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Abstract. We investigate a stochastic search process in one, two, and three 
dimensions in which N diusing searchers that all start at x0 seek a target at the 
origin. Each of the searchers is also reset to its starting point, either with rate 
r, or deterministically, with a reset time T. In one dimension and for a small 
number of searchers, the search time and the search cost are minimized at a non-
zero optimal reset rate (or time), while for suciently large N, resetting always 
hinders the search. In general, a single searcher leads to the minimum search 
cost in one, two, and three dimensions. When the resetting is deterministic, 
several unexpected feature arise for N searchers, including the search time 
being independent of T for T1 0/ →  and the search cost being independent of N 
over a suitable range of N. Moreover, deterministic resetting typically leads to 
a lower search cost than in Poisson resetting.
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1. Introduction

Stochastic searching [1]3 underlies many biological processes [2–4], animal foraging [5–9],  
as well as operations to find missing persons or lost items [10–12]. In these settings 
basic goals are to maximize the probability that the target is actually found and to 
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minimize the time and/or the cost required to find the target. In response to these chal-
lenges, a wide variety of search algorithms have been extensively investigated and rich 
dynamical behaviors have been uncovered [14, 15].

Typically, one or perhaps multiple searchers move in some fashion through a search 
domain to locate either a single target or a series of targets. The most naive setting is 
that of a single searcher has no information about the target and moves by random-walk, 
or equivalently, diusive motion. Such a search is generally hopelessly inecient because 
the target may not be found, for spatial dimension d 3⩾ , or the average search time is 
infinite. Thus much eort has been directed to uncover more eective search strategies.

Many such possibilities have been investigated. One natural mechanism is to allow 
the searcher to move according to a Lévy flight (see, e.g. [8, 13, 16]), so that the search 
can quickly cover large distances between targets. A somewhat related example is 
that of intermittent search, in which the search process is partitioned into periods of 
intensive search, during which the searcher moves slowly, and superficial search, during 
which the searcher moves quickly [17]. In the context of searching for nourishment, the 
essential tradeo is how long to continue to exploit resources in a local area and when 
to move to a new area as local resources become depleted [5, 18, 19]. These notions also 
underlie the search for a target along a DNA by a diusing protein [2, 3, 20–23], where 
the tradeo is for the search to diuse along the DNA or unbind and reattach at some 
distant point along the DNA.

Very recently, the mechanism of search that is augmented by ‘resetting’ was intro-
duced [24–26]. In this model, a target is placed at the origin (without loss of generality) 
and a searcher starts at some arbitrary point. In addition, the searcher returns to a 
fixed ‘home base’ at a given rate during the search. If the distance between the home 
base and the target is known with certainty, then a search based on a stochastically 
moving searcher is not a pertinent approach. However, the natural situation is that the 
target location is only partially known; for example, the target is somewhere within a 
finite body of water. In this case, a relevant parameter is the maximum possible dis-
tance between the target and the home base. As shown in [26], the basic properties of 
search with resetting when the distance between the target and home base is known 
precisely are qualitatively the same as the situation where only the probability distribu-
tion of this distance is known. Thus for the purposes of tractability we restrict ourselves 
to the idealized (and admittedly unrealistic) situation where the distance between the 
target and home base is known.

In general, resetting is known to have a dramatic eect on the search. A diusing 
particle requires an infinite average time to reach a target in spatial dimensions d  =  1 
and d  =  2, and the searcher may not even reach a finite-size target for d  >  2. However, 
resetting ensures that: (i) the searcher can always find the target in any dimension and 
(ii) the average search time is finite. Overall, therefore, resetting gives rise to a more 
ecient search. One of the basic results of recent investigations of search with resetting 
[24–26] was to determine the conditions that optimize the search time. This resetting 
mechanism has also been quite fruitful conceptually and a variety of interesting conse-
quences of resetting have been elucidated [27–36].

In this work, we investigate two as yet unexplored features of search with reset-
ting: (i) N searchers, each of which is reset at the same Poisson rate, to a ‘home base’, 
and (ii) deterministic reset, in which the searchers return to the home base after a 

http://dx.doi.org/10.1088/1742-5468/2016/08/083401
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fixed operation time, rather than the searchers being reset according to a fixed-rate 
Poisson process (figure 1). The related situation of many searchers that are uniformly 
distributed in space, each of which is reset to its own starting position at a fixed rate, 
was investigated in [26]. However, in the context of search for a missing person, it is 
natural that all the searchers return to a single home base (or perhaps a small number 
of such bases). Moreover, in such a search, activities are typically suspended at the 
end of daylight or when searchers reach their physical limits. Thus it is also realistic 
to investigate the situation in which all the searchers are reset to a given location at a 
fixed reset time.

In the next section, we start by briefly reviewing known results about stochastic 
search by a single searcher in one dimension (d  =  1), with the additional feature that 
the searcher is reset to its home base at a fixed rate. We will also present our renewal-
based approach to solve this problem that will be employed throughout this work. 
Next, we treat the case of N searchers in one dimension, each of which is independently 
reset to the same location at a fixed rate r. We show that for N  <  N * there is an opti-
mal non-zero reset rate rN

∗  that minimizes the search time as well as the search cost, 
while for N  >  N * resetting always hinders the search. We also determine this critical 
number N * analytically. In section 3, we turn to search with Poisson resetting in spatial 
dimensions d  =  2 and d  =  3. For the case of d  =  3, we exploit a well-known construction 
to reduce the diusion equation in three dimensions to an eective diusion equation in 
one dimension. This allows us to obtain results about three-dimensional search in terms 
of the corresponding one-dimensional system.

