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Mutualistic interactions are widespread in nature, from plant communities and mi-
crobiomes to human organizations. Along with competition for resources, cooperative
interactions shape biodiversity and contribute to the robustness of complex ecosystems.
We present a stochastic neutral theory of cooperator species. Our model shares with
the classic neutral theory of biodiversity the assumption that all species are equivalent,
but crucially differs in requiring cooperation between species for replication. With
low migration, our model displays a bimodal species-abundance distribution, with
a high-abundance mode associated with a core of cooperating species. This core is
responsible for maintaining a diverse pool of long-lived species, which are present even
at very small migration rates. We derive analytical expressions of the steady-state species
abundance distribution, as well as scaling laws for diversity, number of species, and
residence times. With high migration, our model recovers the results of classic neutral
theory. We briefly discuss implications of our analysis for research on the microbiome,
synthetic biology, and the origin of life.

neutral theory | cooperation | theoretical ecology | stochastic processes | mutualism

Cooperation is ubiquitous across scales in complex systems. In ecology, cooperative
interactions shape ecosystem structures (1, 2). Within biology, mutualism (a reciprocal
form of cooperation) is the engine of evolutionary transitions (3, 4) and constitutes an
essential part of the architecture of biodiversity (5, 6). In microbiomes, cooperative inter-
actions occur through extensive cross-feeding exchanges associated with shared diffusive
metabolites (7-9), a phenomenon dubbed the “social network” of microorganisms (10).
Moreover, cooperative interactions enhance community stabilicy (11) and facilitate
metabolic functions (12). Cooperation has also been studied in human organizations, for
example, between companies engaged in jointly manufacturing a certain product (13).

Ecological theory has traditionally studied either 7) the dynamics of large randomly
assembled communities, leading to general stability—complexity principles (14, 15) or #)
the stationary properties of stochastic interactions between neutral species, inspired by
the neutral theory of biodiversity (16, 17). Stability patterns in mutualistic communities
under approach i) have been addressed using network models (18-20). The results of
these models may depend strongly on the assumptions made about different species (in
terms of size, lifestyle, or physiology) and their interactions, making it challenging to
derive general theoretical lessons.

In contrast, approach 77) assumes that all species in the system are equivalent, shifting
the focus to the effects of demographic noise as the main determinant of emerging
ecological patterns (21-25). Despite its simplicity, neutral theory successfully accounts
for many relevant statistical patterns, including abundance distributions, species—area
relations, and diversity estimates in space and time (16, 22, 26, 27). However, a neutral
theory that explicitly involves cooperative interactions is lacking, and little is known about
the impact of mutualistic exchanges under a neutral picture. For example, microbiomes
exhibit marked quantitative patterns that diverge significantly from those predicted by
classic neutral theory, such as the presence of a persistent subset of species (12, 28, 29).

In this paper, we present a neutral theory for ecosystems of cooperators. Our model
preserves the neutral hypothesis—that all species in the system follow the same replication
rules, albeit possibly with frequency-dependent replication probabilities. However, it
departs from the classic neutral theory of biodiversity by requiring cooperation between
species for replication to occur. Our model contains only two independent parameters:
the total number of individuals in the system N, typically assumed to be large, and the
migration rate g, the probability that a new species enters the system at a given time
step. One of the remarkable features of our model is the emergence of a bimodal species-
abundance distribution, characterized by a “core” of cooperator species that remain at
high abundances for much longer compared to species in the low-abundance mode. This
core leads to the maintenance of species diversity even at very small migration rates,
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where, in the absence of cooperation, the system would rapidly
fixate. In this sense, we show that cooperative interactions can
provide a powerful stabilizing effect.

We solve our model analytically and confirm the results via
extensive numerical simulations. Our analysis is split into two
main parts: First, we focus on the statistical patterns displayed
by the system’s steady state; afterward, we consider the stochastic
dynamics of abundance trajectories as species enter and leave the
system.

1. Model Setup

Our model considers a well-mixed population of NV individuals,
each labeled by a species. The configuration of the system at
a given time is represented by the abundance vector n =
(n1,m, ... ), where n; is the abundance of species i. We use
R(n) to indicate the number of nonzero elements of vector n,
i.e., the number of present species. The configuration evolves
stochastically over a sequence of discrete steps involving either a
cooperative replication or a migration event:

1) Replication with probability 1 — u, Fig. 1, Left: Two indi-
viduals are randomly chosen from the population, individual
A from species i and individual B from species j. If A and
B belong to the same species (i = j), nothing happens.
Otherwise, an individual C of species 4 is randomly selected
from the population and replaced by a new individual of
species i. The abundance vector n is updated as

(”i: ”k) — (ni + 1, n, — 1). [1]

(If i = 4, there is no change). Given our well-mixed
population, the probability that this event occurs in a given
step is

n;, N —n; ny

(1_”)NTN' (2]

In Eq. 2, the factors represent the probability that replication
takes place, A belongs to species 7, B belongs to any species
other than 7, and C belongs to species 4.

2) Migration with probability u, Fig. 1, Right: An individual A
of species 7 is randomly chosen and replaced by an individual
of a new species. The abundance vector n is updated as

(n;, ”R(n)—H) — (m;— 1, 1). [3]

This event happens with probability u(n;/N) per step.
For notational convenience, if any species becomes extinct
(n; = 0), the species are reindexed so that the first R(n)
entries of n are strictly positive.

Total population size is conserved under the above rules
(3°; mi = N), resulting in competition between species for
limited space. Also, because every migration event introduces a
new species, migration represents an inflow from an infinitely
diverse external reservoir.

In the following, we consider the stationary properties of this
stochastic process. We are particularly interested in the species
abundance distribution P, (the probability that a species has
abundance 7 in steady state) and the system’s overall diversity.
We measure diversity using the Simpson index (30), defined for
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Fig. 1. Neutral model of cooperators. The population evolves according to
two rules: (A) during replication, individuals of different species (black and
red balls) cooperate. The red individual replicates and replaces a randomly
chosen individual (blue ball). (B) during migration with probability x, an
individual from a new species (yellow ball) enters from an external pool and
substitutes a randomly chosen individual (blue ball).

abundance vector n as™

i)=Y (%)2 [4]

=

The Simpson index is the probability that two randomly chosen
individuals belong to the same species (30), and it is commonly
used in ecology as an inverse measure of diversity (31). It is
bounded as 1/R(n) < A(n) < 1, with the lower bound achieved
when the population is evenly distributed among R(n) species
(maximum diversity) and the upper bound achieved when the
population is fixated on a single species (minimum diversity).
The inverse Simpson index 1/A(n) may be interpreted as the
“effective” number of species in the system.

As shown below, our model has two different steady-state
regimes, depending on the migration rate. When migration is
high, diversity is very large (A & 0), competition for space
is strong, and the species abundance is well described by the
Fisher’s Logseries distribution. This regime reduces to the classic
neutral model of Hubbell, which does not involve cooperative
interactions (32). When migration is low, the system forms a
“core” of high-abundance species, and the species-abundance
distribution acquires a characteristic bimodal shape, shown
schematically in Fig. 2. In what follows, we will study the
emergence and nature of this core.

2. Steady-State Distribution

To derive the steady-state species abundance distribution, we
exploit the neutrality of our model, which allows us to treat all
present species as statistically equivalent. Thus, without loss of
generality, we consider species i = 1 as the representative species.

The stochastic dynamics of the abundance of the representative
species, written 7 = n, follows a birth—death process. The birth
probability (n — n+ 1 forn € {1,..., N — 1}) during a single
time step is

by =(1— y)%(l - %)2 [5]

while the death probability (n — n—1forn e {1,..., N}) is

dy= (=5 (1= )1 = (1= %) delw)] + - 16]

*The Simpson index A(n) is sometimes alternatively defined as =1 ni(nj —=1)/(N(N —
1)), i.e., as the probability of drawing two individuals of the same species when sampling
without replacement. The definition [4] corresponds to the same probability when
sampling with replacement. The two definitions differ by a small term of order 1/(N — 1),
which is irrelevant for our analysis.
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(For a detailed derivation of Egs. 5 and 6 see S/ Appendix, section
S1.) The quantity A (n) refers to the Simpson index of the other

species (i.e., excluding the representative species i = 1):

Ao(n) = (N”_ ”)2. 7]

=2

Although different species interact during replication, the
stochastic dynamics of each species depends on all others
only through a single number, A,(n). We remark that similar
coupled birth—death processes have been considered in work
on interacting particle systems and nonlinear chemical master
equations (33).

The above birth—death process is absorbing into the extinction
state 7 = 0, since any particular species will eventually go extinct.
To study the abundance of nonextinct species, we may make the
process ergodic by adding a positive birth probability 4y > 0
out of the extinction state 7 = 0. In the following, we focus
on the steady-state distribution restricted to positive abundances
n € {1,2,...}, which does not depend on the choice of &y.

