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Abstract. We study the shrinking Pearson random walk in two dimensions
and greater, in which the direction of the Nth step is random and its length
equals λN−1, with λ < 1. As λ increases past a critical value λc, the endpoint
distribution in two dimensions, P (r), changes from having a global maximum
away from the origin to being peaked at the origin. The probability distribution
for a single coordinate, P (x), undergoes a similar transition, but exhibits multiple
maxima on a fine length scale for λ close to λc. We numerically determine P (r)
and P (x) by applying a known algorithm that accurately inverts the exact Bessel
function product form of the Fourier transform for the probability distributions.
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1. Introduction

In this work, we investigate the probability distribution of the shrinking Pearson random
walk in two and greater dimensions, in which the length of the Nth step equals λN−1,
with λ < 1. If a walk is at rN after the Nth step, then rN+1 is uniformly distributed on
the surface of a sphere of radius λN centered about rN (figure 1). We assume that the
walk begins at the origin, and the length of the first step is λ0 = 1. The random direction
for each step corresponds to the classic Pearson walk [1, 2], whose solution is well known
when the length of each step is fixed. In this case, the central limit theorem guarantees
that the asymptotic probability distribution of endpoints approaches a Gaussian function.

In one dimension, the random walk with exponentially shrinking step lengths exhibits
a variety of beautiful properties [3, 4]. For λ < 1

2
, the support of the endpoint distribution

after N steps, PN(x), is a Cantor set, while for λ > 1
2

the support is the connected interval

[−1/(1 − λ), 1/(1 − λ)]. More interestingly, for 1
2

< λ < 1 and for N → ∞, PN(x) is
continuous for almost all values of λ, but is fractal on a complementary and infinite discrete
set of λ values [3]–[6]. A particularly striking special case is λ = g ≡ 1

2
(
√

5−1) = 0.618 . . .
(the inverse of the golden ratio), where P (x) is artistically self-similar on all length
scales [7, 8].

Shrinking random walks in greater than one dimension are much less studied. The
probability distribution of short Pearson walks with a step size that decays as a power
law in the number of steps was treated by Barkai and Silbey [9], while the probability
distribution of short Pearson walks with arbitrary unequal step sizes was considered
by Weiss and Kiefer [10]. More recently, Rador [11] studied the moments and various
correlations of the probability distribution, and also developed a 1/d expansion method,
where d is the spatial dimension, for Pearson walks with shrinking steps.

A physical motivation for this model comes from granular media. If a granular gas
is excited and then allowed to relax to a static state, the motion of a labeled particle is
equivalent to a random walk whose steps lengths decrease because of the loss of energy
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Figure 1. Illustration of the first four steps of a shrinking Pearson walk in two
dimensions, leading to a displacement r.

by repeated inelastic collisions. A related example is an inelastic ball that is bouncing
on a vibrating platform [12], where the velocity of the ball after each bounce essentially
experiences a random walk with shrinking steps if the vibration is sufficiently weak. Our
interest was prompted by Bazant [13], who apparently introduced the shrinking Pearson
walk in an MIT graduate mathematics course on random walks.

While the distribution of radial displacements, P (r), no longer exhibits self-similar
properties, numerical simulations indicated that P (r) qualitatively changes shape as a
function of λ. For λ � 1, the support of P (r) is confined to 1 − (λ/(1 − λ)) < r <
1 + (λ/(1 − λ)), and the distribution is peaked near r = 1. As λ increases beyond 1

2
, the

probability of being near the origin increases and P (r) eventually exhibits a maximum at
the origin when λ exceeds a critical value, λc(r). For two spatial dimensions, we estimate
λc(r) to be 0.575 3882± 0.000 0003.

The distribution of a single coordinate, P (x), undergoes a similar shape transition, but
at a slight different critical value, λc(x), that we estimate to be 0.558 458±0.000 003. More
surprisingly, P (x) exhibits up to seven local minima and maxima when λ ≈ λc(x). The
secondary extrema occur on a very fine scale that can be resolved only by a high-accuracy
numerical method, due to Van Deun and Cools [14], to invert the Fourier transform of
the probability distribution.

In section 2, we present some elementary properties of the shrinking Pearson
random walk and show how to obtain the exact Fourier transform for the radial and
single-coordinate probability distributions. In section 3, we apply the Van Deun and
Cools algorithm to numerically invert the Fourier transform with high accuracy. From
this inversion, we outline the behaviors of the radial and single-coordinate probability
distributions as a function of λ in section 4. We briefly discuss the shrinking Pearson
walk in spatial dimensions d > 2 in section 5 and conclude in section 6.