To probe the properties of the N-searcher system in a convincing way, we outline, 
in section 4, an ecient event-driven simulation in one dimension that obviates the 
need to microscopically follow the trajectories of each searcher between reset events. By 
exploiting the aforementioned dimensional reduction of the three-dimensional diusion 
equation, we can also directly adapt our event-driven approach to three dimensions. 
For d  =  2, no such dimensional reduction exists and our simulations are based on a 
more direct approach. From these numerical approaches, we determine the condition 
for optimal search for both a single searcher and for many searchers in spatial dimen-
sions d  =  1 and 3, and then d  =  2.

Finally, in section 5, we investigate the case of deterministic resetting, for both 
a single and for many searchers, again for the cases of d  =  1, d  =  3, and then d  =  2. 

Figure 1. Contrast of the trajectories in: (a) Poisson reset and (b) deterministic 
reset with reset time T. The target is at the origin and the reset point is x0.

http://dx.doi.org/10.1088/1742-5468/2016/08/083401
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The salient feature of deterministic resetting is that it leads to a quicker search than 
Poisson resetting at their respective optimal resetting rates (or times). Moreover, 
deterministic resetting leads to a search cost that, for large N, is nearly indepen-
dent of the reset rate r over a wide range of r. Concluding remarks are given in  
section 6.

2. Poisson resetting in one dimension

As mentioned above, the situation where a searcher is reset at a fixed rate r has already 
been extensively investigated [24–26]. For completeness, we quote the main results for 
this type of search and also derive them by an independent method. We then investi-
gate the case of N independent searchers, each of which is reset to a common point at 
the same rate r.

2.1. One searcher

Consider a target that is fixed at the origin and a diusing searcher that is reset to 
a point x0 at rate r. For simplicity, we assume that the searcher begins at this reset 
point. For this system, the first two moments of the search time are (see [24, 25] and 
also appendix A)
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(1)

and higher moments can be extracted straightforwardly. The subscript 1 signifies one 
searcher. The basic feature of (1) is that t1⟨ ⟩ is minimized at an optimal reset rate r* 

that is of the order of D x0
2/ . The inverse of the optimal rate gives the typical time 

between resets as roughly T x DD 0
2 /≡ , the time for a diusing particle to reach a distance 

x0. If the searcher does not find the target within this time, then it is likely wandering 
in the wrong direction and will reach the target at a time much greater than TD. In 
this case, it is better to reset this errant searcher back to its home base than allowing 
it to continue on its current trajectory.

We now give an independent derivation for the average search time t1⟨ ⟩ that relies 
on the renewal nature of the search process; a similar approach was very recently 
developed in [38]. Namely, whenever a reset occurs, the process restarts at the initial 
condition, but with the proviso that the time is incremented appropriately to account 
for the return to the reset point. As a preliminary, we need the following:

( )            
( )            

≡
≡

R t t

S x t t

prob. reset time is greater than ,

, prob. hitting time is greater than .0

For diusive motion, S(x0, t) is also the ‘survival probability’ that a searcher initially 
at x0 has not reached the origin by time t is [39]
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Correspondingly, the first-passage probability that a diusing particle initially at x0 
first reaches the origin at time t is
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Since the search process is specified by whether the target is reached before a reset 
occurs and vice versa, we also define two fundamental probabilities:
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(3)

Thus the ‘direct’ time for the target to be reached before a reset occurs, which we 
define as td, is

t t t
S x t

t
R t Pd

d ,

d
.d

0

0( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠∫= − ×

∞

 (4a)

Similarly, the ‘reset’ time tr for a reset to occur before the target is reached is

t t t
R t

t
S x t Qd

d

d
, .r

0
0

( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠∫= − ×

∞

 (4b)

Using the renewal nature of the search, t1⟨ ⟩ satisfies the recursion

t Pt Q t t .1 d r 1⟨ ⟩ ( ⟨ ⟩)= + + (5a)

The first term accounts for hitting the target before a reset occurs, while the second 
term accounts for the search restarting after a reset. In this latter case, the search is 
delayed by tr. For notational convenience, we define T Ptd d=  and T Qtr r= . Solving for 
t1⟨ ⟩ gives

t
T T

Q1
.1

d r⟨ ⟩ = +
− (5b)

This result is general and can be applied to higher dimensions and to dierent reset 
mechanisms, as will be discussed later.

Since only the sum T Td r+  appears in the expression for t1⟨ ⟩, we add the two lines in 
(4a) and integrate by parts to give
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T T t R t S x td , .d r
0

0( ) ( )∫+ =
∞

 (6)

We now specialize to Poisson resetting with rate r, for which R t e rt( ) = − . Using this, 
as well as (2a) for S(x0, t), the integrals in (3) and (6) are

T T
r

Q

1
1 e ,

1 e .

x r D

x r D

d r
0

0

( )/

/

+ = −

= −

−

−

from which (5b) gives

t
r

1
e 1 .x r D

1
0( )⟨ ⟩ /= − (7)

This reproduces equation (1) as it must.

2.2. Multiple searchers

Since all searchers are independent and the target location is fixed, it is theoretically pos-
sible to obtain the survival probability of the target in the presence of N searchers as the 
Nth power of the target survival probability due to a single searcher. However, while the 
Laplace transform of the target survival probability with one searcher is known exactly, 
equation (A.10), it does not appear possible to Laplace invert this expression exactly. 
Nevertheless, we can invert this Laplace transform in the limit r 0→  to provide informa-
tion about the depend ence of the search cost as r 0→ ; this feature will be discussed below.

