancies grows as a

√
λ. Thus both the optimistic and prudent strate-

gies are ecient in that there are generally very few open parking spots in the steady 
state. Figure 8(a) shows L/λ plotted versus 1/λ1/2 for both the optimistic and prudent 
strategies. Both datasets show the same qualitative behavior in which L/λ appears to 
extrapolate to 1 for λ → ∞, with corrections that vanish as 1/λ1/2.

Figure 8(b) shows the dependence of the number of open parking spots on λ for the 
both optimistic and prudent strategies. In both cases, the number of parking spots, 
v, appears to grow as λν, with ν ≈ 0.58. However, these data have a slight downward 
curvature and we expect that asymptotically v ∼ λ1/2.

A related measure of parking eciency is the fraction of times that a driver has 
to backtrack to the end of the parked cars because there are no open spots available. 

Figure 7. (a) The density of parked cars ρ(x) as a function of distance x from 
the target for the prudent parking strategy for λ between 200 and 1000. (b) The 
average density of parked cars at the closest parking spot to the target, ρ1(λ), as 
a function of 1/λ1/2 for λ in the range between 100 and 1000. The dashed line is a 
quadratic fit to these data that extrapolates to ρ1(∞) ≈ 0.11.
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As shown in figure 9, the fraction of parking attempts that requires the driver to back-
track to the end of the parking lot varies as λ−α for both strategies, with α ≈ 1 for the 
prudent strategy and α ≈ 0.7 for the optimistic strategy.

7. Discussion

We introduced simple parking strategies in an idealized one-dimensional parking lot, 
viz. the semi-infinite line, with cars arriving one at a time at rate λ and departing at 
rate one. We assume that successive car arrivals are suciently separated in time that 
there is no competition between cars trying to park in the same spot. The number 
of parked cars is independent of the parking strategy. This number obeys a Poisson 

Figure 8. (a) The average span for the optimistic (°) and prudent (∆) strategies 
divided by λ as a function of 1/λ1/2 for λ between 100 and 1000. The dashed curves 
are quadratic fits to these data. (b) The average number of open parking spots as 
a function of λ for the optimistic (°) and prudent strategies (∆).

Figure 9. The probability P0 that the parking lot contains no open parking spaces 
as a function of λ.
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distribution, with the average number of parked cars equal to λ. However, the spatial 
distribution of parked cars strongly depends on the strategy that is employed.

In the meek strategy, each new car parks behind the most distant parked car. While 
this might be a reasonable approach when λ is small, it quickly becomes ludicrous for 
large λ because the position of the last car is typically a distance of the order of eλ 
from the target. However, if there are a few meek drivers while the majority follow the 
prudent or optimistic strategy, then the meek strategy is not bad because meek drivers 
will park a distance λ from the target.

Much more practical are the optimistic and prudent strategies. In the optimistic 
strategy, a driver hopes that there is parking spot close to the target. Thus the driver 
goes all the way to the target, ignores all open spots, and finally parks at the first spot 
encountered upon backtracking. In the prudent strategy, the driver does not have the 
same degree of confidence but hopes that an open spots exists that is closer to the tar-
get than the most distant parked car; specifically, the prudent driver parks at the left 
end of the first gap.

Which strategy—optimistic or prudent—is better? To address this question quanti-
tatively, one must introduce a cost for a parking event and compare the costs of the 
two strategies. A natural definition of cost is the distance from the parking spot to the 
target plus the time wasted in looking for a parking spot. To minimize the number of 
parameters, we assume that the speed of the car in the parking lot is the same as the 
walking speed. Thus an appropriate cost measure is the distance traveled by the car 
in the lot plus the distance that the driver walks from the parking spot to the target 
(figure 10). With this definition of parking cost, the average cost scales linearly with λ, 
but with dierent prefactors for the optimistic and prudent strategies. On average, the 
prudent strategy is less costly. Thus even though the prudent strategy does not allow 
the driver to take advantage of the presence of many prime parking spots close to the 
target, the backtracking that must always occur in the optimistic strategy outweighs 
the benefit by typically parking closer to the target.

Needless to say, there are other ways to judge the ecacy of a parking strategy. 
Psychologically, a prudent driver may get upset by parking far from the target and 
then discovering that the closest parking spot is available. For the optimistic strat-
egy this circumstance is impossible by construction, while for the prudent strategy it 
happens with probability close to 1− ρ1, i.e. approximately in 89% of all realizations. 
Another ecacy measure is the fraction of times a driver has to backtrack to the end of 
the parked cars because there are no open spots available. Fortunately for the driver, 
as λ increases and the number of parked cars similarly increases, it becomes less likely 
that a parking attempt requires backtracking to the end of the parking lot.

Figure 10. Schematic definition of the parking cost for the (a) prudent and 
(b) optimistic strategies for a parking lot with vacancies (top line) and for a full 
lot (bottom line).
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With regard to parking, humans do not follow optimal strategies [39]. Instead, 
drivers tend to use simple heuristics, and the strategies outlined in this work are exam-
ples of such heuristics. Devising an optimal strategy is still an intriguing challenge. 
Adapting the methods from the optimal stopping research is not straightforward, e.g. 
in the parking problem studied in [16] the probability of a parking spot being occupied 
is independent of its location or of whether neighboring places are occupied. In our 
problem, the spatial distribution is emergent, and it also only statistically stationary.
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