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Abstract.  We determine how long a diusing particle spends in a given spatial 
range before it dies at an absorbing boundary. In one dimension, for a particle 
that starts at x0 and is absorbed at x  =  0, the average residence time of the 

particle in the range [x, x+ dx] is T (x) = x
D
dx for x  <  x0 and x0

D
dx for x  >  x0, 

where D is the diusion coecient. We extend our approach to biased diusion, 
to a particle confined to a finite interval, and to general spatial dimensions. 
We then use the generating function technique to derive parallel results for the 
average number of times that a one-dimensional symmetric nearest-neighbor 
random walk visits site x when the walk starts at x0  =  1 and is absorbed at 
x  =  0. We also determine the distribution of times when the random walk first 
revisits x  =  1 before being absorbed.
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1. Introduction

Suppose that a diusing particle in one dimension starts at x0  >  0 and is absorbed, or 
equivalently, dies, when x  =  0 is reached. One classic property of diusion is that the 
particle is sure to eventually reach the origin, but the average time for this event to 
occur is infinite [1–4]. This dichotomy between certain return and an infinite return 
time is the source of rich phenomenology and counter-intuitive phenomena about the 
statistical properties of diusion. Another important feature of diusion is the shape 
of its trajectory in space time (figure 1). Consider a Brownian particle that starts at x0 
at t  =  0 and first returns to x  =  0 at time T0. In the interesting case of T0 � x2

0/D, the 
particle wanders over a large spatial range before its eventual demise. A trajectory that 
stays strictly in the range x  >  0 until absorption at time T0 is known as a Brownian 
excursion when the starting point x0 is also equal to zero [5].

Two basic questions about an excursion are: (i) What is its shape [6, 7]? (ii) How 
much time does the excursion spend in the range [x, x+ dx] before being absorbed? 
We term this latter quantity as the residence time. The properties of the residence 
time have been addressed in the mathematics literature by local-time theorems  
[4, 8–10] that specify the time that a Brownian particle spends in the region [x, x+ dx] 
before being absorbed when the origin is reached. When x  <  x0, the distribution of this 

https://doi.org/10.1088/1742-5468/aae02a


Residence time near an absorbing set

3https://doi.org/10.1088/1742-5468/aae02a

J. S
tat. M

ech. (2018) 103205

residence time was shown to be related to the distribution of the radial distance of a 
two-dimensional Brownian motion [9, 10]. If the particle wanders in a finite domain 
with reflection at the domain boundary and absorption at a given point (or points) 
within the domain, the residence time at each site is related to the first-passage time 
to the absorbing set [11–13]. This general formalism allows one to compute both the 
average residence time and the distribution of residence times at a given location.

While the consequences of local-time theorems are profound, the mathematical 
literature is sometimes presented in a style that is not readily accessible to the commu-
nity of physicists who study random walks, and some of the results derived in [11–13] 
are extremely general in their formulation. In this work, we investigate residence-time 
phenomena for both continuum diusion and the discrete random walk by using simple 
ideas and approaches from first-passage processes. We focus on cases where the particle 
is eventually absorbed at a specified boundary (e.g. one specific side of an interval) and/
or starts close to this boundary. Some of these situations have been treated previously 
in [14], by a more formal approach than that presented here.

In section 2.1, we first derive the average residence time within the interval [x, x+ dx] 
in continuum diusion, by solving the relevant diusion equation. We extend this 
approach to: (a) biased diusion on the semi-infinite line (section 2.2), and (b) unbi-
ased diusion in a finite domain [0,L], with the condition that the particle is eventu-
ally absorbed at x  =  0 (section 2.3). We then determine the average residence time in 
general spatial dimension in the domain exterior to an absorbing sphere of radius a 
(section 2.4).

We then turn to the corresponding discrete system of a nearest-neighbor symmetric 
random walk that starts at x0  =  1 and is absorbed when x  =  0 is reached. The analog of 
the residence time is the number of times that the walk revisits a given point x before 
it dies at x  =  0. We write the total number of steps of this random walk—which is 
necessarily odd—as 2n  +  1. In section 3, we use generating function methods to derive 
the average number of visits to a given site for a symmetric random walk on the semi-
infinite line. For fixed n, we will show that the average number of times that x  =  1 is 
revisited equals 3n/(n+ 2). By averaging this quantity over the total number of steps 
of the walk, we will show that there are, on average, 2 revisits to x  =  1. Moreover, 
the average number of times that the random walk visits a site at x  >  1 equals 4 for 
any x  >  1. These results match those found in continuum diusion in the analogous 
geometry. Finally, in section 4, we determine the time when a walk first revisits x  =  1, 

x

x

x0 t

T

dx

0

Figure 1. Schematic trajectory of a diusing particle in space time that starts at 
x0 and is absorbed at time T0 (square). The time T (x) that the particle spends in 
[x, x+ dx] is indicated by the colored segments.
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when it starts at x  =  1 and is eventually absorbed at x  =  0. We give some concluding 
comments in section 5.

