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Scaling theories of diffusion-controlled
and ballistically controlled bimolecular
reactions

Sidney Redner

Basic features of the kinetics of diffusion-controlled two-species annihilation,
A+ B — 0, as well as that of single-species annihilation, A+A — 0, and co--
alescence, A+ A — A, under diffusion-controlled and ballistically controlled

conditions, are reviewed in this chapter. For two-species annihilation, the
basic mechanism that leads to the formation of a coarsening mosaic of A- and
B-domains is described. Implications for the distribution of reactants are
also discussed. For single-species annihilation, intriguing phenomena arise
for ‘heterogeneous’ systems, where the mobilities (in the diffusion-controlled
case) or the velocities (in the ballistically controlled case) of each ‘species’
are drawn from a distribution. For such systems, the concentrations of
the different ‘species’ decay with time at different power-law rates. Scaling
approaches account for many aspects of the kinetics. New phenomena as-
sociated with discrete initial velocity distributions and with mixed ballistic
and diffusive reactant motion are discussed. A scaling approach is outlined
to describe the kinetics of a ballistic coalescence process which models traffic
on a single-lane road with no passing allowed.

1.1 Introduction

There are a number of interesting kinetic and geometric features associ-
ated with diffusion-controlled two-species annihilation, A + B — 0, and
with single-species reactions, A+ A — 0 and A+ A — A, under diffusion-
controlled and ballistically controlled conditions.

In two-species annihilation, there is a spontaneous symmetry breaking in
which large-scale single-species heterogeneities form when the initial concen-
trations of the two species are equal and spatially uniform. Underlying this
domain formation is an effective repulsion between A and B that favors seg-
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regation of particles into single-species domains. In low spatial dimension,
this effective repulsion dominates over the mixing due to diffusion. The re-
sulting spatial organization invalidates the mean-field approximation and its
corresponding predictions. Scaling approaches provide an understanding for.
the origin of this spatial organization and some of its consequences. Related

ideas can be applied to the situation where the reactants move by driven dif-.

fusive motion, the particles hopping in only one direction. Counter to natve
intuition based on Galilean invariance, the reaction kinetics with driven
diffusion is qualitatively different from that which occurs with isotropic dif-
fusion and hard-core repulsion. o

While single-species reactions are fundamentally simpler than two-species
annihilation, there is a wide range of phenomenology that is not fully ex-
plored. For example, the ‘heterogeneous’ single-species reaction, where each
reactant moves at a different rate, naturally raises new questions regard-
ing the relatior. between the initial mobility distribution and the decay rate
of different mobility ‘species’. These issues are more central when parti-
cles move ballistically, so that the initial condition is the only source of
stochasticity in the system. In spite of this simplicity, rich and unantici-
pated phenomena occur, especially for a discrete initial velocity distribu-
tion. The case of A + A — 0 with combined diffusive and ballistic motion
is particularly surprising because the concentration decay in this composite
process is faster than that of the reaction with only ballistic motion or only
diffusion. This intriguing behavior can be understood through dimensional
analysis. Finally, in ballistically driven aggregation, A;+ Aj — Aitj, scaling
arguments can be advantageously combined with analytic methods to give
a comprehensive account of the kinetics in a momentum-conserving process
and in a model that mimics traffic flow on a single-lane road.

In Sec. 1.2, the primary features that characterize the kinetics and spatial
organization in two-species annihilation are outlined. The emphasis is on
qualitative approaches that should be applicable to many nonequilibrium
phenomena. This section closes with a (necessarily incomplete) outline of
recent and not fully understood results for A 4+ B — 0 with driven diffusive
reactant motion. Section 1.3 is devoted to single-species reactions. In spite
of the wide diversity of phenomena, scaling analyses for time-dependent
population distributions provide unifying and comprehensive descriptions of
the kinetics. A number of case studies are presented, with mention of some
open questions in addition to discussions of known results. A brief summary
is given in Sec. 1.4. ‘
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1.2 Diffusion-controlled two-species annihilation

In diffusion-limited two-species annihilation, an intriguing aspect of the ki-
netics is that the density decays more slowly than the rate equation (mean-

field) prediction of 1/¢, for a random initial condition of reactants with equal

densities for the two species. This fundamental observation, first made by

Zel’dovich and coworkers [1] and independently rediscovered by Toussaint

and Wilczek [2], stimulated considerable interest and continues to foster cur-
rent research [3-11]. To appreciate the basic issues, a mean-field description
of the decay kinetics in single species reactions is outlined in the next sub-

section. A heuristic approach for the kinetics of two-species annihilation, .

which is based on the existence of large-scale spatial heterogeneity, is then
presented.

kel

1.2.1 Preliminary: mean-field theory for single-species reactions

In the single-species reaction, irreversible annihilation occurs whenever two
particles approach within a reaction radius R. To determine the decay of
the concentration within a mean-field approximation, note that in a time of
order 1/c, where ¢ = ¢(t) is the concentration, each particle will typically
encounter another particle. Consequently, in a time at « 1/kc, where k
is the reaction rate, the concentration decrement, ac, will be of order c.
Combining these gives the mean-field rate equation,

¢ 2 ac/at o« —kc?, | (1.1)

with solution ¢(t) = ¢(0)/[1 + ¢(0) kt] ~ (kt)~!. Thus the exponent of the
power-law decay is —1, and the time scale is set by k. As discussed below,
this exponent value is correct only for spatial dimension d > 4, the regime
of validity of the mean-field approach.

It is instructive to determine the scaling of the reaction rate k [2]. By
dimensional analysis of (1.1), k has units [£]?/[t]. Furthermore, k is a func-
tion only of the diffusion coefficient, D, and the particle radius, R. The only
combination of these quantities that possesses the correct units is

k o« DRI2, (1.2)

For d > 2, this ansatz agrees with the Smoluchowski theory [12], in which the
reaction rate is given by the steady-state flux towards an absorbing test par-
ticle due to the remainder of the particles in the system. However, for d<2,
(1.2) leads to the nonsensical conclusion that the reaction rate decreases with
increasing particle radius. To determine the appropriate behavior for d < 2,
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one can still apply the Smoluchowski theory, but its interpretation must be
modified. Because the incident flux is time dependent, even as t — oo, the

reaction rate now acquires a time dependence of the form k Dd/2 / ¢—d/2
for d’ < 2 and k o« D/Iln Dt for d = 2. The lack of dependence on the

particle radius is a manifestation of the recurrence of random walks [13] for

d < 2. Therefore, with respect to diffusion, the collision radius is effectively’

infinite and thus drops out of the system. Employing these reaction rates in

the rate equation gives the asymptotic behaviors appropriate for d < 2:
c(t) x (D)~%2, d<?2  c(t)x(InDt)/Dt, d=2. (1.3)

These results can also be obtained from a more microscopic, but equally
nonrigorous approach. Because of the recurrence of random walks for d < 2,
the time for a particular reaction to occur should be of order at « ¢%/D,
where £ « ¢1/¢ is the typical interparticle spacing. In this formulation,
the reaction rate does not enter in the collision time because random walk
trajectories are compact. Therefore if two reactants collide once, they will
collide an infinite number of times and the reaction rate rescales to a large
value. Consequently, for d < 2 the rate equation becomes

¢ Ac/at x — (c/D—lc_2/d) = —Dc!*?d (1.4)

with solution ¢(t) ~ (Dt)~%2. A straightforward adaptation of this ap-
proach also gives a logarithmic correction for the case d = 2. Notice that for
d = 1 the above mean-field approaches give either ¢ oc —c?/+/% or ¢ o« —c® for
the ‘effective’ rate equation. Both give the correct decay of the concentra-
tion, but neither can be rigorously justified. In fact, from i¢he exact solution
in one dimension, it may be appreciated that a polynomial rate equation
is inadequate in many respects [14], even though it can be engineered to
reproduce the correct exponents.

1.2.2 Fluctuation-driven kinetics in two-species annthilation

For d < 4, the above embellishments of the rate equation are inadequate
because single-species domains form, thus invalidating the homogeneity as-
sumption implicit in the mean-field approach. The long-time behavior of
¢(t) can be understood from the following account of local density fluctua-
tions. Roughly speaking, the difference in the number of A’s and B’s in a
finite volume of linear dimension L remains nearly constant during the time
for a particle to traverse the volume by diffusion, t; ~ L?/D. At t = 0,

this difference is of the order of the square root of the initial particle num-
ber: Ny — Np = £+/¢(0) L3/2 After a time t7 has elapsed, only the local
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majority species remains in the domain, whose number N (t) is of order

/c{0) L2, Elimination of L in favor of ¢ gives

(t) ~ No(8)/L¢ ~ 1/e(0) (DO, d<4, (1.5)

Thus a homogeneous system evolves into a continuously growing domain mo- .

saic whose individual identities are determined by the local majority species
in the initial state. At time ¢, these domains will be of typical linear dimen-
sion v/Dt, within which a single species of concentration /c(0) (Dt)~4/4
remains. .

However, for d > 4 the domains are unstable and mean-field theory ap-
plies. To justify this consider, for example, the fate of an A particle inside
a B domain of linear dimension L and local concentration ~ L~9/2. The
impurity needs L? time steps to exit the domain, during which L? distinct*
sites will have been visited. At each site, the A particle will react with a -
probability of the order of the B concentration, L~%/2, Therefore the prob-
ability that an A particle is unsuccessful in exiting a B domain is of order
L(#4=4)/2 Gince this vanishes as L — oo if d > 4, a growing domain mosaic
is eventually unstable to diffusive homogenization for d > 4.

1.2.3 Multiple microscopic lengths

The above arguments indicate that two lengths characterize the reactant
distribution in 1D: the average domain size L o« (Dt)'/? and the typical
interparticle spacing, which scales as c(t)™! t1/4 A surprising feature,
which reveals a richer structure for the reactant distribution, is that the
typical distances between AA and AB closest-neighbor pairs, £44 and {45,
grow with different powers of time for d < 3 [15]. Thé latter characterizes
the interdomain ‘gap’ that separates adjacent domains (Fig. 1.1). This gap
controls the kinetics, since each reaction event involves diffusion of an AB
pair across a gap. The different scalings of £44 and /4 p indicate that non-
trivial modulation exists in the reactant concentration over the extent of a
domain. -

To determine the evolution of £4p in 1D, consider the time dependence
of the concentration of closest-neighbor AB pairs, cap: Typical AB pairs
react in a time at ~ £ g/D. Since the number of reactions per unit length
is of order c4p, the time rate of change of the overall concentration is

ac/at~ —ca/ (£45/D). (1.6)
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Fig. 1.1. Definition of fundamental interparticle distances in 1D: the typical dis-
tance between closest-neighbor same species particles, £44, the distance between

closest-neighbor unlike species, £43, 1.e., the gap between domains, and the typical
domain length, L. o

The Lh.s. is known from c¢(t) itself, while in 1D c4p (Dt)~1/2, since there
is one AB pair per domain of typical size (Dt)l/ 2, These give -

fap o c(0)Y* (Dt)3/8, (1.%3

Thus at least three lengths characterize the reactant distribution: in addition
to the average domain size and the typical interparticle spacing, there is the
interdomain gap £aB 3/8, The inequality £48 > £44 is a manifestation
of the effective repulsion between opposite species.

The above results can be generalized to spatial dimension 1 < d < 2.
The time dependence of £4p still follows by applying (1.6), since it holds
whenever random walks are compact. Under the assumption of a smooth
domain perimeter of linear dimension #(d=1)/2 and particles in the perimeter
zone separated by a distance of the order of £4p, irrespective of identity, it
is straightforward to obtain |

(d+2) _ d(d+3)
£ap o< t4(a+1) CAB(t) ox t 4+l (1.8)

which gives f4p ~ $1/3 and cap(t) ~ t=5/8 for d = 2. For d > 2, the
transience of random walks implies that two opposite-species particles within
a region of linear dimension £4p will react in a time of order Effl p (rather
than ¢% 5). Consequently, (1.6) should be replaced by ac/at = —can /44 .
This relation, together with the assumption of a smooth interfacial region
between domains, gives, for d > 2,

‘ d+2 _di45d—4
lap & tT-T) cap &t H2E-T) (1.9)

These coincide with (1.8) at d = 2, but yield cap =~ t~! and 4B = t1/4 for
d = 3. The latter represents the limit at which £4p is of the same order
as £44. Thus the nontrivial scaling of interparticle distances disappears in
three dimensions and above.
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Fig. 1.2. (a) Simulation data for the scaled microcanonical density profile of a
single domain, for A + B — 0 with isotropic diffusion, at ¢ = 1.5 = 194 (A),
t = 1.518 = 1477 (), and ¢t = 1.5%% = 11222 (o). Plotted is the scaled local
concentration, p(z) = c(z,t)t!/* (in arbitrary units) vs. z = «/L(t). Here & L(2)
defines the extent of the domain, and z is a local coordinate with respect to the
center of the domain. (b) Idealized trapezoidal form. In the domain core the
density is relatively constant, while the dénsity vanishes linearly as a function of
the distance to the domain edge.
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1.2.4 Domain profile and interparticle distance distribution

A revealing picture of the reactant distribution is obtained from the average
concentration of a single domain [15]. Consider the ‘microcanonical’ density
profile, pM )(:1:), defined as the probability of finding a paiﬁicle at a scaled
distance z from the domain midpoint when each domain is ﬁ}sp scaled to a

fixed size (Fig. 1.2(a)). The resulting distribution is similar to the long-time

probability distribution for pure diffusion in a fixed-size absorbing domain.
fined by absorbing boundaries that recede stochastically as v/t —the typieal
domain size. While the probability distribution inside such a stochastically
evolving domain has not been solved, one can solve the reIéi‘i:"ed problem
of a particle inside a deterministically growing domain [-L(t); L(t)] with
L(t) « t1/2, The adiabatic approximation marginally applies i1 this case
[16], and the density profile has the form cos[rz/L(?)]. This simple-mindéd
modeling provides a useful framework for understanding the domain profile
in the reacting system.

Although determined by interactions between opposite species, this inho-
mogeneous domain profile governs the distribution of interparticle distances
between the same species. Particles are typically separated by a distance
that grows as t1/4 within the core of the domain, but systematically become
sparser as the domain interface is approached. The subregions of ‘core’ and
‘interface’ each comprise a finite fraction of the domain. These essential
features of the profile may be accounted for by a trapezoidal form, Fig.

1.2(b),

p(z) = c(z, t) 114 = { por 2] = 27 (1.10)

po(l—1z]), 2" <|z|<l-e

Here z = 2/L(t) is the scaled spatial coordinate, where & € [—L(t), L(t)],
and po and z* < 1 are constants. The upper limit for |z| in the second line
of (1.10) reflects the fact that there are no particles within a scaled distance
of € = £ap/L(t) ~ t~'/8 from the domain edge. The linear decay of the
concentration near the domain edge arises from the finite flux of reactants
that leave the domain. Thus, the local nearest-neighbor distance is p(z)™,
where p(z) = po in the core (|z| < z*), and p(z) = po(1 — |2|) near the
boundary; the time dependence of the reduced moments of the AA distance
distribution are then
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1 00 1/n

Z% 1—e 1/n
0 Po 2z Py (1—2z)n

t1/4, n <1
~{ Y4 n e, n=1; (1.11)
t(3n——1)/8n, n>1. ,

For n < 1, the dominant contribution to M, originates from the py™ term
in the parentheses, while for n > 1 the term involving pg™(1 — 2)~" dom-
inates, the second term giving a logarithmic singularity at the upper limit
for n = 1. Thus the large-scale modulation in the domain profile leads to
moments M, (t) that are governed by both the gap lengths, £4p and £44.
As n — oo, the reduced moment is dominated by the contribution from the
sparsely populated region near the domain periphery where nearest-neighbor
particles are separated by a distance of order t3/8,

1.2.5 Driven diffusive motion

A recent surprising development has been the discovery by Janowsky [17]
that the concentration decays as t~1/% when particles move by driven diffu-
sion. In this mechanism, each particle attempts to move only to the right
and actually moves only if the target site is at that instant unoccupied by a
particle of the same species. If the incident particle lands on a site already
occupied by an opposite species particle, annihilation occurs. By Galilean
invariance, one might anticipate that c(t) o« t~%/%, as in A 4+ B — 0 with
isotropic diffusion and with the same hard-core exclusion.

A rough argument for the t~1/3 decay with driven diffusion follows from a
description of the dynamics of a single AB interface [18] using the continuum
inviscid Burgers’ equation. Consider the ‘separated’ initial condition with
ca(z,t = 0) = ©40(~z) and cp(z,t = 0) = ¢pO(x), where O(z) is the
Heaviside step function. By applying mass balance as the interface moves,

one finds that the interfacial velocity is the following function of the initial
densities: | |

vAB={ 1-2e5(vV2-1), 24 > S5(VZ—1);

=@ +7h)/(eates), Ea<as(vZ-1. O
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Fig. 1.3. Simulation data for the scaled microcanonical density profiles for A+ B —
0 with driven diffusive motion at ¢ = 1.5'7 = 985 (A), t = 1.5%° = 3325 (), and
t = 1.5% = 11222 (o). Plotted is the scaled local concentration, ¢(z,t) /3 (in
arbitrary units) vs. z/L(?). v ