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Nonuniversal opinion dynamics driven by opposing external influences
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We study the opinion dynamics of a generalized voter model in which N voters are additionally influenced
by two opposing news sources whose effect is to promote political polarization. As the influence of these
news sources is increased, the mean time to reach consensus scales nonuniversally as Nα . The parameter α

quantifies the influence of the news sources and increases without bound as the news sources become increasingly
influential. The time to reach a politically polarized state, in which roughly equal fractions of the populations are
in each opinion state, is generally short, and the steady-state opinion distribution exhibits a transition from near
consensus to a politically polarized state as a function of α.
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A disheartening feature of current social discourse is its
high degree of political polarization, particularly in the US
and Europe (see, e.g., [1–7]). In recent decades, this polar-
ization has increased to the point where, for example, parents
affiliated with one US political party are loathe to have their
children wed someone affiliated with the other major party [8].
We have no illusions of being able to explain the societal
forces that have led to such polarization. To understand
this phenomenon would require characterizing the decision-
making processes of each individual, the pattern of social
connections, and the role of external influences. However,
such an engineering approach has little chance of revealing
the mechanisms that underlie potential new dynamics.

To help unravel the governing features of social polariza-
tion, we introduce a simple two-state voterlike [9–13] opinion
formation model that is augmented by the presence of two
competing news sources (Fig. 1). The latter accounts for the
tendencies of consumers to consult sources that align with
their political persuasion, and that some news sources promul-
gate fixed political viewpoints [14–16] (“zealots” in a voter
model framework [17–20]). While many variants of the voter
model—inspired by real decision making—have been investi-
gated (see, e.g., [21–32]), the role of external influences, such
as news media, has only recently been considered [33–35].

In this work, we show that the influence of news sources
significantly hinders the approach to consensus, but in an
unexpected no-universal way. We also introduce the notion
of the polarization time, namely, the time required to reach a
politically polarized state, in which there are equal fractions
of the population in each opinion state, from any initial condi-
tion. This polarization time offers a useful way to characterize
the opinion dynamics of social systems. A crucial ingredient
in our modeling is that we drastically idealize the underlying
social networks. We anticipate that simulations of our model
on more realistic networks would reveal phenomenology sim-
ilar to what we find analytically. However, such an approach
would provide little understanding of the mechanisms that
lead to the slow consensus or the nonuniversal properties that
we find.

In our model, each individual has two possible opinion
states, denoted as + and −. Individual opinions are updated

according to voter model dynamics: a randomly selected voter
adopts the opinion of a randomly selected neighbor. This
update step is repeated ad infinitum. We account for the
different propensities of news media and neighboring voters
to influence a given voter as follows: for a voter linked to
one news source and k other voters, the news source is picked
with probability p/R and a neighboring voter is picked with
probability (1 − p)k/R, where R = p + k(1 − p) is the total
rate of picking any neighbor. The parameter p thus quantifies
the relative influence of a news source and a neighboring
voter. [If a voter is connected to both news sources, then
R = 2p + k(1 − p).] Once an interaction partner is selected,
the voter adopts the opinion of this partner.

For simplicity and analytical tractability, we treat two types
of social networks (Fig. 1): (a) A complete graph of N voters,
with L+ (L−) connections between voters and the + (−) news
source; the news sources connect either to random voters or to
disjoint voters. (b) More realistically, a two-clique graph with
N voters in each clique, with L+ connections between the +
news source and random voters on clique C+ (and correspond-
ingly for C−), and L0 = Nβ links between nodes in different
cliques. In both cases, 0 < L± � N , with corresponding link
densities �± = L±/N .

We focus on four characteristics of the collective opinion
state: (i) the consensus time Tcon, defined as the average
time to reach either + or − unanimity; (ii) the polarization
time Tpol, defined as the average time to go from a state
with unequal fractions of + and − voters to the politically
polarized state with equal fractions of + and − voters; (iii)
the exit probability, defined as the probability to eventually
reach + consensus when the initial density of + voters equals
x, and (iv) the steady-state opinion distribution.