2. Residence time for diusion

2.1. Isotropic diusion on the semi-infinite line

Consider a particle with diusion coecient D that starts at x0 and is absorbed when 
x  =  0 is reached. For such a particle, the image method gives the probability density 
for the particle to be at position x  >  0 as [15, 16]

P (x, t) =
1√
4πDt

[
e−(x−x0)2/4Dt − e−(x+x0)2/4Dt

]
. (1)

The time T (x) that the particle, which starts at x0, spends in the range [x, x+ dx] 
before being absorbed at x  =  0 (figure 1) is simply the integral of the probability den-
sity over all time times dx (see [2, 3, 17–19] for related approaches). Performing this 
integral, with P (x, t) from equation (1), the residence time T (x) is given by

T (x) = dx

∫ ∞

0

dt P (x, t) =





x

D
dx x < x0,

x0

D
dx x > x0.

 (2)

To illustrate this result, we present simulations for a nearest-neighbor random walk 
that starts at: (a) x0  =  1 and (b) at x0  =  10 in figure 2. As a function of the number of 
walks in the ensemble, T (x) slowly converges to the asymptotic time-independent value 
in equation (2). A curious feature of this residence-time data is that it becomes erratic 
for large x, as shown in figures 2(c) and (d). We can understand the origin of these large 
fluctuations by the following rough argument: for a diusing particle that starts at x0, 

the probability S(t) that it survives until time t is S(t) = erf
(
x0/

√
4Dt

)
� x0/

√
4Dt 

for t → ∞ [16]. For M random walks, we estimate the longest lived of them by the 
extreme-statistics criterion S(tmax) � 1/M [20, 21], which states that one out of 
M walks survives until at least time tmax. This criterion gives tmax � (Mx0)

2/4D. 
Correspondingly, the maximal range reached by an ensemble of M random walks is, 
roughly, xmax ∼

√
Dtmax ∼ Mx0.

We now use this estimate to determine the large-x fluctuations in figures 2(c) and 
(d). To obtain an accuracy of, say, 10%, in N(x), the number of times that the lattice 
site at x is visited by a random walk, we need roughly 100 walks to reach this value of 
x. Since xmax scales linearly in the number of realizations, roughly m  =  100 walks will 
reach a distance x = Mx0/m. For example, for 25 000 walks starting at x0  =  1, roughly 
100 of them will reach x  =  250. Thus up to x ≈ 250, the variation in N(x) should be 
smaller than 10%, and beyond this point fluctuations should become progressively more 
pronounced. This estimate is consistent with the data of figures 2(c) and (d).

The approach given here can be readily extended to any situation where the spatial 
probability distribution can be computed explicitly. We now investigate three such 

https://doi.org/10.1088/1742-5468/aae02a
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(c) diusion exterior to an absorbing sphere in general spatial dimension d.

2.2. Biased diusion on the semi-infinite line

Suppose that a diusing particle also experiences a constant bias velocity −v that 
systematically pushes the particle towards the origin, so that the average time for the 
particle to reach the origin is finite. For a diusing particle that starts at x0, its prob-
ability density can be obtained by the image method [15, 16], and is given by

P (x, t) =
1√
4πDt

[
e−(x−x0+vt)2/4Dt − e−vx0/D e−(x+x0+vt)2/4Dt

]
. (3)

Notice that the magnitude of the image particle is dierent from that of the initial par-
ticle, while the velocities of the initial and image particles are the same.
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Figure 2. Simulation results for N(x), the average number of times that a random 
walk visits x when it starts at: (a) x0  =  1, and (b) x0  =  10. Here N(x) is the discrete 
analog of the residence time T (x). (c) & (d): The same data as in (a) and (b) over 
the full range of x.
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We again integrate this expression over all time and obtain, for the time that the 
particle spends in [x, x+ dx] before it dies:

T (x) =





dx

v

[
1− e−vx/D

]
x < x0,

dx

v
e−vx/D

[
evx0/D − 1

]
x > x0.

 (4a)

For v → 0, equation (2) is recovered, while in the opposite limit of v → ∞, (4a) reduces 
to

T (x) →





dx

v
x < x0,

dx

v
e−v(x−x0)/D x > x0.

 (4b)

As one might expect, the time spent in [x, x+ dx] with x  <  x0 is just that of a ballistic 
particle, while it is exponentially unlikely for the particle to reach the classically forbid-
den region x  >  x0 for large Péclet number, vx/D.

2.3. Diusion in a finite interval

Suppose that an isotropically diusing particle is constrained to remain within the 
interval [0,L] and is eventually absorbed at x  =  0. We again want the time T (x) that 
the particle spends in [x, x+ dx] before it dies. As in the previous two subsections, we 
need the spatial probability distribution for a diusing particle with absorbing bound-
ary conditions at 0 and at L. A straightforward computation of this distribution is 
unwieldy, as it involves either an infinite Fourier series or an infinite number of images.

However, we can avoid this complication by noticing that we only want the integral 
of the probability distribution over all time, which corresponds to its Laplace transform 

at Laplace variable s  =  0. The Laplace transform satisfies sP̃ − δ(x− x0) = DP̃xx, where 
P̃  denotes the Laplace transform and the subscript denotes partial dierentiation. For 
s  =  0, this reduces to the Laplace equation

DP̃xx = −δ(x− x0).

We solve this equation separately in the subdomains x  <  x0 and x  >  x0, impose the 
boundary conditions, continuity of the solution at x  =  x0, and the joining condition 

D
(
P̃x|> − P̃x|<

)
= −1 to give, after standard steps,

P̃ =
x<

D

(
1− x>

L

)
, (5)

where P̃x|> is the derivative just to the right of x0 (and similarly for P̃x|<), and 
x< = min(x, x0), x> = max(x, x0).

Finally, to obtain T (x), we need to multiply the above distribution by the prob-
ability that the particle eventually exits the strip at x  =  0, which is simply 1− x

L
. Thus 

we have

https://doi.org/10.1088/1742-5468/aae02a
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T (x) = dx

∫ ∞

0

dt P (x, t)
(
1− x

L

)
= P̃ (x, s = 0)

(
1− x

L

)
dx,

=




x

D

(
1− x0

L

)(
1− x

L

)
dx x < x0,

x0

D

(
1− x

L

)2

dx x > x0.

 (6)

The maximum residence time occurs at x  =  x0 for x0  <  L/2 and then ‘sticks’ at x = L/2 
for x0 � L/2, with a cusp always occurring at x  =  x0 (figure 3). In the limit L → ∞, we 
recover the result (2) for diusion on the semi-infinite line.

2.4. Diusion exterior to a sphere in dimension d  >  2

We now determine the residence time for a diusing particle that wanders in the region 
exterior to an absorbing sphere of radius a, a geometry that is the analog of the semi-
infinite system in one dimension. Without loss of generality, we take the initial condi-
tion to be a spherical shell of unit total probability at radius r0. We first treat the case 
of spatial dimensions d  >  2 and then the special case of d  =  2.

For general d, we need to solve the Laplace equation

D∇2P̃ = − 1

Ωd r
d−1
0

δ(r − r0), (7)

where Ωd is the surface area of a d-dimensional unit sphere and r0 is the radial coordi-
nate of the starting point. Because of the spherically symmetric source term, angular 

coordinates are irrelevant. We therefore separately solve P̃ ′′ + d−1
r
P̃ ′ = 0 in the subdo-

mains a  <  r  <  r0 and r0  <  r, and then impose the absorbing boundary condition at r  =  a 
and the joining condition by integrating (7) over an infinitesimal interval that includes 
x0. The result of these standard manipulations is

P̃ (r) =
1

D(2− d)Ωd

[(r<
a

)2−d

− 1

]
r2−d
> . (8)

(a) (b) (c)

Figure 3. The residence time density T (x)/dx for a diusing particle that is 
constrained to remain within the interval [0,L] until it exits at x  =  0. Shown are 
the cases: (a) x0  =  0.25L, (b) x0  =  0.5L and (c) x0  =  0.75L.

https://doi.org/10.1088/1742-5468/aae02a
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To obtain T (r), the residence time in a shell of radius r and thickness dr, we again 
need to multiply the above expression by the probability that the particle eventually 
hits the sphere, which, for d  >  2, is simply (a/r)d−2 [16]. Thus we have

T (r) = Ωd r
d−1P̃ (r)

(a
r

)d−2

dr,

=




dr

D(d− 2)

(a
r

)d−2[
1−

(a
r

)d−2]rd−1

rd−2
0

r < r0,

dr

D(d− 2)

(a
r

)d−2[
1−

( a

r0

)d−2]
r r > r0.