Thus we resort to simulations to map out the behavior of the search time as a 
function of the reset rate r for multiple searchers. Because it is inherently wasteful to 
simulate directly the microscopic motion of each searcher between reset events, we 
developed an ecient event-driven simulation, whose details are given in section 4. Our 
focus is on the rich features of the search time and the search cost as a function of r 
and N. Under the assumption that each searcher has the same fixed cost per unit time 
of operation, the search cost for N searchers, CN, is merely C N tN N⟨ ⟩= , where tN⟨ ⟩ is the 
average search time for N searchers. This cost has a weak dependence on N, so that it 
is more convenient to focus on cost rather than time in the following.

Figure 2 shows the search cost in one dimension as a function of r for N1 8⩽ ⩽ . 
Noteworthy features of the search cost include:

 (i) The lowest scaled search cost of 1.544 is achieved by a single searcher that is 
reset at the scaled optimal rate r 2.5401≈

∗ . At this optimum, there are typically 
r t 3.6571 1⟨ ⟩≈∗  resets before the searcher reaches the target.

 (ii) For N 2, 3, 7= … , there is a unique, non-zero optimal reset rate rN
∗  for each N 

that minimizes the search cost and the search time. This optimal rate is generally 
of the order of the inverse diusion time between the home base and the target, 

T x DD 0
2 /= . The optimal cost for all N 5⩽  is within 2% of the optimal cost for a 

single searcher.

http://dx.doi.org/10.1088/1742-5468/2016/08/083401
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 (iii) For N 8⩾ , the search time strictly increases with r; that is, no resetting is optimal. 
This behavior arises because at least one searcher is systematically moving toward 
the target, once the number of searchers is suciently large, so that any resetting 
increases the search time. The demonstration of the sign change in the initial slope 
of tN⟨ ⟩ versus r between N  =  7 and 8 (see figure 3) is given in appendix B.

 (iv) For N  =  1, the average search time diverges as r 0→ . This property reflects the 
divergence of the first-passage time for a diusing particle to hit an arbitrary point 
in one dimension [37, 39]. Since the survival probability for the diusing particle to 
not hit the target by time t, S(x0, t) in equation (2a), asymptotically decays as t−1/2, 

we estimate the hitting time for small r as S x t t r, d
r1

0
1 2( )

/ /∫ ∼ − . This reproduces 

the behavior that arises from a small-r expansion of search time in equation (1) for 
zero reset rate.

 (v) For N  =  2, the search time again diverges as r 0→ . Because of the independence 
of the searchers, the survival probability of the target asymptotically decays as 

Figure 2. (a) Average search cost CN scaled by the diusion time TD versus the 
scaled reset rate rTD in one dimension for various N. Each curve represents an 
average over 109 trajectories. The dashed line indicates the minimum cost of 1.544 
for N  =  1. (b) The minimum search cost for each N 6⩽ .

Figure 3. Slope of the average search time tN⟨ ⟩ at r  =  0 as a function of N in one 
dimension when each searcher is independently reset at rate r.

http://dx.doi.org/10.1088/1742-5468/2016/08/083401
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t t1 2 2 1[ ]/ =− − . In the r 0→  limit, the same argument as that given for N  =  1 leads 
to an average search time that diverges as rln−  for r 0→ .

 (vi) The probability that the target is not hit by any of N searchers asymptotically 
decays as t N1 2[ ]/− . Thus when there are at least 3 searchers, the search time is finite 
for r 0→ ,

3. Poisson resetting in higher dimensions

3.1. Three dimensions

There are two important physical dierences between the one-dimensional and three-
dimensional system: (a) first, the target must have a non-zero size to be detected; we 
take the target to be an absorbing sphere of radius a. (b) Second, the existence of a non-
zero target radius introduces an additional parameter—the ratio of the target radius to 
the radius of the reset point a/r0.

In spite of these two complications, the above approach for one dimension can 
be straightforwardly adapted to three dimensions because of the well-known corre-
spondence between the diusion equation in three dimensions and in one dimension  
[39, 40]. Namely, the three-dimensional radial Laplacian operator is related to the one-

dimensional Laplacian by r P rPd d3
2

1
2 ( )∇ = ∇ . Using this mapping, we can write basic 

quantities for search with resetting in three dimensions in terms of corresponding one-
dimensional expressions.

Because of computational limitations, most of our numerical results for Poisson 
resetting in d  =  3 are for the case of a r 100

1/ = −  (figure 4). Simulations for dierent a/r0 
give a qualitatively similar dependence of the search time and search cost on the reset 
rate. As in the corresponding one-dimensional system, several features of these results 
are worth highlighting:

 (i) For N 10� , the minimum cost changes so slowly with N that is is not possible to 
determine the value of N at which the minimum cost is achieved. For example, for 
N  =  1, the minimum cost is 14.760 0.0015±  while for N  =  10, the minimum cost is 
14.762 0.0015± . By N 15≈ , however, the minimum cost has a systematic increasing 
trend that is larger than the error bars in the data.

 (ii) In distinction to one dimension, the typical number of reset events before the target 
is found by a single searcher is of the order of r0/a, which can be large. To under-
stand this behavior, we start with the hitting probability H r t,3d 0( ) that a single 
searcher that is a distance r0 from the center of the target finds it within time t [39]:

H r t S r t
a

r

r a

Dt
, 1 , erfc

4
.3d 0 3d 0

0

0( ) ( )
⎛
⎝
⎜

⎞
⎠
⎟= − =

−

  Here S r t,3d 0( ) is the probability that the searcher does not find the target within 

time t (see section 4.2). For r a0�  and reset rate near the optimal value of D r0
2/ , 
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the above hitting probability reduces to H r t, erfc
a

r3d 0
1

20
( ) ( )≈ . Thus for a r 10/ � , the 

number of reset events until target is found is of the order of the inverse of this 

hitting probability, namely, of the order of r0/a.