2. Basic properties

When the length of the Nth step decreases exponentially with N , the shrinking Pearson
walk eventually comes to a stop at a finite distance from its starting point. Since the
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Figure 2. The radial distribution PN (r) for the representative case λ = 0.56,
with N = 1, 2, 3, 4, 5, 6, 7, and 10 steps (upper left to lower right).

direction of successive steps are uncorrelated, the mean-square displacement after the
Nth step, 〈r2〉N , is given by:

〈r2〉N = 〈[r1 + r2 + r3 + · · · + rN ]2〉 = [r2
1 + r2

2 + r2
3 + · · ·+ r2

N ]

= [1 + (λ)2 + (λ2)2 + · · · + (λN−1)2] =
1 − λ2N

(1 − λ2)
−→ 1

(1 − λ2)
N → ∞.

(1)

In the second line, we use the fact that the directions of different steps are uncorrelated
so that the average value of all cross terms in the expansion of [r1 + r2 + r3 + · · · + rN ]2

vanish. We thus obtain the obvious result that 〈r2〉N grows monotonically with λ and
diverges as λ → 1, corresponding to the infinite-time limit of the classic Pearson random
walk.

Our interest is in the probability distributions of the radial coordinate and a single
Cartesian component after N steps, PN(r) and PN(x), respectively, as well as their
N → ∞ limiting forms, P (r) and P (x). These two distributions undergo a transition
from being peaked away from the origin for small λ, to being peaked at the origin for
λ greater than a critical value. A transition from a unimodal to bimodal probability
distribution can be constructed, for example, from Brownian motion in media with non-
linear shear profiles [15]. Here the competition between the flow and diffusion drive the
transition. In the present example, the transition is purely statistical in origin.

Figure 2 shows the radial distribution for λ ≈ λc after a small number of steps
to provide a sense for the convergence rate to the asymptotic form. To show various
distributions at the same scale, we typically plot the distribution P (r)rmax versus r/rmax,
where rmax = (1 − λ)−1 is the maximal displacement of the infinite walk. Already by
N = 7 steps, the probability distribution is visually indistinguishable from its asymptotic
form. While P (r) varies smoothly as a function of λ, the position of the global maximum
changes discontinuously from being peaked at r > 0 to being peaked at r = 0 as λ increase
beyond a critical value λc(r). The single-coordinate distribution P (x) exhibits a transition
from multimodality to unimodality that somewhat resembles the transition for P (r), but
is more complex in its microscopic details.

doi:10.1088/1742-5468/2010/01/P01006 4
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Conventionally, the distribution of the displacement factorizes into a product of single-
coordinate distributions, from which the radial distribution follows easily. However, in
contrast to the classic Pearson walk in which the length of each step is the same, the
probability distribution for the shrinking Pearson walk no longer factorizes as P (r) =
P (x)P (y). The differences between the radial and single-coordinate distributions arise
because there is a non-trivial correlation between steps in orthogonal directions. If the
endpoint of the walk is close to its maximum possible value in, say, the x-direction, then
the displacement in the y-direction is necessarily small, and vice versa.

It is worth emphasizing that it is not practical to accurately determine the probability
distribution of the Pearson random walk with shrinking steps by straightforward
simulations. As we shall see, the nature of the transition in P (x) is delicate. It
would require a prohibitively large number of walks, or a prohibitively fine spatial grid
in an exact enumeration method, to obtain sufficient accuracy to resolve these subtle
features. For this reason, we employ an alternative approach that is based on calculating
the Fourier transform of the probability distribution—which can be done exactly by
elementary methods—and then inverting this transform by the highly accurate Van Deun
and Cools [14] algorithm.

3. Fourier transform solution of the probability distribution

3.1. Single-coordinate distribution

We first study the distribution of the (horizontal) x coordinate. To obtain the distribution
of x after N steps, PN(x), we start with the Chapman–Kolmogorov equation [2] that
relates PN(x) to PN−1(x),

PN(x) =

∫
dx′ PN−1(x

′) qN (x − x′), (2)

where qN(w) is the probability of making a displacement whose horizontal component
equals w at the Nth step. Equation (2) states that to reach a point whose horizontal
component equals x after N steps, the walk must first reach a point with horizontal
component x′ in N − 1 steps and then hop from x′ to x at the Nth step.