 

(9)

Two representative results are shown in figure 4. For large spatial dimension, a particle 
that eventually hits the sphere of radius a must do so quickly. Thus the residence time 
in the domain r  >  r0 must necessarily be small, as shown in figure 4(b) for d  =  5.

In spatial dimension d  =  2, the result analogous to equation (8) is

P̃ (r) =
1

2πD
ln

r<
a
. (10)

In distinction to the cases of d = 1 and d > 2, P̃ (r) is constant for r > r0. Since a 

diusing particle always reaches the absorbing sphere in d  =  2, we immediately have 

T (r) = 2πrP̃ (r) dr.

3. Visitation by a discrete random walk

We now investigate the corresponding residence time for a symmetric random walk in 
the semi-infinite one-dimensional domain [0,∞]. The walk starts at lattice site x0 and 
is absorbed when it first reaches x  =  0. The analog of the residence time is N(x), the 
number of times that the random walk visits site x (excluding the initial visit if x  =  x0) 
before the walk dies. We use the generating function approach to derive this quantity 
for the case of x0  =  1.

(a) (b)

Figure 4. The residence time density T (r)/dr for a diusing particle that starts at 
r0  =  10 exterior to a sphere of radius 1 in: (a) d  =  3 and (b) d  =  5.

https://doi.org/10.1088/1742-5468/aae02a
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3.1. Average number of revisits to x  =  1

For a random walk that starts at x0  =  1 and is absorbed at x  =  0, the number of steps 
in the walk is necessarily odd. For convenience, we write this number as 2n  +  1, with 
n an arbitrary non-negative integer. We define A(n, k) as the number of random-walk 
paths that start at x0  =  1, take the first step to the right (thus upward in the space-time 
representation of figure 5), and make k revisits to x  =  1, before dying at the (2n+ 1)st 
step. The number of such paths was found in [22] and is given by

A(n, k) =
k (2n− k − 1)!

(n− k)!n!
, (11)

which happens to be directly related to the triangular Catalan numbers [23, 24]. To 
compute the average number of revisits to x  =  1, we will need P(k |n), the conditional 
probability for a path to make exactly k revisits to x  =  1 before dying at step 2n  +  1. 
This probability is

P(k |n) = A(n, k)/Cn, (12)

where Cn = 1
n+1

(
2n
n

)
 is the nth Catalan number [25], which counts the total number of 

random walks of 2n steps that start at x  =  0, remain in the region x � 0, and return to 
x  =  0 at step 2n. For what follows, we will also need

P (n) = Cn/2
2n, (13)

the probability that a random walk first returns to its starting point at step 2(n  +  1). 
Note the shift n → n+ 1 to ensure that the walk always remains above x = 0.

From equations (11) and (12), we have

P(k |n) = k (2n− k − 1)! (n+ 1)!

(n− k)! (2n)!
= k

(
n+ 1

k + 1

)/(
2n

k + 1

)
. (14)

Thus the number of revisits to x  =  1, averaged over all walks of 2n  +  1 steps is given by

〈k〉n =
∞∑
k=1

kP(k |n). (15)

Using expression (14) for P(k |n) in the above average, we obtain the remarkably 
simple result

x

t

Figure 5. Space-time trajectory of a one-dimensional random walk of 2n  +  1  =  13 
steps that starts at x  =  1 and makes 3 revisits to x  =  1 (red circles) before being 
absorbed at x  =  0 (square). This path contributes to A(6, 3) (see Eq. (11)).

https://doi.org/10.1088/1742-5468/aae02a
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〈k〉n =
∞∑
k=1

k2

(
n+ 1

k + 1

)/(
2n

k + 1

)
=

3n

n+ 2
. (16)

For long paths of 2n  +  1 steps, there are, on average, 3 revisits to x  =  1, after which 
the walk immediately dies.

We now determine the number of revisits to x  =  1 upon also averaging over all n. 
This double average is

〈〈k〉〉 =
∑
n,k�1

k P(n, k).
 (17)

Here P(n, k) is the joint probability that the walk first reaches x  =  0 at step 2n  +  1, and 
the walk makes k revisits to x  =  1 within 2n  +  1 steps. This joint probability is

P(n, k) = P(k |n)P (n) =
A(n, k)

Cn

Cn

22n
=

A(n, k)

22n
. (18)

The average in (17) may now be expressed in terms of the generating function for 
P(n, k):

g(x, y) =
∑
n,k�1

P(n, k) xn yk =
∑
n,k�1

1

22n
A(n, k) xn yk,

=
∑
n,k�1

1

22n
(2n− k − 1)! k

(n− k)!n!
xn yk,

=
xy

2− xy + 2
√
1− x

.