We now find the steady-state species abundance distribution
P, of the representative species. Since births and deaths must
balance in steady state, P,b, = Pyq1dyt1forn e {1,..., N—1},
we have

n—1
b
P, || —=-. (8]
,}:[1 dpt1

This is not yet a closed equation because the death probability [6]
depends on the fluctuating quantity Ao(n), i.e., the Simpson
index of the nonrepresentative species. However, when the
number of species is large, 4o(n) ~ A(n). Furthermore, due to
self-averaging, A(n) is tightly peaked around its expected steady-
state value,

Ao(n) = A* := (A(n)), [9]

where (-) indicates steady-state expectations over the entire
population. Plugging [9] into [6] and using [8], we find
that under reasonable assumptions, the steady-state abundance
distribution is approximated as

(1 —n#) (=N 2N [10]

P, x

(See SI Appendix, section S2 for a detailed derivation.) We also
analyze the approximation Eq. 9 and show that it becomes exact
in the limit of large V.

Eq. 10 is one of our main results, showing how the abundance
distribution depends on the population size N, migration rate
#, and the steady-state Simpson index A*. In reality, A* itself
depends on N and p—the only two parameters that describe
the system—although finding the explicit expression of A* in
terms of N and u is not trivial (we will do so in the next
section). For now, we note that the Simpson index A* and the
migration probability 4 move in opposite directions. When u
decreases to 0 (migration vanishes), 4* increases to 1 (fixation
is reached). Conversely, when y increases to 1 (only migration
occurs), A* decreases to its minimum value of 1//V (maximum
diversity).

Observe that Eq. 10 expresses P, as the product of two distribu-
tions, as illustrated in Fig. 2. The first is the Loggseries distribution,
(1 — )" /n, the abundance distribution of Hubbell’s neutral
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Steady-state distribution

P, o ef(n—NA*)Z/ZN

Logseries term

Gaussian term

Probability

l
/2% NA* = 1/)*

Species abundance n

Fig. 2. Schematic illustration of the species abundance distribution P, in
steady state. This distribution depends on population size N, migration rate
u, and the steady-state Simpson index 4*. In Eq. 10, it is approximated as
the product of Logseries distribution, arising from competition for space,
and a Gaussian distribution, arising from cooperative interactions. At low
migration, the combined distribution exhibits a bimodal shape, with local
maxima at n = 1,n = NiA* — 1/4* and a local minimum at n = 1/1*, see
Eq. 15. Note that the two terms combine multiplicatively, not additively, so
their areas do not add up to the area of the combined distribution.

model, which does not have cooperative interactions (34). This
contribution represents migration-driven competition for space,
and it dominates the system at high migration rates. The second

is a Gaussian distribution, e_(”_N’l*)z/zN, with mean abun-
dance NA* and SD +/N. This contribution represents a high-
abundance mode that emerges due to cooperative interactions.
We term this contribution the “cooperator core.”

The emergence of the cooperator core is a highly nontrivial
phenomenon, and it implies various other interesting aspects of
this model (maintenance of high diversity at low migration, long
residence times, etc.). In simple terms, the cooperator core arises
due to the frequency-dependent (i.e., abundance-dependent)
replication rates. Individuals from low-abundance species are
unlikely to be randomly paired with an individual from the
same species, thus they have a high per-capita probability of
replicating. Conversely, individuals from high-abundance species
are more likely to be randomly paired with an individual from
the same species, thus they have a lower per-capita replication
probability. As a result, species feel an effective force toward
an intermediate abundance at » &~ N 4*, leading to a bimodal
abundance distribution as in Fig. 2.

Importantly, the cooperator core only emerges at low mi-
gration rates. At high migration, when p is large and A* is
low, most species exhibit low abundances near » ~ 1. In this
regime, there is very little variation in species abundances, so
the frequency dependence of the replication rates is negligible,
and our system approaches Hubbell’s neutral model. We also
remark that bimodality requires that the mean of the Gaussian
contribution (IVA*) be many SDs (V/N) away from the origin
or, in other words, that 4* > 1/+/N. Clearly, this cannot
occur at very high migration probability, since A* decreases to its
minimum value of 1//N as y increases to 1. In the next section,
we will derive the explicit migration probability y that allows for