 (iii) Because of the transience of diusion in three dimensions, the search time and 
search cost diverge as r 0→  for any number of searchers. Thus infinitesimal reset-
ting always leads to a more ecient search than no resetting.

3.2. Two dimensions

In two dimensions, it is practically not feasible to implement an event-driven simulation 
because the first-passage and hitting probabilities that form the kernel of the event-
driven algorithm are not known in closed form as a function of time. (They are known, 
however, in the Laplace domain [39], and were used in [25, 26] to provide an analytical 
expression for the search time for the case of a single searcher.) Thus we implement an 
alternative simulational approach, as will be discussed in the next section.

The primary features of search with Poisson resetting in two dimensions are (see 
figure 5):

 (i) Resetting again always leads to a more ecient search compared to the case of no 
resetting. As in three dimensions, this feature is a consequence of the divergent 
average search time at r  =  0 in two dimensions for any number of searchers.

 (ii) The dependence of the search cost as a function of reset rate is qualitatively similar 
to that in three dimensions. The minimum cost is nearly constant for N 10� , with 
the dierence in the cost values for adjacent N values less than the simulation 
error bars. For example, the minimum costs for N  =  1 and 10 are 3.59 0.01±  and 
3.60 0.01±  respectively, while for N  =  15, the minimum cost in 3.67 0.02± .

Figure 4. (a) Average scaled search cost C TN D/  versus scaled reset rate rTD in 
three dimensions for various N and for a r 100

1/ = − . The curves for N  =  1 and 5 are 
averaged over 108 trajectories, while those for N  =  10, 20, 30 and 50 are averaged 
over 107 trajectories. (b) Minimum search cost as a function of N.
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4. Event-driven simulations

The one- and three-dimensional numerical results are based on an event-driven algo-
rithm that allows us to eciently simulate N independently resetting searchers. In our 
approach, each searcher is propagated by a single (typically macroscopic) time step 
between reset events until one of the searchers finds the target. Thus each update is 
‘useful’ in that either the target is found or a reset event occurs. No time is expended 
in diusively propagating searchers between resets.

4.1. One dimension

In one spatial dimension, the elemental steps of our algorithm are the following:

 (i) Start with all the searchers at a distance x0 from the target.

 (ii) For each searcher, with the ith one located at xi, draw a random time value from 
the first-passage distribution F(xi, t) given in equation (2b). Also choose a reset time 
tr from a Poisson distribution according to the reset rate Nr. This gives the time 
for one of the N searchers to be reset.

 (iii) If the minimum among these N  +  1 times is the reset time, choose a random 
searcher and reset it to x0. Each of the remaining searchers is moved from its cur-
rent position xi to a new position that is drawn from the conditional probability

P x t
Dt

S x t,
1

4
e e , ,i

x x Dt x x Dt
r

r

4 4
0 r

i i0
2

r 0
2

r( ) [ ] / ( )( ) / ( ) /

π
= −− − − +

  where S x t,0 r( ) is again the probability that a diusing particle that starts at x0 
does not hit the target up to time tr. The distribution P x t,i r( ) corresponds to the 
diusive propagation of each searcher over the time increment tr, subject to the 
constraint that no searcher can reach the target. After all the searchers are moved, 
increment the elapsed time by the reset time tr and return to step (i).

Figure 5. (a) Average scaled search cost C TN D/  versus scaled reset rate rTD in 
two dimensions for various N and for a r 100

1/ = − . The data are averaged over 108 
trajectories. (b) Minimum search cost as a function of N.
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 (iv) If the minimum among the N  +  1 random times is one of the first-passage times, 
then the target is found. The total search time is the current elapsed time plus this 
first-passage time.

4.2. Three dimensions

By exploiting the dimensional reduction of the diusion equation in three dimensions 
to one dimension, the algorithm outlined above can be directly adapted to the three-
dimensional system. The algorithmic steps of our event-driven simulation are now:

 (i) Start with all the searchers at a distance r0 from the target.

 (ii) For each searcher, with the ith searcher at a radial distance ri, draw a random 
time value from the three-dimensional first-passage distribution to a sphere of 
radius a [39]:

F r t
a

r

r a

Dt
,

4
e .i

i

i r a Dt
3d

3

4i
2( ) ( ) /

π
=

− − −
 (8a)

  Also choose a reset time tr from a Poisson distribution with reset rate Nr.

 (iii) If the minimum among these N  +  1 times is the reset time, choose a random 
searcher and reset it to r0. Each of the remaining searchers is moved from its cur-
rent position ri to a new position that is drawn from the conditional probability

P r t
r

r Dt
S r t,

1

4
e e , ,i

i r r Dt r r a Dt
3d r

0 r

4 2 4
0 r

i i0
2

r 0
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r( ) [ ] / ( )( ) / ( ) /

π
= −− − − + −

 (8b)

  with survival probability now equal to [39]

S r t
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Dt
, 1 erfc

4
.3d 0 r

0

0
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( )
⎛

⎝
⎜

⎞

⎠
⎟= −

−
 (8c)

  Here P r t,i3d r( ) corresponds to diusive propagation of each searcher over a time 
tr, subject to the constraint that each searcher cannot reach a spherical target of 
radius a. After all the searchers are moved, increment the elapsed time by tr and 
return to step (i).