 

(19)

Which was derived in [22] (see also [26]). In terms of the generating function, we imme-
diately obtain the remarkably simple result

〈〈k〉〉 =
∑
n,k�1

k P(n, k) xn yk
∣∣∣
(1,1)

= y
∂g

∂y

∣∣∣∣
(1,1)

= 2. (20)

There are, on average, 2 revisits to x  =  1 in the ensemble of all random walks that start 
at x  =  1, take their first step to the right, and are eventually absorbed at x  =  0.

We can extend equation (16) to higher integer moments of the average number of 
revisits to x  =  1 for walks of 2n  +  1 steps. The first few of these fixed-n moments are:

〈k2〉n =
n(13n− 1)

(2 + n)(3 + n)
,

〈k3〉n =
15n2(5n− 1)

(2 + n)(3 + n)(4 + n)
,

〈k4〉n =
541n2 − 196n2 + 11n2 + 4n

(2 + n)(3 + n)(4 + n)(5 + n)
,

 

(21a)

etc. We can similarly compute the higher integer moments of the number of revisits to 
x  =  1, averaged over all walk lengths, and the first few are:

https://doi.org/10.1088/1742-5468/aae02a
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〈〈k2〉〉 = 6 〈〈k3〉〉 = 26 〈〈k4〉〉 = 150 〈〈k5〉〉 = 1082, (21b)

etc. Parenthetically, these numbers are also sequence A000629 in the On-Line 
Encyclopedia of Integer Sequences [27]

In the next section, we will also need the generating function when the first step of 
the walk can equiprobably be to the right or to the left. This leads to the possibility 
that the total number of steps 2n  +  1  =  1, i.e. n  =  0, for which the number of revisits to 
1 equals zero. The generating function for the joint probability P(n, k) for this ensemble 
of random walks therefore is

G(x, y) =
∑
n,k�0

P(n, k) xn yk =
1

2

[
1 + g(x, y)

]
,

=
1

2

(
1 +

xy

2− xy + 2
√
1− x

)
,

 
(22)

where the term 1 in the parenthesis comes from the walk that initially steps to the left 

and is immediately absorbed. Notice that y ∂G
∂y

∣∣
(1,1)

= 1, which is consistent with (19): 
half of all paths die immediately upon the first step, and thus never return to 1, while 

the other half return twice, on average, as derived in (20).

3.2. Average number of visits to x  =  2

We now extend the above approach to a walk that starts at x  =  1 and is constrained 
to take its first step to the right, to determine the number of visits to x  =  2. For this 
purpose, we define three random variables that characterize this set of walks:

 •  2n  +  1, the total number of steps in the walk when it dies; 

 •  k, the number of visits to x  =  2 (including the first visit); 

 •  �, the number of excursions that lie above the level x  =  1.

Since an excursion is a path that lies between two successive returns to x  =  1 (and thus 
always remains above x  =  1), the minimal length excursion is the path 1 → 2 → 1.

We want the ensemble average of the number of visits to x  =  2. To facilitate this 
calculation, it is useful to define the three-variable generating function

G(x, y, z) =
∑
n�1

∑
1���n

∑
��k�n

P (n, k, �) xn yk z�,
 (23)

which encodes all paths according to (n, k, �). We also label each successive excursion 
of the path above x  =  1 by the index 1 � i � �, and we introduce the variables 2mi and 
ji, respectively, for the number of steps in the ith such excursion, and the number of 
returns to x  =  2 in this excursion (figure 6). As shown in this figure, 2mi counts the 
number of steps that lie above x  =  2. Thus for an excursion that goes from x  =  1 to 
x  =  2 and immediately returns to x  =  1, mi  =  0. In addition, ji counts the number of 
revisits to 2, so that the total number of visits to x  =  2 in the ith excursion above x  =  1 
is ji  +  1. The variables ji, mi, and � must satisfy the geometric constraints (see figure 6):
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j1 + j2 + · · ·+ j� + � = k,

m1 +m2 + · · ·+ml + � = n,

ji � mi.

 (24)

Using these definitions, the three-variable generating function G(x, y, z) can be func-
tionally expressed in terms of G(x, y) defined in equation (22) as (see the appendix for 
details of this derivation)

G(x, y, z) =
∑
��1

P (�) [x y z G(x, y)]� ,
 (25)

where P (�) is the probability that there are � excursions above x  =  1 averaged over 
walks of any length, which is also the distribution of the number of returns to x  =  1.