bimodality.
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Fig. 3. Scaling of Simpson index and species abundance distributions. (4) Scaling of Simpson index versus migration probability x in a system with N = 10°
individuals. We compare mean and SDs from simulations of the full system (100 runs; black), numerical inversion of Eq. 12 (red), approximations in low
migration [13] (blue) and high migration [18] (orange) regimes. The solid vertical line indicates ug [16] where bimodality is lost; the dotted vertical line
indicates y; [17] where system transitions to Logseries regime. (B-D) Empirical histograms from simulations (across 1,000 runs) versus predicted steady-state
distributions [10] for three migration probabilities. As in Fig. 2, shaded areas represent Logseries (orange) and Gaussian (blue) contributions. (B) Low-migration
regime exhibits a bimodal distribution with a cooperator core. (C) Bimodality disappears once migration probability increases beyond ug (Eq. 16). (D) At higher
migration probabilities, including the Logseries transition point where y; = A* [17], the distribution approaches the Logseries, as predicted by Hubbell's neutral

theory.

3. Steady-State Properties

In this section, we derive several important properties of the
steady-state species abundance distribution and the cooperator
core. In particular, we derive expressions of the steady-state
Simpson index, the characteristic migration probability yp below
which the formation of the cooperator core takes place, and the
expected number of species in steady state. Most of our analyses
will consider separately the case of low migration (when the
core is present) and high migration. Fig. 3 illustrates our results,
including the scaling of A* with the migration probability y and
a plot of three steady-state distributions.

3.1. Steady-State Simpson Index. In this section, we find the
Simpson index as a function of ¢ and N. We begin by writing
A* in terms of the species abundance distribution P, as

1~ IZ*IP”

[11]
N YV P

This expression (derived in S7 Appendix, section S3) implies that
the expected Simpson index is proportional to the ratio of the
second and first moments of P,. Since P, itself depends on A*, we
must solve Eq. 11 using self-consistency. We do this separately
in the low-migration and the high-migration regimes. We also
consider several important transition points.

3.1.1. Low migration. In the low-migration regime, we may
approximate the two sums in Eq. 11 by integrals (SI Appendix,
section S3). This leads to the equation

1 [aN |N
- = ”—erfcx —(u =215, [12]
u 2 2

where erfcx(z) = & erfc(z) = & J4/x e 4t is the
scaled complementary error functlon (35). Although the function
erfcx(z) does not have a closed-form inverse, it has an efficient
numerical implementation (36) that allows us to quickly com-
pute A* using numerical root-finding algorithms. The scaling
predicted by solving this equation for fixed NV and varying u is
shown as a red curve in Fig. 3A4.

A closed-form approximation is possible for sufficiently small

u. For y — A* <« 0, we may use erfcx(z) ~ 26" for z — —o0.

40f 9 https://doi.org/10.1073/pnas.2515423122

Plugging into Eq. 12 and solving gives

—1In (22N u?) —In (22N u?)
A~ ~ . 1
HE N N 13l

Note that this approximation is only defined for y < 1/4/2zN,
so that the argument of the square root is nonnegative.

Eq. 13 implies that, in the low-migration regime, the Simpson
index scales as ~ 1/4/N in population size and as ~ /—In p
in the migration probability. The scaling predicted by Eq. 13
is shown as a blue curve in Fig. 34. The predicted abundance
distribution is compared against simulations in Fig. 3B.

Interestingly, an expression similar to Eq. 12 has previously

appeared in a different ecological model, which considers a
population embedded in a fluctuating spatiotemporal fitness
landscape (37, Appendix C).
3.1.2. Bimodality point. We now find the migration probability
below which the species abundance distribution becomes bi-
modal. To do so, we consider P,, [10] as a differentiable function
of n and find the critical abundances 7 where its derivative
vanishes. With some algebra, these are found to be

~ N
n:?[/l —Hn(l—M)j:\/(i*-l-ln(l—M))2—4/N].4
(14]

We simplify by expanding around large NV and small y to express
the two critical abundances as

~ 1
Nmin & - and i & NA* — TS [15]
shown as the local minimum and local maximum in Fig. 2. These
two points become distinct when

—2
/1*>—

and u < up:= ,
«/_ V2N

where pp is found by plugging A* = 2/+/N into Eq. 13 and
solving. Thus, pp is the migration probability below which we
see the formation of a bimodal abundance distribution.

(16]
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3.1.3. Logseries onset. Another interesting value for the migra-
tion probability separates the cooperation- from the migration-
dominated regimes. As we increase y toward 1, the abundance
distribution becomes dominated by the Logseries term, recov-
ering the distribution predicted by Hubbell’s neutral theory of
biodiversity.