 (iv) If the minimum among the N  +  1 random times is one of the first-passage times, 
then the target is found. The total search time is the current elapsed time plus this 
first-passage time.

4.3. Two dimensions

As mentioned previously, it is impractical to implement an event-driven simulation in 
two dimensions because the exact expression for the first-passage probability to a cir-
cular target of radius a as a function of time is not known in closed form. While this 
first-passage probability can be expressed as an inverse Laplace transform, the slow 
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convergence properties of this integral render it not useful as the kernel for an event-
driven simulation. However, we do know the first-passage probability in the form of 
a well-converged series to the circumference of a circle centered around the current 
position of the target. Thus our simulation is based on propagating the searcher to the 
circumference of a circle whose radius adaptively varies depending on the distance to 
the target (figure 6). This circle should just touch the target, so that the radius of this 
circle is large when the searcher is far from the target and small when the searcher is 
close to the target.

For a single searcher that is a distance b from the circumference of the target, the 
steps in our algorithm are the following (figure 6):

 (i) Draw two random times. One is from the distribution of first passage times to the 
circumference of a circle of radius b

( ) ( )
( )

/∑
µ
µ

= −
∂ =
∂

= µ

=

∞
−F b t

S r t

t

D

b J
,

0, 2
e ,

n

n

n

Dt b

1
2

1

n
2 2

 (9)

  with S(r  =  0,t) given by equation (C.8) in appendix C). Here J1 is the ordinary Bessel 
function of index 1 and nµ  is the nth zero of J0. Because the jump distance is 
large if the searcher is far from the target, little time is spent in simulating the 
motion of the searcher when it is wandering aimlessly far from the target. The 
second random time is drawn from the reset time distribution.

 (ii) If the minimum of these two times is the reset time, reset the searcher to r0.

 (iii) Otherwise, move the searcher to a random point on the circumference of the circle 
of radius b. If the searcher is within a radius a 1( )+ ε  of the center of the target, 
then we define the target as being found. If the target is not found after the 
searcher has been moved, return to step (i).

Figure 6. Illustration of a simulation event in two dimensions for a searcher that 
is a distance b from the circumference of a target of radius a.
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We need to introduce an absorbing shell of thickness aε  around the target to ensure 
that the searcher actually finds the target. Clearly, the apparent search time decreases 
as ε is increased. To determine the appropriate choice of ε, we simulate the search with 
successively smaller values of ε until the results do not change within the statistical 
errors of the simulation and then use the largest of this set of ε values for simulational 
eciency. For the case of a r 100

1/ = − , this value is 10 3= −ε .
By averaging over many trajectories, we construct an accurate numerical estimate 

for survival probability due to a single searcher, S1(t). Due to the independence of the 

searchers, we construct the survival probability for N searchers by S t S tN
N

1( ) [ ( )]= . The 

average search time is then given by t S t tdN N
0

( )∫=
∞

.

5. Deterministic resetting

We now investigate the situation where all searchers are reset to their starting point 
after a fixed time T. As we shall see, this deterministic resetting typically leads to a 
more ecient search compared to Poisson reset. Moreover, because all searchers are 
reset simultaneously, we are able to obtain numerically exact results for the search time 
for deterministic resetting in both one and three dimensions.

5.1. One dimension

5.1.1. Single searcher. We follow the renewal approach of section 2 to calculate the 
average search time for a single searcher that is reset to x0 after a fixed time T. In this 
case R(t), the probability that reset time is greater than t, is just the Heaviside step 
function H(T  −  t), where H(z)  =  1 for z  >  0 and H(z)  =  0 for z  <  0. From equations (3) 
and (6), we have
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∞

∞ (10)

Substituting these expressions into equation (5b), the average search time for determin-
istic resetting of a single searcher is (figure 7)
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(11)

5.1.2. Multiple searchers. For multiple searchers, we merely need to use S x t, N
0[ ( )]  

rather than S(x0, t) in equation (10) to account for N independent searchers that all 
must have their hitting time exceed a given threshold. Thus we have
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Substituting these in (5b), the average search time for N searchers with deterministic 
reset in one dimension has the simple form

t
S x t t

S x T

, d

1 ,
.N

T N

N
0

0

0

[ ( )]

[ ( )]
∫

=
−

 (13)

While we can compute the integral in (13) analytically for the cases N  =  1, 2 and N →∞ 
(appendix D), Mathematica can perform the integration numerically to arbitrary preci-
sion to give tN⟨ ⟩ for any N.

Figure 7 shows the search cost as a function of 1/T for representative N values. We 
plot the search cost versus 1/T because 1/T plays the same role as the rate r in Poisson 
resetting. Several new features of the search cost for deterministic reset in one dimen-
sion are worth emphasizing:

 (i) The lowest search cost is achieved by a single searcher (as in Poisson reset) in 
which the optimal scaled reset time is T T 0.4581 D/ ≈∗ , leading to an optimal scaled 
search time t T1.3361 D⟨ ⟩≈ , compared to the optimal cost T1.544 D from Poisson 
resetting. This optimal time corresponds to approximately 3 reset events before the 
target is found.

 (ii) For large N, the search cost becomes nearly independent of 1/T over a wide range 
(figure 7(b)). This behavior is characterized by progressively more derivatives of 
the cost with respect to 1/T becoming zero as T1 0/ → . In particular, the first 
derivative is zero for N  >  4, the second is zero for N  >  6 and the third is zero for 
N  >  8. In general, we find that the kth derivative becomes zero for N  =  2k  +  3. 
We can understand this pattern of behavior by dierentiating equation (13) with 
respect to 1/T, using Mathematica, to find the leading behavior

Figure 7. Average search cost scaled by the diusion time TD versus T TD/  in one 
dimension for various N and for deterministic resetting. The abscissa scale is linear 
in (a) and logarithmic in (b).
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  where A1 and A2 are 1( )O  in T. As T1 0/ → , the error function is proportional to its 
argument, so that the above leading terms scale as a negative power of T for N  >  4 
and as a positive power for N  <  4. Analogous behavior arises for higher derivatives.