We now introduce the Fourier transforms

PN(k) =

∫
dx PN(x)eikx, and qN(k) =

∫
dx qN(x)eikx,

to recast the convolution in equation (2) as the product PN(k) = PN−1(k) qN(k). This
equation has the formal solution

PN(k) = P0(k)
N∏

n=0

qn(k) =
N∏

n=0

qn(k). (3)

The latter equality applies for a walk that begins at the origin, so that P0(k) = 1. Now
qn(x) may be obtained by transforming from the uniform distribution of angles to the
distribution of the horizontal coordinate in a single step by using the relation

qn(x) dx = qn(θ) dθ =
dθ

2π
, (4)

doi:10.1088/1742-5468/2010/01/P01006 5
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together with x = λn−1 cos θ, to give

qn(x) =
1

π

1√
λ2(n−1) − x2

. (5)

Although the distribution of angles is uniform, the single-step distribution for the x-
coordinate at the nth step has a ‘smile’ appearance, with maxima at x = ±λn−1 and a
minimum at x = 0. The probability distribution of the horizontal coordinate after N steps
is a convolution of these smile functions at different spatial scales. It is this superposition
that gives P (x) its rich properties for λ ≈ λc.

Using the transformation between x and θ in equation (4), the Fourier transform of
the single-step probability is

qn(k) =

∫
dx qn(x)eikx =

1

2π

∫ 2π

0

dθ eikλn−1 cos θ = J0(kλn−1), (6)

where J0 is the Bessel function of the first kind of order zero. This result relies on a
standard representation of the Bessel function as a Fourier integral [16]. Thus the Fourier
transform of the probability distribution in equation (3) may be expressed as the finite
product of Bessel functions

PN(k) =

N−1∏
n=0

J0(kλn). (7)

To calculate PN (x) requires inverting the Fourier transform,

PN(x) =
1

2π

∫ ∞

−∞
dk e−ikxPN(k) =

1

π

∫ ∞

0

dk cos kx

N−1∏
n=0

J0(kλn), (8)

where we use the fact that PN(k) is even in k to obtain the second equality.
Each of the factors J0 in the product in equation (8) is an oscillatory function of k,

and the product itself oscillates more rapidly as the number of terms N increases. The
evaluation of integrals with such rapidly oscillating integrands has been the subject of
considerable research [17]; in particular, integrals of products of Bessel functions appear
in nuclear physics [18], quantum field theory [19], scattering theory [20], and speech
enhancement software [21]. Recently, Van Duen and Cools [14] developed an algorithm
that can numerically calculate integrals of power laws multiplied by a product of Bessel
functions of the first kind quickly and with absolute errors of the order of 10−16. We
use their algorithm to compute the probability distribution PN(x) with this degree of
accuracy. To implement their approach, we first write1

cos z =

√
π

2z

(
1√
z
J1/2(z) −√

zJ3/2(z)

)

to express the right-hand side of equation (8) in terms of products of Bessel functions
and a power law only. With this preliminary, we can directly apply the Van Duen–Cools
algorithm to determine PN(x) accurately.

1 See 10.1.1. and 10.1.11 in [16] that gives the representation of cos z in terms of Bessel functions.
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3.2. Radial distribution

For the distribution of the radial coordinate r, PN(r), we again start with the Chapman–
Kolmogorov equation [2]

PN(r) =

∫
dr′ PN−1(r

′)QN (r − r′), (9)

where QN(z) is the probability that the walk makes a vector displacement z at the Nth
step, and we use the angular symmetry of the walk to write PN as a function of only the
magnitude of the displacement. Since all angles for the Nth step are equiprobable,

QN (r) =
1

2πr
δ(λN−1 − |r|), (10)

where δ(x) is the Dirac delta function. Once again, we use the Fourier transform to reduce
the convolution in equation (9) to a product. This recursion has the solution

PN(k) = P0(k)

N−1∏
n=0

J0(kλn) =

N−1∏
n=0

J0(kλn), (11)

with the last equality appropriate for a walk that starts from the origin. While
equations (7) and (11) are identical, the corresponding distributions in real space are
distinct. To obtain PN(r), we must calculate

PN(r) =
1

(2π)2

∫
dk e−ik·rPN(k). (12)

Since PN (k) is a function of the magnitude of k only, we can write the integration in polar
coordinates and perform the angular integration to obtain the spherically symmetric result

PN(r) =
1

2π

∫ ∞

0

dk kJ0(kr)

N−1∏
n=0

J0(kλn). (13)

In this Bessel product form, we can again apply the Van Duen–Cools algorithm [14] to
invert this Fourier transform numerically.

4. The probability distributions

We numerically integrate equation (8) by the Van Duen–Cools algorithm to give the
single-coordinate probability distribution PN(x) whose evolution as a function of λ is
schematically illustrated in figure 3. Notice that there is a value λ ≈ 0.5567 for which
the curvature at the origin vanishes. However, at this value of λ the global maximum of
the P (x) is not at the origin. Thus points where P ′′(x) = 0 do not help locate the global
extrema of the probability distribution and we must resort to the numerical integration.

Since the individual step lengths decay exponentially with N , the finite-N distribution
PN(x) quickly converges to its asymptotic N → ∞ form. For example, for λ = 0.56
(close to λc(x)), the displacement of the walk after 15 steps is within 10−5 of its
final endpoint. Hence the probability distribution is visually indistinguishable from the
asymptotic distribution on the scale of the plots in figure 4. We always use values of

doi:10.1088/1742-5468/2010/01/P01006 7
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Figure 3. Schematic and not to scale form of P (x) for increasing λ near λc

(bottom to top). For λ ≈ 0.5567 < λc the curvature at the origin becomes
positive, while at λ = λc the location of the maximum in P (x) changes
discontinuously. For λ → 1, P (x) approaches a Gaussian.

Figure 4. Scaled x-coordinate distribution for the shrinking Pearson walk in two
dimensions for λ = 0.1, 0.3, 0.4, 0.5, 0.56, and 0.6 (upper left to lower right).

N for each λ to ensure that xN is within 10−5 of its final displacement. For small λ,
P (x) resembles the smile distribution of the single-step distribution in equation (5). As λ
approaches λc from below, the minimum at the origin gradually fills in and disappears for
λ ≈ 0.56. For λ > λc, the distribution develops a maximum at the origin that becomes
increasingly Gaussian in appearance as λ → 1.

Unexpectedly, P (x) has multiple tiny maxima near the origin, that are not visible
on the scale of figure 4, as λ passes through λc. The Van Duen–Cools algorithm is

doi:10.1088/1742-5468/2010/01/P01006 8
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Figure 5. The single-coordinate distribution at highly magnified scales. Top
line: Z1(x) ≡ P (x) − 0.387 for λ = 0.5565, 0.5584, and 0.5598. Bottom line:
Z2(x) ≡ P (x) − 0.387 0562 for λ = 0.5564, 0.5567, and 0.5570.

essential to obtain sufficient numerical accuracy to observe these anomalies. The top line
of figure 5 shows the quantity Z1(x) ≡ P (x) − 0.387, with the vertical scale magnified
by 103 to expose the minute variations of P (x). At this magnification, one can see
the birth of a maximum in P (x) at the origin that gradually overtakes the secondary
maxima near |x| ≈ 0.2. Consequently, the location of the global maximum of P (x) jumps
discontinuously from a non-zero value to zero at λ = λc(x) ≈ 0.558 4558 ± 0.000 0003
(as illustrated by the middle panel on the top line of figure 5, which shows P (x) for
λc − λ ∼ O(10−5)).

At a still higher resolution, the nearly flat distribution near x = 0 at magnification
103 is actually oscillatory at magnification 105 (figure 5 lower line). We see that the small
maximum that is born when λ passes through approximately 0.5565 (figure 5, upper left)
actually contains an even smaller dimple that disappears when λ � 0.5567 (middle panel
in the lower line of figure 5). To highlight this fine-scale anomaly, we plot, in the lower
line of figure 5, the quantity Z2(x) ≡ P (x) − 0.387 0562 for three λ values that are very
close to λc. Intriguingly, we do not find evidence of additional anomalous features at a
still finer scale of resolution.

We also use the Van Duen–Cools algorithm to numerically integrate equation (13) and
determine the radial distribution PN(r). For a small number of steps N , PN (r) changes
significantly with each additional step, as was illustrated in figure 2. Once the number of
steps becomes of the order of 10, however, PN(r) is very close to the asymptotic P (r) for
λ ≈ λc(r). The transition behavior in P (r) turns out to be much simpler than that for
P (x). For P (r), a peak gradually develops at the origin, while the peak r > 0 gradually
recedes as λ increases. Thus as λ passes through λc(r), the location of the global peak
of P (r) discontinuously jumps to zero (figure 6). We do not find evidence of fine-scale
anomalies in the radial distribution as λ passes through λc(r).

doi:10.1088/1742-5468/2010/01/P01006 9
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Figure 6. The radial distribution for the shrinking Pearson walk in two
dimensions for the cases λ = 0.40, 0.50, 0.53, 0.57, 0.59, and 0.66.

5. Higher dimensions

The approach developed for two dimensions can be straightforwardly extended to higher
spatial dimensions. For the radial distribution in d dimensions, the single-step distribution
QN (r) is now

QN (r) =
1

rd−1Ωd
δ(r − λN), (14)

where Ωd = 2πd/2/Γ(d/2) is the surface area of the unit hypersphere in d dimensions and
r = |r| is the radial distance. The corresponding Fourier transform is2

QN (k) = Ω−1
d

∫
dr

δ (r − λn)

rd−1
eik·r,

=
Γ (d/2)

Γ (1/2)Γ ((d − 1)/2)

∫ π

0

dθ sind−2 θeikλN cos θ = 0F 1(d/2,−k2λ2N/4), (15)

where 0F1(a, z) is the confluent hypergeometric function. The Fourier transform PN(k)
is then the product of Fourier transforms of the single-step distributions, and its Fourier
inverse gives PN(r). By integrating over the d− 2 azimuthal angles, and then integrating
over the polar angle θ, as in equation (15), the formal solution is

PN(r) =
Ωd−1

(2π)d

∫
dk kd−1PN(k)

∫ π

0

dθ sind−2 θe−ikr cos θ,

=
21−d

πd/2Γ(d/2)

∫ ∞

0

dk kd−1
0F 1(d/2,−k2r2/4)

N∏
n=0

0F 1(d/2,−k2λ2n/4). (16)

2 See 9.1.20 and 9.1.69 in [16] for the connection between the relevant Fourier integrals and the hypergeometric
function.
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Since 0F1(ν + 1,−(z/2)2) ∝ (z/2)−νJν(z) (see footnote 2), we can again numerically
determine PN(r) by using the Van Duen–Cools algorithm. The result of this calculation is
that the radial distribution undergoes a second-order transition at λc in which the location
of the single maximum continuously decreases to zero as λ increases beyond λc.

The same formal approach can be used to calculate the distribution P (x). This
distribution now remains peaked at the origin for all values of λ. The physical origin of
this property stems from the nature of the single-step distribution. The generalization of
equation (5) is

qn(x) ∝ [
λ2(n−1) − x2

](d−3)/2
.

This function is flat for d = 3 and peaked at the origin for d > 3. Consequently, the
convolution of these single-step distributions leads to PN(x) having a single peak at the
origin.

6. Discussion

We investigated the shrinking Pearson walk, where each step is in a random direction,
while the length of the nth step is λn−1, with λ < 1. Because the step lengths are
not identical, one of the defining conditions for the central limit theorem is violated.
Consequently, there is no reason to expect that the probability distribution for this walk
is Gaussian. We studied basic properties of the radial probability distribution, P (r), and
the distribution of a single coordinate, P (x). Because a walk with a large displacement in
one direction necessarily implies a small displacement in the orthogonal direction, P (r)
does not simply factorize as a product of single-coordinate distributions. The P (r) and
P (x) are distinct distributions.

In two dimensions, the radial probability distribution of the shrinking Pearson walk
changes from being peaked away from the origin to being peaked at the origin as the
shrinking factor λ increases beyond a critical value λc(r). As this transition in λ is passed,
the location of the peak changes discontinuously from a non-zero value to r = 0. In greater
than two dimensions, there is a similar shape transition in the radial distribution, but now
the location of the only peak goes to zero continuously as λ increases beyond λc(r).

The single-coordinate distribution P (x) has peculiar features for the specific case
of two dimensions. Visually, P (x) becomes nearly flat at the origin for λ ≈ 0.5565
(middle panel, bottom row of figure 4). However, at a higher degree of magnification, this
nearly flat portion of the distribution exhibits fine-scale oscillations, with up to seven local
extrema. Because additional oscillations can be resolved as the resolution is increased,
it is tempting to speculate that arbitrarily many oscillations occur at progressively
decreasing scales. To test for this possibility, we computed the first derivative P ′

N(x)
from equation (8), and looked for additional zeros in P ′

N(x) as a function of x. Again
employing the Van Duen–Cools algorithm, we find that the derivative of PN(x) is strictly
positive for x in the range 5 × 10−8–10−4 when λ = 0.556 72, but is strictly negative in
the same range of x when λ = 0.556 73. Moreover, P ′

N(x) appears to scale as x1/2 in the
range 5×10−8 < x < 10−4, so we anticipate no additional zeros for x → 0. This numerical
test suggests that there are no additional oscillations in P (x) beyond those revealed in
figure 5.
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