To identify this transition point, we consider the migration
rate at which y becomes larger than A*. Plugging 4 — A* = 0
into Eq. 12 and using erfcx(0) = 1 specifies this point as

2
Uy : Na [17]
3.1.4. High migration. As mentioned above, when y is large, the
abundance distribution approaches that of Hubbell’s neutral
model. To estimate the steady-state Simpson index A* in this
regime, observe that the term (1 — 4#)” in Eq. 10 imposes an
exponential cutoff on abundances » > 1/u. Considering the
regime y > py from Eq. 17, we may restrict our attention
ton < 1/u < /Nxn/2 and A* < u. For these values,
the Gaussian term can be approximated as a constant factor,
e~ (mNEV N o~ =NA?2 e reevaluate A* [11] using the

Logseries distribution P, o (1 — p)”/n and large N, giving

A L [18]

Nu

Thus, with high migration, the Simpson index scales as 4* ~
N~1in population size and A* ~ ™! in migration probability.
This scaling is shown with the orange curve in Fig. 34.

In fact, the high-migration expression [18] can be derived from
Eq. 12 (as shown in 87 Appendix, section S3B). This is surprising
because Eq. 12 was derived under the assumption of y < A*.
Empirically, we found that the value of 4* given by the numerical
solution to Eq. 12 provides an excellent match to 4* calculated
from simulations, even for large migration probabilities (see

Fig. 34, red curve).

3.2. Steady-State Number of Species. As another important
measure of diversity, we consider the expected number of
different species in steady state:

R* := (R(n)). [19]

The expected steady-state abundance of the representative species
obeys >, P,n = N/R*, therefore the number of species can be
found as

B N
N Z”Pnn.

With high migration, R* can be estimated by evaluating
the denominator of Eq. 20. We may ignore the Gaussian
contribution in Eq. 10, since the most relevant contribution
to Eq. 10 is the Logseries distribution. For large N, the
normalization constant of the Logseries term is — In p, thus we
compute

R [20]

Zl’”n%_ll Z(l—,u)”%l_—u. [21]

nu - —plnp

Substituting back into Eq. 20 gives

o o o unN
R~ RLogseries T Inp, [22]
U
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Migration probability

Fig. 4. Scaling of number of species R* versus migration probability u (N =
10°). We compare mean and SDs from simulations of the full system (100
runs; black); approximations in the low-migration regime of the number of
total species (red), core species [24] (blue), and noncore species [25] (orange);
approximations in the high-migration regime of the total number of species
(purple). The solid vertical line indicates ug [16] where bimodality is lost; the
dotted vertical line indicates u; [17] where system transitions to Logseries
regime.

shown in purple in Fig. 4. As expected, in the limit of 4 — 1,

Logseries N. This indicates that if only migration occurs

(with no replication taking place), then the system acquires the
maximum number of species with each of the N individuals
belonging to a different species.

In the low-migration regime, below the point of bimodal-
ity [16], there are two relevant species counts. The first is
R% .o the number of high-abundance species that belong to the
cooperator core. We define these species as those with abundances
larger than the local minimum, 7z > 1/4*, see Fig. 2. The second
is R} 4> the number of low-abundance species that remain outside
of the cooperator core and have abundance # < 1/4*. The total
number of species is given by

R* ~ R:ore + R:ut‘ [23]

Let us introduce Negre and Nyyt as the total number of
individuals inside and outside the core, respectively, where
Neore + Nout = IN. We also denote by (n)core and (n)out
the expected abundances of a species conditioned to be inside
and outside the core, respectively. To estimate R}, ., we use the
relation RY,,. = Ncore/{#)core- To a first approximation, we
may take Ncore & IV, i.e., in the low-migration regime, most
individuals belong to the core (SI Appendix, section S4). Then,

using (% ) from [15], we obtain
g( )core max

1
Réore ™ A — (N5 [24]
shown in blue in Fig. 4. Similarly, we estimate K} by using
R% .« = Nout/(n)out. We may estimate this ratio as (S/ Appendix,
section S4):

it X —Npln A%, [25]

shown in orange in Fig. 4. The red curve shows the total number
of species R* =~ R¥ .. + R} . Observe that at low migration rate

u, almost all species belong to the core.

https://doi.org/10.1073/pnas.2515423122
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Fig. 5. Abundance trajectories from entry to extinction, illustrating that
species that enter the dynamical core reside for much longer times. We
sample two abundance trajectories from the stationary process (N = 10>,
u = 1073), one for a species that enters the dynamical core and one for a
species that does not. The dashed gray line indicates the abundance position
of the local minimum discussed in Section 4.1, stars indicate maximum
abundances reached.