 (iii) For T TD/ →∞, the search time asymptotically increases as eT TD/ , whereas for 
Poisson resetting the corresponding r →∞ behavior is the search time growing as 
e r. The eT TD/  growth has a simple origin. As T TD/ →∞, the probability that one 

searcher does not reach the target within the reset time T is S x DTerf 40( / )= . 
The probability that none of the searchers reaches the target within time T is SN, 
so that the probability that at least one of the searchers reaches with time T is 
1  −  SN. In the limit T TD/ →∞, the asymptotic behavior of this probability is

S
DT N

x
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4 e
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x DT4

0

2/

π
−

−
� �

  The number of reset events until a searcher finds the target is the inverse of this 
expression. Multiplying by NT gives the asymptotic behavior of the average search 
cost
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  This asymptotics matches the numerically exact expression for the search time 
when T T 1D/ �  (figure 8).

5.2. Three dimensions

In three dimensions, we again obtain numerically exact results for deterministic reset 
for all parameter values and thus can probe the role of the reset time, as well as the 
parameter a/r0 on the search cost and search time. While the qualitative dependence of 
the search cost and time on 1/T is the same for all a/r0, there are quantitative anoma-
lies that are worth highlighting.

We again use the correspondence between one-dimensional and three-dimensional 
diusion to determine the search time in three dimensions. In the renewal formula (13) 
for the search time, we now need the first-passage and survival probabilities in three 
dimensions, F r t,3d 0( ) and S r t,3d 0( ), respectively (equations (8a) and (8c)). Substituting 
these expressions into equation (13) and using Mathematica to perform the integrals 
numerically, we again obtain the search time and cost as a function of 1/T for any N 
with arbitrary precision (figure 9).

As expected, the search cost is initially a decreasing function of T TD/  for any N. 
When T T 0D/ = , a diusing searcher is transient in three dimensions and does not 
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necessarily find the target; thus the search cost diverges in this limiting case, even 
when N is large. On the other hand, for T TD/ →∞, the search again becomes inecient 
because each searcher is typically reset before it can progress towards the target.

Figure 9 also illustrates a data collapse within each panel when N r a0/�  and between 
panels in the limit of r a 10/ � . This collapse implies that the search cost is independent 
of N and a/r0, for small enough target size and number of searchers, when the cost is 
scaled by a r T0 D/( ). To derive this behavior, we substitute equations (8a) and (8c) into 

(13), and approximate the argument of the error function, r a DT40( )/− , as T T4D/ . 
These steps lead to

t
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This scaling form implies that plots of CN⟨ ⟩ versus 1/T collapse onto a single curve 
when a C rN 0/  is plotted against T TD/ . The asymptotic form (16) may also be derived 
by merely counting the number of resets until the target is found. The probability of 
hitting the target within a single reset event by a single searcher is given by,

p S r T
a

r

r a

DT
1 , erfc

4
.0

0

0( )
⎛
⎝
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⎞
⎠
⎟≡ − =

−

The probability that any of the N searchers finds the target is p Np P1 1 N( )− − ≡� . Since 
each of these hitting events is independent, the average number of reset events before 

one of the searchers reaches the target is ( ) [ ( )]⩾∑ − = �nP P P r Na T T1 1/ / erfc 4n
n

1 0 D  . 

In the limit of large number of resets, the search time is just T times number of resets, 
as the time for the last segment of the trajectory that actually reaches the target is 
negligible. This reasoning again leads to equation (16).

Figure 8. Comparison between the exact formula (13) and the asymptotic formula 
(15) for the mean hitting time in one dimension with deterministic reset.
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5.3. Two dimensions

In two dimensions however, we are not able to implement the renewal process calcul-
ation, as we do not have exact expressions for S (r0, t) or F (r0, t). Hence, we use the same 
simulation as in Poisson resetting in d  =  2. As in one and three dimensions, the mini-
mum cost is achieved for N  =  1 searcher and the cost monotonically increases with N  
(figure 10).

6. Discussion

In this work, we explored the consequences of superimposed resetting on the perfor-
mance of stochastic search processes. In this resetting, either one or many searchers are 
returned to a fixed home base either at a fixed rate or at a fixed reset time. We found 
a variety of intriguing and sometimes unexpected features. When each searcher is inde-
pendently reset to the home base at a fixed rate r, the search cost is minimal for a single 

Figure 9. Average search cost scaled by aT rD 0/  versus T TD/  in three dimensions 
for various N and a/r0.

Figure 10. (a) Average scaled search cost C TN D/  versus scaled inverse reset time 
T TD/  in two dimensions for various N and for a r 100

1/ = − . Data are averaged over 
108 trajectories. (b) Minimum search cost as a function of N.
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searcher when the reset rate is of the order of the inverse diusion time /=T x DD 0
2 . We 

also found that resetting always hinders the search for N 8⩾  searchers, while for N 7⩽ , 
there is an optimal nonzero reset rate for each N.