One may compute P (�) as the marginal of the joint distribution of the number of 
steps and the number of excursions:

P (�) =
∑
n�1

P(n, �) =
∑
n�1

1

22n
A(n, �). (26)

The above sum starts at n  =  1 because we are imposing the condition that the first 
step of the walk is to the right. Consequently the three-variable generating function 
in (25) will ultimately be expressed in terms of the restricted generating function g. 
Substituting Equation (26) in (25) and comparing the resulting formula with the first 
line of  (19), we obtain

G(x, y, z) =
∑
��1

P (�)
[
x y z G(x, y)

]�

=
∑
��1

∑
n�1

1

22n
A(n, �)

[
x y z G(x, y)

]�

= g
(
1, x y z G(x, y)

)
.

 

(27)

It is now straightforward to calculate of 〈k〉. From the definition the generating func-
tion (23), we have

j

2 2m32m1
t

2
1

x
j j
1
=3 =3

32
=1

2m

Figure 6. Schematic space-time trajectory of a random walk that starts at x  =  1 
and has three revisits to x  =  1 (red circles) and k  =  10 visits to x  =  2 (green squares). 
There are � = 3 excursions above x  =  1. Immediately after a revisit to x  =  1, the 
next revisit to x  =  2 is shown as a solid green square.
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〈k〉 = y
∂G

∂y

∣∣∣
x=y=z=1

,

= y
∂g

∂y

∣∣∣
x=y=1

[
G(1, 1) + y

∂G

∂y

∣∣∣
x=y=1

]
,

= 2× (1 + 1) ,

= 4.

 

(28)

A random walk thus visits x  =  2 twice as often as x  =  1, as already predicted by the 
continuum solution (2).

3.3. Average number of visits to x  >  2

The ensemble average of the number of visits to a given level x  >  2 may be readily 
computed by induction. We start by calculating the average number of visits to x  =  3, 
and it will become apparent that this approach applies for any x  >  2. Each time a ran-
dom walk reaches x  =  2, there are two possibilities at the next step: the walk may step 

forward to x  =  3 or step back to x  =  1. Let us first assume that the walk goes to x  =  3, 

which occurs with probability 1
2
. Each time this event occurs, we now ask: what is the 

average number of visits to x  =  3 (including this first visit) before the walk returns to 
x  =  2? 

With probability 1
2
, the walk may immediately return to x  =  2, in which case, there 

is one visit to x  =  3. On the other hand, if the walk steps to x  =  4, we have the same 
situation as that discussed in section 3.1. Namely, if we view x  =  3 as the starting point, 
we know that there are 2 revisits to x  =  3 and thus 3 visits to x  =  3, on average, before 
the walk steps back to x  =  2. Thus each time x  =  3 is reached, there are

(1
2
× 1

)
+
(1
2
× 3

)
= 2

two visits, on average, to x  =  3.
For a walk that reaches x  =  2, the average number of visits to x  =  3 for this visit to 

x  =  2 therefore is
(1
2
× 0

)
+
(1
2
× 2

)
= 1.

The first term corresponds to the contribution from a walk that steps from x  =  2 to 
x  =  1 without hitting x  =  3, and the second term is the contribution when the walk 
steps from x  =  2 to x  =  3.

To summarize, each time the walk visits x  =  2, there is, on average, one visit to 
x  =  3, before the walk is at x  =  2 again. Clearly, this reasoning that determines the 
number of visits to x  +  1 for each visit to x applies inductively for any level x  >  2. Thus 
we conclude that the average number of times that a random walk visits a given level 
x  >  2, equals 4, in agreement with the simulation results in figure 2(a). Clearly, our 
argument also applies for any starting point of the walk x0, as long as we restrict to 
coordinates with x  >  x0  +  1.
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4. Time of the first revisit

In addition to the number of revisits to x  =  1 by a random walk excursion that starts 
at x  =  1 and is eventually absorbed, we are interested in the time at which the first 
revisit occurs. This time characterizes the shape of the space-time trajectory of a ran-
dom walk. Since the walk starts at x  =  1 and ends at x  =  0, its space-time shape is 
essentially that of a Brownian excursion—a Brownian trajectory that starts at x  =  0, 
remains above x  =  0 for all 0  <  t  <  T, and returns to x  =  0 for the first time at t  =  T. 
The average shape of a Brownian excursion has been shown to be semi-circular [6, 7]. 
From this shape, we might anticipate that the first revisit to x  =  1 is unlikely to occur 
for t near T/2 because such a revisit involves a large fluctuation from the average tra-
jectory. Instead, it seems more likely that the first revisit to x  =  1 will occur either near 
the beginning or the end of the excursion, a feature that evokes the famous arcsine laws 
[1, 4]. We now show that this expectation is correct.

4.1. Time of first return to 1 for fixed walk length n

Consider a random walk that starts at x  =  1, takes its first step to the right, and is 
absorbed at x  =  0 after T  =  2n  +  1 steps. What is the probability P (2m |T ) that such 
a walk revisits x  =  1 for the first time at step τ1 = 2m? Since the walk necessarily revis-
its x  =  1 at step 2n by definition, and the walk could revisit x  =  1 immediately after 2 
steps, m satisfies the constraint 1 � m � n. The number of walks that revisit x  =  1 after 
2m steps may be obtained by decomposing the full path into two constituents (figure 
7):

 •  Excursions of (2m− 2) steps that wander in the domain x � 2—the number of 
such paths is Cm−1; 

 •  Excursions of (2n− 2m) steps that wander in the domain x � 1—the number of 
such paths is Cn−m.

The first part accounts for the first return to x  =  1 at step 2m and the second part 
accounts for the remaining path of 2n  −  2m steps.

2

t

x

1

Figure 7. Space-time trajectory of a one-dimensional random walk of 2n + 1 = 19  
that starts at x  =  1 and first revisits x  =  1 at step 2m  =  6 (solid circle). Subsequent 
revisits to x  =  1 are indicated by open circles and the walk is absorbed when it first 
reaches x  =  0 (square).
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The required probability is then simply the product of these two numbers divided 
by the total number of walks that start at x  =  1 and are absorbed after 2n  +  1 steps, 
which is Cn. Therefore

P (2m |T ) = Cm−1 Cn−m

Cn

=
n+ 1

m (n−m+ 1)

(
2m−2
m−1

) (
2n−2m
n−m

)
(
2n
n

) .

 (29)
Because P (τ1 = 2m |T = 2n+ 1) is symmetric under m → n+ 1−m, the average value 
of τ1, the time of the first revisit, conditioned on T  =  2n  +  1, can be immediately seen 
to be

〈τ1〉n = n+ 1. (30)
The above result P (τ1 = 2m |T = 2n+ 1) is symmetric under m → n+ 1−m. The 
above result may also be obtained by direct calculation. Because of the bimodal nature 
of the underlying probability distribution, the average value is very dierent from the 
typical value. The average corresponds to the minimum of the probability distribu-
tion (figure 8(a)), just as in the arcsine law for the time of the last zero of a Brownian 
motion.

4.2. Time of first return to 1 for any n

From the conditional probability P (2m |T ), we may now compute the joint probability 
P (2m,T ):

P (2m,T ) = P (2m |T ) P (T )

=
Cm−1 Cn−m

Cn

× Cn

22n
=

Cm−1 Cn−m

22n
.

 (31)

With this result, we can readily obtain the distribution P (2m), the probability for a 
path of any length to perform an excursion of 2m steps that lies above x  =  2 between 
steps 1 and 2m  −  1 (with the first step constrained to go from x  =  1 to x  =  2):

Figure 8. (a) Conditional distribution P (τ1 = 2m |T = 2n+ 1) for n  =  10. Note 
that typical (i.e. most likely) values of τ1 are 2 and 2n, while the average value is 
〈τ1〉 = n+ 1. (b) Distribution P (τ1 = 2m) of the first revisit time to 1.
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P (2m) =
∑
n�m

P (2m,T )

= Cm−1

∑
n�m

Cn−m

22n
=

Cm−1

22m−1
.

 

(32)

This distribution is normalized, because 
∑

m�1Cm−1/2
2m−1 = 1. The Markovian nature 

of the random walk means that there is no memory between what happens after step 
2m and the probability that the walk first revisits x  =  1 at step 2m. Hence P (2m) is 
simply the probability that a symmetric random walk first returns to its starting point 
at step 2m, which asymptotically scales as m−3/2 [1, 4, 16]. Because of this scaling, the 
average time for the first return, 〈〈τ1〉〉 =

∑
m 2mP (2m), is infinite, even though P (2m) 

is peaked at m  =  1 (figure 8(b)).

5. Summary

We showed how standard first-passage methods can be used to determine the average 
time that a diusing particle spends in a given spatial range when the particle starts at 
some point x0 and dies when it reaches an absorbing point or set. We also derived corre-
sponding results for the discrete random walk, where the analog of the residence time is 
the number of times that a given point is visited. For continuum diusion, the average 
residence time in a given spatial range is simply the integral of the probability distribu-
tion over all time in this same range, with the given initial condition and the absorbing 
boundary condition. This perspective allowed us to also treat, in a relatively simple 
manner: (a) biased diusion, (b) diusion in a finite interval (conditioned on absorption 
at a given side of the interval), and (c) diusion in general spatial dimensions. It is also 
worth emphasizing the time integral of the probability distribution at a given point is 
essentially just the electrostatic potential at this point. This correspondence provides a 
simple way to calculate residence times and to understand the dependence of the resi-
dence time on basic parameters.

The main qualitative feature of the residence time at a given point is that it van-
ishes (often linearly) in the distance between this point and the absorber. That is, a 
diusing particle does not linger when it is close to an absorbing point. Another inter-
esting feature, almost intuitive from the analogy with electrostatics, is the fact that, 
in low dimensions (d � 3), the average residence time at any point beyond the starting 
point is constant and simply equal to the average residence time at the starting point. 
This is no longer the case for d � 4, with an abrupt transition between d  =  3 and d  =  4. 
It would be of interest to understand why this transition occurs at a spatial dimension 
that differs from that of the well known transition between recurrence and transience, 
which happens at d  =  2.

For the discrete random walk, we exploited the generating function method to 
derive parallel results for the number of times that a given lattice site is visited before 
the walk dies at the absorbing point. For a walk that starts at x0  =  1, there are, upon 
averaging over walks of all possible lengths, two subsequent visits to x  =  1 and four sub-
sequent visits to x  =  2 before the random walk dies. We also showed that the random 
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walk makes four subsequent visits to any point x � 2, on average. We also found that 
the first revisit to x  =  1 occurs near the start or the end of the path. This means that it 
is very unlikely that there will be a large deviation toward the boundary and away from 
the average position of the path near the middle of an excursion. This suggests that an 
individual Brownian excursion always remains close to its average shape. We hope to 
investigate this behavior in future work, with a view to obtaining a full characterization 
of the fluctuations around an excursion’s average semi-circular shape.
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Appendix. Relation between generating functions

Using the geometric constraints (24) in equation (23), the generating function G(x, y, z) 
can be re-expressed as

G(x, y, z) =
∞∑
n=1

n∑
�=1

n∑
k=�

P (n, k, �) xn yk z�

=
∞∑
n=1

n∑
�=1

n∑
k=�

P (�)P (n, k|�) xn yk z�,

 

(A.1)

where we use P(. . . | . . . ) to denote the conditional joint probability.
Next we write P (n, k|�) in terms of the variables mi and ji (see figure 6):

G(x, y, z) =
∞∑
n=1

n∑
�=1

n∑
k=�

∑
j1+···+j�=k−�

m1+···+m�=n−�
ji�mi

P (�)P (m1, . . . ,m�, j1, . . . , j�|�) xm1+...m�+� y j1+...j�+� z�

=
∞∑
n=1

n∑
�=1

∑
m1+···+m�=n−�

0�ji�mi

P (�)P (m1, . . . ,m�, j1, . . . , j�|�) xm1+...m�+� y j1+...j�+� z�

=
∑
��1

P (�)
∑
n��

∑
m1+···+m�=n−�

0�ji�mi

P (m1, . . . ,m�, j1, . . . , j�|�) xm1+...m�+� y j1+...j�+� z�

=
∑
��1

P (�)
∑

m1,...,m��0

m1,...,m�∑
j1,...,j�=0

[
�∏

i=1

P (mi, ji|�) xmi yki

]
(xyz)�

=
∑
��1

P (�) (xyz)�
∑

m1,...,m��0

m1,...,m�∑
j1,...,j�=0

[
�∏

i=1

P (mi, ji|�) xmi y ji

]

=
∑
��1

P (�) (xyz)�
�∏

i=1

[∑
mi�0

∑
0�ji�mi

P (mi, ji|�) xmi y ji

]
.

 

(A.2)
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We now use the fact that the random walk is a Markov process, which implies that 
P (mi, ji|�) = P (mi, ji) = A(mi, ji)/2

2mi. Therefore∑
mi�0

∑
0�ki�mi

P (mi, ji|�) xmi y ji = G(x, y).
 (A.3)

Note that G(x, y), as defined in equation (22), appears here and not g(x, y) because 
upon starting from x  =  2, when coming from x  =  1, the path is not conditioned to 
immediately move to x  =  3. In fact, the path is allowed to return immediately to x  =  1, 
as reflected in the fact that, for the ith excursion, mi may be 0.

Equation (A.2) becomes

G(x, y, z) =
∑
��1

P (�) (xyz)�
∏
1�i��

[G(x, y)] =
∑
��1

P (�) [x y z G(x, y)]� .
 (A.4)

This is equation (25) in the main text.
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