4. Dynamical Properties

We now study the stochastic dynamics of our model by
considering trajectories of species as they enter and leave the
population. We focus mainly on the low-migration regime, where
cooperation plays an important role.

The dynamics of any given species is described by a trajectory
of nonnegative abundance values 7(¢), starting from n(zy) = 1
when that species enters the population at time # = # and ending
on n(tr) = 0 when that species goes extinct at time ¢ = #.
We characterize each trajectory by two statistics: the maximum
abundance reached, maXy:q <r<y n(t), and the residence time
before extinction, tr —1o.

For concreteness, we illustrate two typical abundance trajecto-
ries in Fig. 5. We see that the blue trajectory resides in the system
for a very long time and reaches a high maximum abundance
value, while the orange trajectory does not reach a high abundance
and quickly goes extinct.

In fact, simulations show that all trajectories cluster into two
well-defined classes: one with long residence times and high
abundances, which we term the “dynamical core,” and one with
short residence times and low abundances. To illustrate this,
Fig. 6 shows a scatter plot of the maximum abundances and
residence times of 10® randomly sampled species. Species that fall
into the dynamical core (70p Right cluster) tend to have residence
times orders of magnitude larger than those that do not enter
the dynamical core. Moreover, the distribution of maximum
abundances has a clear bimodal shape (/user), allowing us to
define a quantitative threshold for classifying species as belonging
to the dynamical core.

In the following, we derive the distribution of maximum
abundances, shown in red in Fig. 6. We then use this distribution
to define the abundance threshold for the dynamical core. We
also derive the mean residence times of species that belong and
do not belong to the dynamical core.

4.1. Maximum Abundances. Let Q,, indicate the probability that
a typical species trajectory reaches a maximum abundance 7. To
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find the form of Q,,, it will be helpful to introduce the quantity
u,(£) to represent the probability that a species with abundance
n reaches abundance £ or higher before going extinct. Q,, and
1, (£) are related by

Qn=um(m) —u(m+1). [26]

In other words, Q,, is equal to the probability that a species
that enters the system at abundance 7 = 1 eventually reaches
abundance m but not abundance 7 + 1.

Importantly, the birth—death process defined by Egs. 5 and 6,
u,(£) obeys the following recurrence:

1y (L) = bytty1(€) + dyty—1(£) + (1 — by, — dy)u, (£).
(27]

The boundary conditions are #(£) = 0 (extinct species never
come back into the system) and #;(£) = 1. A general solution to
the recurrence [27] can be derived (for details, see ST Appendix,
section S5). Then, we may approximate #; (£), the quantity that
enters into Eq. 26, as

1
u (£) ~ ,
O N e (AN ) + 1) = VAN D) +
(28]
where we introduce the rescaled abundances x; := (£ —

NA*)/+/2N and the Dawson function Z(z) := o I ¢ dr.
Plugging this result into Eq. 26 gives the probability Q,, that
a species reaches maximum abundance 7. The predicted and
simulated distributions of maximum abundances are shown in
Fig. 6, Inset. In addition, the distribution Q,, is bimodal, with
a local minimum located at approximately NA* (S Appendix,
section S5). This bimodality allows us to classify species into two
sets: those whose abundances reach NA* (or higher) and those
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Fig. 6. Species residence times and maximum abundances for 106 species
sampled from stationary dynamics (N = 103, » = 10~2). The species fall into
two clusters: one with long residence times and high maximum abundances,
the dynamical core, and one with short residence times and low maximum
abundances. The residence times and maximum abundances of the two
trajectories from Fig. 5 are indicated with star symbols. Horizontal lines
indicate predicted (solid) and simulated (dashed) mean residence times of
species in the dynamical core (blue) and outside of the dynamical core
(orange). Inset: the simulated histogram (black) and prediction (red, from
Egs. 26 and 28) of maximum abundances distribution Qm. The distribution
has a bimodal shape, with the dividing point located near abundance Ni*
(dashed vertical line in main plot and Inset).
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that do not. We refer to the former as the dynamical core. For
example, Fig. 5 shows a blue trajectory that reaches abundance
values larger than NA* (dashed line) and thus belongs to the
dynamical core, while the orange trajectory does not reach this
threshold and thus remains outside the dynamical core.

Finally, we use the term “infiltration probability” f to refer
to the probability that a new species will enter the dynamical
core. Interestingly, this probability is approximately equal to the
Simpson index (as shown in S/ Appendix, section S5),

B~ A%, [29]

suggesting that new species are less likely to enter the dynamical
core in more diverse populations.