Our main results are as follows: (i) Tcon typically grows
algebraically with N , with a nonuniversal exponent that can
be arbitrarily large. Based on an annealed-link approximation
(see below), we find, for the complete graph,

Tcon ∼
⎧⎨
⎩

N, 0 � α < 1
N ln N, α = 1
Nα, α > 1,

(1a)
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FIG. 1. Two opposing news sources (squares) that influence vot-
ers (circles) on (a) a complete graph, or (b) a two-clique graph. The
news sources have L± links to individuals. For the two-clique graph,
there are L0 = Nβ interclique links.

where α = min(α+, α−) and α± = p�±/(1 − p). For voters
on the two-clique graph, in which the news sources have equal
link densities (�+ = �− ≡ �) and the cliques are sparsely
interconnected (β < 1),

Tcon ∼
⎧⎨
⎩

N2−β, 0 � α < 1
N2−β ln N, α = 1
Nα+1−β, α > 1.

(1b)

For p → 1, i.e., influential news sources, the exponent of
the consensus time becomes arbitrarily large. That is, compet-
ing and well-connected news sources hinder the approach to
consensus. Our results for Tcon for p → 0 on the two-clique
graph are consistent with a previous study of the voter model
on this graph [36].

(ii) When the two news sources are equally connected to
the population, the polarization time Tpol scales as

Tpol ∼ N

α
. (2)

Hence, political polarization occurs quickly (i.e., linearly
with N) when voters are well connected to competing
news sources. (iii) The exit probability has an antisigmoidal
shape (Fig. 2) because the competing news sources tend
to drive the population to a politically polarized state. (iv)
For the complete and the two-clique graphs, the opinion
distribution undergoes a transition from a homogeneous to a

FIG. 2. Exit probability versus initial fraction of + voters for the
complete graph of 128 voters. The solid curves represent Eq. (12) and
symbols give simulation results from 104 realizations. For α = 1, we
choose � = 1 and p = 1/2, while for α = 2 we choose � = 1 and
p = 2/3.

polarized state as the influences of news sources become
stronger.

We now outline the calculations that underlie our results; a
closely related approach is given in Ref. [37]. Suppose that
we know r±(x), the rates for x, the fraction of voters with
+ opinion, to change by ± 1

N ≡ ±δx. Let P(x, t )δx be the
probability that the fraction of + voters lies between x and
x + δx. The Fokker-Planck equation for P is

∂P

∂t
= LP, L = − ∂

∂x
V (x) + ∂2

∂x2
D(x), (3)

with drift velocity V (x) = [r+(x) − r−(x)]δx and diffusion
coefficient D(x) = [r+(x) + r−(x)]δx2/2. We can view the
instantaneous opinion x as undergoing biased diffusion in the
interval [0,1] in the presence of the effective potential

φ(x) = −
∫ x V (x′)

D(x′)
dx′. (4)

The exit probability E+(x) satisfies the backward equation
L†E+(x) = 0 [38–40], where the adjoint operator is

L† ≡ V (x)
∂

∂x
+ D(x)

∂2

∂x2
, (5)

subject to the boundary conditions E+(0) = 0, E+(1) = 1.
The formal solution for E+(x) is

E+(x) =
∫ x

0 exp[φ(x′)]dx′
∫ 1

0 exp[φ(x′)]dx′
. (6)

Similarly, the consensus and polarization times satisfy
the backward equation L†T (x) = −1 [38–40]. The boundary
conditions for Tcon are T (0) = T (1) = 0, while the boundary
conditions for Tpol are ∂T

∂x |x=0 = 0 and T ( 1
2 ) = 0. The formal

solutions are [41]

Tcon(x) = E+(x)I (x, 1) − [1 − E+(x)]I (0, x),

Tpol(x) = I (x, 1/2),
(7)

where I (a, b) = ∫ b
a dx′ ∫ x′

0 dx′′ exp[φ(x′) − φ(x′′)]/D(x′′).
We now apply an annealed-link approximation to this

formalism to determine E+(x), Tcon, and Tpol for voters on
the complete and on the two-clique graphs (Fig. 1). In this
approximation, we replace the true transition rates for each
voter on a given fixed-link network realization by the average
transition rate, in which a link is present with probability
proportional to its density.

Complete graph. By straightforward enumeration of all
relevant events, the transition rates r±(x) for voters on the
complete graph are [41]

r+(x) = 1
2 NAx(1 − x) + B+(1 − x),

r−(x) = 1
2 NAx(1 − x) + B−x.

(8)

The first term in r± accounts for a voter that adopts the
opinion of a neighboring voter and the second term accounts
for adopting the opinion of the news source. The coefficients
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A and B± are

A = (1−�+)(1−�−)

1−(1/N )
+ (1 − p)(�+ + �− − 2�+�−)

(1 − p) + (2p − 1)/N

+ (1 − p)�+�−
(1 − p) + (3p − 1)/N

, (9a)

B± = p�±
2

[
1−�∓

(1−p)+(2p−1)/N
+ �∓

(1−p)+(3p−1)/N

]
.

(9b)

Using (8) and (9) in the definitions of V (x) and D(x), their
ratio is

V (x)

D(x)
= 2

[
B+(1 − x) − B−x

]
Ax(1 − x) + (1/N )

[
B+(1 − x) + B−x

] . (10)

Importantly, V/D is of order 1, except when x is of order
1
N from the boundaries at 0 and 1. Within these boundary
layers, the second term in the denominator of V/D ensures
its finiteness even when x = 0, 1. Considerable simplification
arises by excluding these thin boundary layers and conse-
quently dropping this second term. This approximation has
a vanishingly small effect on the consensus time for large N .
We find the positions of the resulting slightly smaller interval
[a−, 1 − a+] by equating the two terms of the denominator of
V/D. This gives a± = B∓/AN . In this truncated interval, we
may drop the term of order 1

N in (10) and thereby find that the
effective potential (4) has the logarithmic form

φ(x) = − ln[xα+ (1 − x)α− ], (11)

where α± = 2B±/A. We can also explicitly evaluate the in-
tegrals in Eqs. (6) and (7) for specific values of α±. For
simplicity, we specialize to the symmetric case of equally
connected news sources (α+ = α− = α) so that a+ = a− ≡
a = α/(2N ). Performing the integral in Eq. (4) when the 1

N
term in V/D in Eq. (10), is dropped, the exit probabilities for
α = 1 and α = 2 are (Fig. 2)

E+(x) = 1

2

[
1 − Gα (x)

Gα (a)

]
, (12)

where

G1(x) = ln(x−1 − 1),

G2(x) = x−1 − (1 − x)−1 + ln(x−1 − 1)2.

The antisigmoidal shape of E+(x) arises because the effective
potential (11) tends to drive the population to the politically
polarized state of x = 1

2 .
Using the same approximation in the first of Eqs. (7), the

consensus time is

Tcon(x) = N[Hα (a) − Hα (x)], (13)

where, for simple rational values of α, Hα is

H1/2(x) = −4 sin−1√x sin−1
√

1 − x,

H1(x) = − ln[x(1 − x)],

H3/2(x) = (x− 1
2 )[sin−1√x−sin−1

√
1−x]/

√
x(1−x),

H2(x) = 1
6 {x−1(1 − x)−1 − 2 ln[x(1 − x)]},

which lead to the forms for Tcon given in Eq. (1a).

FIG. 3. Consensus time exponents versus p on the complete
graph for news-source link density � = 1 and for the two-clique
graph, with interclique link density exponent β = 1

2 . Symbols rep-
resent simulations, while the curves represent the annealed-link
approximation.

We can understand the N dependence of Tcon for arbitrary α

in terms of the logarithmic effective potential (11). According
to Kramers’ theory [42], the time to reach the boundaries
at a and at 1 − a are proportional to exp[φ(a)] and to
exp[φ(1 − a)], respectively. Because the potential scales log-
arithmically in N as x → a or x → 1−a, there is an al-
gebraic, rather than an exponential, dependence of Tcon on
N . This behavior contrasts with various nonconserved voter
models [43,44], where the effective potential is linear in
N , leading to a consensus time that grows exponentially
with N . For α < 1, the effect of the logarithmic potential is
subdominant with respect to fluctuations [45] and the latter
drive the system to consensus, leading to Tcon ∼ N . These
predictions agree with our simulation results (Fig. 3). When
�+ �= �−, the lowest barrier height in the potential determines
the exponent; therefore α = min(α+, α−) as in Eq. (1a). We
also numerically verified that there is negligible difference in
the consensus time when connections between the two news
sources and the population are random or disjoint, with the
same density of links.

To determine Tpol in a simple way, consider the extreme
case where each news source has a single link to the complete
graph. This weak connectivity leads to the longest possible
polarization time. Suppose that the system starts in the −
consensus state. At some point, an “informed” voter, one that
is linked to the + news source, changes its opinion from −
to +. When this happens, the informed voter now disagrees
with all its N − 1 neighbors, but agrees with the news source.
Because the former are much more numerous they dominate
the subsequent opinion changes of the informed voter.

The state space of this reduced system may be schemat-
ically represented as in Fig. 4. Here |0〉 denotes the − con-
sensus state, |1〉 denotes the excited state, where only the
informed voter has changed opinion, and |P〉 denotes the

FIG. 4. State space of the reduced system.
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FIG. 5. Distribution of fraction x of + opinion voters on clique
C+ of 128 voters on the two-clique graph, with � = 1. On C− the
opinion distribution is a mirror image about x = 1

2 .

polarized state, in which the fraction of + and − voters is
equal. Additionally, E is the exit probability to reach |P〉,
which equals 2

N [41]. The polarization time satisfies the back-
ward equations

T0 = dt0 + T1, T1 = (1−E )(dt1 + T0) + Eτ. (14)

Here T0 ≡ Tpol and T1 are the times to reach the po-
larized state starting from |0〉 and |1〉, respectively,
dt0 = [r+(0)+r−(0)]−1 ∼ 2

α
is the time to leave |0〉, dt1 ≈ 1

is the time to leave |1〉, and τ = 2N (1 − ln 2) is the con-
ditional time to reach |P〉 from |1〉 by voter model dynam-
ics [41]. Solving these equations gives Eq. (2), when subdom-
inant terms are dropped. For well-connected news sources,
Tpol is less than the consensus time because for Tpol the
system state is driven towards the minimum of the effective
potential, while to reach consensus the system has to surmount
a potential barrier.

We obtain the steady-state opinion distribution, Pss(x) ≡
P(x, t → ∞), by setting ∂P

∂t = 0 in Eq. (3). We need to apply
reflecting boundary conditions because for all α > 0, the
endpoints are not fixed points of the stochastic dynamics.
Imposing normalization, we find

Pss(x) = xα+−1(1 − x)α−−1

B[1 − a+; α+, α−] − B[a−; α+, α−]
, (15)

where B(x; y, z) is the incomplete beta function [46]. For �+ =
�− = �, Pss(x) ∝ [x(1 − x)]α−1. This distribution undergoes
a transition from bimodality (i.e., near consensus states) to
unimodality (i.e., politically polarized states) as α increases
through 1.

Two-clique graph. We may adapt the above argument for
the polarization time on the complete graph to obtain both Tcon

and Tpol on sparsely interconnected two-clique graphs (β →
0). Here the polarized state corresponds to the conventional
picture of equal fractions of voters in the + and − states, with
+ voters in one clique and − voters in the other clique. Let x, y
be the fraction of + voters on cliques C+ and C−, respectively
(Fig. 1), and denote the state of the system by (x, y). It
is convenient to take the initial condition as the maximally
polarized (MP) state (1,0). The population tends to remain
close to the MP state because news sources tend to drive
opinions to this state, and the transition time out of this state,
dt0 ∼ N1−β , is large for β → 0 (Fig. 5). This figure shows the
increasing opinion polarization as the number of interclique
links is reduced or the interactions with news sources become
stronger.

For small β, intraclique links are dominant compared
to intraclique links. For the clique with nonunanimity, the
opinion dynamics thus is controlled by intraclique links. The
dynamics of the two-clique graph therefore reduces to that
of two isolated cliques that are additionally influenced by
news sources [41]. For an isolated clique connected to a single
news source, we obtain the exit probability by setting �− = �,
�+ = 0 in the expression for V/D in Eq. (10). Using this in
Eqs. (4) and (6) gives

E+(y)=
⎧⎨
⎩

(α+2N )1−α−[α+2N (1−y)]1−α

(α+2N )1−α−α1−α , α �= 1

ln(2N+1)−ln[2N (1−y)+1]
ln(2N+1) , α = 1.

(16)

We can now compute Tcon by using Eq. (14). In the present
case, the MP state, the MP state with one opinion change,
and + consensus correspond to |0〉, |1〉, and |P〉 in Fig. 4,
respectively. The quantity E+( 1

N ) in (16) corresponds to E
in Fig. 4. Additionally, the terms that involve dt1 and τ

give subdominant contributions [41], and we thereby obtain
Eq. (1b). The same type of reasoning also gives Tpol in Eq. (2).

To summarize, the presence of two opposing news sources
promotes political polarization in the voter model. The news
sources give rise to an effective logarithmic potential, which
leads to an anomalously long consensus time and a short time
to reach a politically polarized state. Our modeling has the
advantages that it is analytically tractable and has predictive
power to elucidate the anomalous scaling properties of these
two timescales. The opinion dynamics on the more realistic
two-clique graph mirror our analytical results for the complete
graph system.
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