By exploiting the well-known relation between the diusion equation in one and 
in three dimensions, we obtained analogous results for search with Poisson resetting 
in three dimensions. The primary new result for d  =  3 is that the cost of the search is 
nearly independent of the number of searchers for N  <  10 for the case of a r 100

1/ = − . In 
two dimensions, we developed an alternative procedure in which we simulate the target 
survival probability in the presence of a single searcher and then take the Nth power of 
this quantity to obtain the target survival probability in the presence of N searchers. 
In this case, similar to three dimensions, the cost is nearly independent of the number 
of searchers up to N  =  10 and for N  >  10, the cost increases monotonically.

We also explored a related model in which all searchers are simultaneously reset to the 
home base after a fixed operation time T. This deterministic resetting is theoretically and 
computationally simpler than Poisson resetting, and we are able to obtain explicit form-
ulae for the average search time for any N that can be numerically integrated to arbitrary 
precision. In one dimension, deterministic resetting gives a search time that becomes inde-
pendent of the reset time T when N is suciently large, a behavior that can be understood 
from the small-r behavior of the search time. In three dimensions, we showed by a simple 
extremal argument that the search cost versus 1/T becomes independent of N.

There are a wide range of extensions of the basic model to practically and theor-
etically interesting situations. It would be worthwhile to extend search with resetting 
to the cases where either the target is diusing and/or the target is mortal [42–45]. 
These generalizations would naturally describe, e.g. the occupants of a lifeboat that is 
adrift in the ocean. When the target is also moving, the basic question is again whether 
the reset helps or hinders the search. For a mortal target with any reasonable distribu-
tion of mortality, there will always be a non-zero probability that the target will die 
before being found and the relevant issue is to construct appropriate criteria that lead 
to a well-defined optimization problem.
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Added Note: As final revisions were being made, we became aware of related work 
[46], in which the authors mathematically showed that deterministic reset leads to the 
smallest search time for the case of a single searcher, as we also observed.

Appendix A. The probability distribution

The full description for a static target and one searcher that is stochastically reset to x0 
can be obtained from the time-dependent probability distribution x t,( )ρ . Its evolution 

http://dx.doi.org/10.1088/1742-5468/2016/08/083401


Stochastic search with Poisson and deterministic resetting

20doi:10.1088/1742-5468/2016/08/083401

J. S
tat. M

ech. (2016) 083401

is governed by the diusion equation, supplemented by terms that account for the 
resetting:

D r r x x x t x, d .t xx 0
0

( ) ( )∫ρ ρ ρ δ ρ= − + −
∞

 (A.1)

Here rρ accounts for the loss of probability at rate r at position x due to the reset-
ting, while the integral accounts for the gain of probability at the reset point x0. The 
amplitude of this gain term equals the total probability that the target has not yet 
been found, which is less than 1 and also decreasing with time. We solve this equation, 
subject to the absorbing boundary condition t0, 0 0( )ρ > = , corresponding to the loss 
of probability whenever the target at the origin is reached. For simplicity, we consider 
the initial condition x t x x, 0 0( ) ( )ρ δ= = − .

To solve equation (A.1), we first Laplace transform it to give

s x x D r r x x x s x, d .0 0
0

( ) ( ) ( )∫″ρ δ ρ ρ δ ρ− − = − + −
∞

 (A.2)

Here x s,( )ρ ρ=  is the Laplace transform of x t,( )ρ  and the prime denotes dierentiation 

with respect to x. For x x0≠ , we must solve 
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For x  >  x0, only the decaying exponential appears so that the probability distribution 
does not diverge as x →∞.

The absorbing boundary condition at the origin immediately gives A  +  B  =  0, which 
simplifies the density in the range x  <  x0 to A xsinhρ α= . Continuity of the probability 
distribution at x0 gives the condition A x Csinh e x

0
0α = α− , which we use to eliminate C. 

After some standard and simple steps, the form of x s,( )ρ  for x  <  x0 and x  >  x0 can be 
expressed more symmetrically as

x s
A

x

x
x x

A x x

,

sinh

sinh
,

e ,x x

0
0

0
0

( )
( )

⎧
⎨
⎪

⎩⎪
ρ

α
α=

<

>α− −
 (A.3)

which is manifestly continuous at x  =  x0.
The constant A is determined by the joining condition, which is obtained by inte-

grating (A.2) over an infinitesimal region that includes x0:

D r x s x1 , d .
0

( ) ( )∫ρ ρ ρ− = − +′ ′ ′ ′+ −

∞

 (A.4)

Here ρ′+ is the gradient of ρ as x x0→ + and similarly for ρ′−. Using equation (A.3), we 

have

A A

A
x

x
A x

e ,

cosh

sinh
, coth .

x x

x x

x x0
0

0

0

0

( )ρ α α

ρ α
α
α

α α

= − = −

= =

′

′

α
+

− −
=

−
=

 
(A.5)
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We also need

x s x A
x

x
x A x

A x

x

, d
sinh

sinh
d e d ,

cosh 1

sinh
1 .

x

x

x x

0 0 0

0

0

0

0

0( )

( )
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⎡
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∫ ∫ ∫ρ
α
α

α
α
α

= +

=
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+

′ ′
′
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∞ ∞
− −′

 
(A.6)

Substituting the above into the joining condition gives, after straightforward algebra,

A
x

D

sinh

e 1 e
.

x r x

0

0 0( )
α

α
=

+ −α
α

α (A.7)

This, together with equation (A.3), gives the probability distribution in the Laplace 
domain.

From this solution, the Laplace transform of the flux to the origin is:

j s D x s
DA

x

r

D

0, ,
sinh

,

e 1 e .

x

x x

0 0

2

1
0 0

( ) ( )

( )
⎡
⎣⎢

⎤
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′ρ
α
α

α

= =

= + −α α

=
− 

(A.8)

By definition, j (0, s) is also the moment generating function

j s j t t

j t st st

s t s t

0, 0, e d ,

0, 1
1

2
,

1
1

2
.

st

0

0

2

2 2

( ) ( )

( ) ( )
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⎣⎢

⎤
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∫

∫

=

= − + −…

= − + −…

∞
−

∞

 

(A.9)

Expanding (A.8) in a power series in s, we obtain the results quoted in equation (1).
As a byproduct, the survival probability of the searcher in the Laplace domain, 

S x s,1 0( ) (which coincides with the survival probability of the target) is the spatial  int egral 
of x s,( )ρ  in equation (A.6). Using (A.7), and after some simple algebra, we obtain

S x s
s r

,
1 e

e
,

x

x1 0

0

0
( ) = −

+

α

α

−

− (A.10)

as first obtained in [24, 25] by dierent means.

Appendix B. Slope of 〈tN〉 for r → 0

Because of the independence of the searchers, the probability that the target is not 

found by N searchers within time t, SN(t), is just S t N
1[ ( )] . Thus the slope of the average 

search time at r  =  0 is
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(B.1)

Since we just need the slope at r  =  0, we expand the Laplace transform S x s,1 0( ) in 
(A.10) to first order in r to give

S x s
s

r

s
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1
1 e e 4 1 e
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0
1 0 0

40 0 0( )( ) /
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⎦⎥= − + − +− − −

 (B.2)

Using Mathematica, the Laplace inverse of the above expression is
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(B.3)

Dierentiating equation (B.3) with respect to r and substituting in (B.1) gives
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(B.4)

where again T x DD 0
2 /= . Evaluating the integral numerically shows that the initial slope 

changes sign at N 7.326 477≈ … (see figure 3). Thus for N 7⩽  searchers, resetting at a 
non-zero optimal rate speeds up the search compared to no resetting, while for N 8⩾ , 
resetting always hinders the search.

Appendix C. Survival probability inside an absorbing circle

To find the survival probability for a diffusing particle inside an absorbing circle of 
radius b centered around the origin, with the initial condition r0  =  r, we begin with the 
diusion equation in two dimensions,

S r t

t
D S r t D

S r t

r r

S r t

r

,
,

, 1 ,2
2

2

( ) ( ) ( ) ( )⎛
⎝
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⎞
⎠
⎟∂

∂
= ∇ =

∂
∂

+
∂
∂ (C.1)

Due to circular symmetry, the survival probability is independent of the polar  
angle, and so we have kept only the radial term of the Laplacian operator in 2d.  
Using separation of variables, defining S r t r t,( ) ( ) ( )= R T , and re-arranging the terms, 
we get

D r

˙ 1″= +
′T

T

R

R

R

R
 (C.2)
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where the over-dot refers to derivative w.r.t t and prime refers to derivative w.r.t r. 

Equating both sides to a negative constant 2µ− , we obtain

t r r re and 0Dt 2 2 22( ) ″ µ= + − =′µ−T R R (C.3)

The equation for r( )R  is in the form of a Bessel equation of order 0, giving the general 
solution,

S r t A J r, e Dt
0

2( ) ( )∑ µ=
µ

µ
µ−

 (C.4)

Applying the absorbing boundary condition, S(r  =  b, t)  =  0, we get bn /µ µ=  where n{ }µ  
are the zeroes of J0
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 (C.5)

To calculate the coecients An, we use the orthogonality condition of the Bessel func-
tions [41] and the initial condition S r t r b, 0 1( )= = ∀ < . Using equation (C.5) at 
t  =  0 and multiplying both sides by r b J r bm0( / ) ( / )µ  and integrating with respect to r/b  
we get,
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(C.6)

Integrating the left-hand side with Mathematica and re-arranging terms, gives,

A
J

2
n

n n1( )µ µ
= (C.7)

Finally, we require the survival probability when starting from the center of the absorb-
ing circle. Thus substituting r  =  0 we obtain

S r t
J

0,
2

e
n n n

Dt b

1

n
2 2( )

( )
/∑ µ µ

= = µ−
 (C.8)

Appendix D. Search time for deterministic reset for N  =  2 and N  =  ∞

We start with the general expression (13) for the average search time in deterministic 
search:
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In terms of u x DT T T4 40
2

D/ /≡ = , the integral S t td
T N

0
[ ( )]∫  can be written as

x

D

z

z
z T I

2

erf
d

1

2
.

u

N
0
2

3 D
( )

∫ ≡
∞

 (D.2)

http://dx.doi.org/10.1088/1742-5468/2016/08/083401


Stochastic search with Poisson and deterministic resetting

24doi:10.1088/1742-5468/2016/08/083401

J. S
tat. M

ech. (2016) 083401

Repeatedly integrating by parts to reduce the power of the factor in the denominator, 
we obtain
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For the case of N  =  2, the last integral is

z

z
ue

d
0, 2 ,

u

z2 22 ( )∫ = Γ
∞
−

where a b,( )Γ  is the incomplete Gamma function [41]. Assembling the above results, the 
average search time for N  =  2 searchers is
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In the limit N →∞, the search time becomes arbitrarily small so that eventually the 
reset time T is larger than the search time. In this limit, we may set T = ∞, or equiva-
lently, u  =  0 in equation (D.2). Thus equation (D.1) reduces to [45]

t
T z

z
z

T

N2

erf
d

4 ln
.N

N
D

0 3

D( )
∫=
∞

� (D.5)

In this limiting case, the average search time no longer depends on the reset time.
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