4.2. Residence Times. We now derive the mean residence times
by separately considering species that enter the dynamical core
(Tcore), that do not enter the dynamical core (7out), and all
species (7). For simplicity, we will also use our calculations of
the expected number of all present species R* [22] and [23], core
species RY, . [24], and noncore species Ry [25].

Here, there is a subtle point to be raised. Our calculations
of R, and R}, were based on a “static” definition of the
core, as the set of species that have abundance greater or smaller
than 1/4* at a single point in time. This is different from the
“dynamic” definition of the core considered in this section, as
the set of species whose trajectory reaches an abundance greater
than VA* at any point in time. The mean residence times can
be alternatively derived using a mean first-passage time (MFPT)
calculation that does not explicitly invoke Eqs. 22-25 (see full
derivation in SI Appendix, section S6). This alternative MFPT-
based analysis, which we do not include here for simplicity,
leads to the same quantitative results. This suggests that the two
definitions of the core are essentially equivalent when restricted
to the set of species present in steady state.

We now consider the low-migration regime, and derive the
mean residence times of species that enter the core, Tcore, and
those that do not enter the core, Tout. The rate at which
new species migrate into the system and eventually enter the
dynamical core is given by uf. On the other hand, the rate at
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which core species go extinct is R}, o/Tcore; Where R, is the

expected number of species in the core atany one time. Since these
s _ px

rates must balance in steady state, we have uf = RY,,./7core-

Using Eqgs. 24 and 29, we arrive at

1
oA — (N

(30]

Tcore

Similarly, for species that never reach the core, entry rates must
be balanced against extinction rates as (1 — f) = R,/ Tout-
Using Eqs. 25 and 29, this gives

Tout ¥ =1 nA [31]
We estimate the overall mean residence time by combining
these results with the infiltration probability as

T X PTeore + (1 - ﬁ)Tout- [32]

These predictions are compared against simulated data in Fig. 6
(solid and dotted horizontal lines).

The scaling of mean residence times against migration proba-
bility u is shown in Fig. 7. For low migration probabilities, core
species live orders of magnitude longer than species that do not
enter the core.

Our analysis above has mostly focused on the low-migration
regime, in which the distinction between core and noncore species
is meaningful. In the high-migration regime, we consider the
mean residence time of all species 7. In steady state, entry and exit
rates of all species into the system must be balanced, y = R*/7.
Using our estimate of R* [22] gives

-N
L—u

TR

In p. [33]

5. Discussion

In this paper, we introduced a neutral model for cooperative
ecosystems, deliberately choosing the simplest set of rules
consistent with cooperative interactions. This minimalist design,
inspired by the neutral theory of biodiversity (32), allows a
full analytical treatment while capturing the essential features of
cooperative dynamics. Our analysis addresses both steady-state
behavior and the dynamical properties of the system, providing
a baseline for future comparisons with more complex models.
It also complements existing models of cooperation, such as
mutualistic voter models (38), where agents adopt neighbor states
with a bias toward cooperation, or mutualistic Lotka—Volterra
systems (39), where species benefit each other’s growth.

In the first part, we derived an expression for the steady-
state Simpson diversity index, which allowed us to classify
the system into different regimes depending on the migration
probability. At high migration rates, species abundances are very
low and frequency-dependent effects become negligible. In this
regime, we recover the predictions of Hubbell’s neutral theory of
biodiversity, including a Logseries species abundance distribution
in steady state. In contrast, at low migration rates, our model
exhibits frequency-dependent reproduction rates that result from
cooperative interactions. In this regime, our model predicts the
emergence of a bimodal abundance distribution (Fig. 2), which
cannot be derived from the classic neutral theory.

Bimodality allows us to define a core of cooperators, defined as
the set of species that belong to the high-abundance component.

https://doi.org/10.1073/pnas.2515423122
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We derive scaling laws for the core, showing that the effective
number of species scales roughly as N'/? with population size
and (—Inu)~"/? with migration rate. Due to the presence
of the core, the system preserves diversity (maintains low A*)
even at exponentially small migration rates. Hence, cooperative
interactions can dramatically increase ecosystem stability.

Several studies have reported bimodal abundance distributions
in gut microbiomes; see, for example, refs. 40, figure 1 and 41,
figure 2. Previous research has attributed bimodality to emergent
niche partitioning (42), intrinsic bistability (43), or a combina-
tion of multiple processes (41). However, our theory suggests a
neutral mechanism that generates bimodality under very minimal
assumptions, offering a unique explanation of this phenomenon.

In the second part of our paper, we studied the stochastic
dynamics of species as they enter and leave the system. In the
low-migration regime, the distribution of maximum abundances
again exhibits a bimodal shape, allowing us to classify species into
two types. This classification captures the dynamical signature of
the cooperator core, as discussed in the steady-state analysis in
the first part of this paper. We showed that species that enter the
core achieve much higher abundances and longer residence times
than species that do not enter the core.

It is worth noting that other models involving higher-
order interactions have been proposed and investigated in
various contexts. For example, Hinrichsen (44) investigated
the universality class of the pair contact process 24 — 34,
2A — 0 with diffusion and suggested that this model does
not belong to the directed percolation universality class. In
ref. 45, the authors studied a quadratic contact process and
determined a bound on the critical value of the infection rate,
while in refs. 46 and 47, the authors introduced general higher-
order social contagion models and showed that these higher-
order interactions fundamentally change the nature of the phase
transition to a contagion phase. Although these models are
related to ours in their use of higher-order interactions, they
do not capture key features of our system, such as the bimodal
species abundance distribution and the emergence of a cooperator
core. Moreover, other similarities can be found when comparing
our work with a recent Generalized Lotka—Volterra model with
annealed disorder, which shows how temporal fluctuations in
interactions act as effective environmental noise, promoting
diversity (48). Though based on different mechanisms, both
highlight how nonequilibrium stochastic dynamics can generate
high diversity and bimodal species abundance patterns.

In future work, it may be possible to generalize the method
developed in this paper to other models of neutral cooperators,
including three-way generalizations of our pairwise cooperation
rule as well as other models considered in the literature. For
a general neutral model, one may describe the abundance
fluctuations of a “representative species” using a nonlinear birth—
death master equation (33), with transition rates encoding mean-
field effects of the rest of the population. Steady-state properties
can then be identified by solving with self-consistency, in a similar
way as done in this study.

Another promising direction to explore is the use of spa-
tially extended models, which can offer additional insights
into the effects of local interactions. This approach has also
been extensively developed within the framework of neutral

1. J. L Bronstein, Mutualism (Oxford University Press, 2015).

2. E.G.LeighJr., The evolution of mutualism. J. Evol. Biol. 23, 2507-2528
(2010).

3. F.Lutzoni, M. Pagel, Accelerated evolution as a consequence of transitions to mutualism. Proc. Natl.
Acad. Sci. U.S.A. 94, 11422-11427 (1997).
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theory (25, 32, 49), where it has enabled the study of the dynamics
of metacommunities. In our cooperative context, spatial structure
would introduce correlations between neighboring organisms,
effectively reducing the reproduction rate of existing species. We
anticipate that this rate would scale with the surface area that
separates a given species from its neighbors. Consequently, less
frequent species—having a higher surface-area-to-volume ratio—
would gain a relative advantage over more common species,
which have a lower ratio. As a result, we expect that the mean
abundance of the dominant core species would decrease in
spatially structured environments.

Experimental validation of our predictions could be achieved
using engineered microbial consortia. For instance, a synthetic
community could be constructed in which each strain lacks
the ability to synthesize a single essential metabolite but can
obtain it through cross-feeding with the others. Such syntrophic
systems have been successfully engineered, ranging from two-
species (50, 51) to multispecies communities (52). This approach
would allow us to test our theoretical predictions under relaxed
connectivity constraints, extending beyond the fully cooperative
scenario assumed here. Minimal genetic modifications could be
introduced into a single model organism (such as E. coli) to
generate multiple auxotrophic variants that remain metabolically
and physiologically equivalent, thus approximating a neutral
interaction regime. By labeling some of these variants with a
distinct fluorescent reporter, one could perform time-resolved
sampling and quantify strain-specific abundance distributions
using flow cytometry.

Further extensions of the theory should consider the het-
erogeneity of interactions, complex network topologies, and
spatial effects. Another interesting direction would be to build
a connection to the theory of autocatalytic chemical reaction
networks, as studied in research on the origin of life. In particular,
our approach is related to the “hypercycle” (53-56), a proposed
model of collective chemical replication. In this model, a directed
network of chemical species (X;) cross-catalyze the replication of
other species (X; + X; — X; + X; + X; for neighbors 7 — ).
This reaction scheme is equivalent to our replication rule, Fig. 1,
therefore our model can be interpreted as a (stochastic) hypercycle
on a fully connected network. In this context, our analysis could
shed light on the emergence of cross-catalytic cores in replicating
chemical systems.
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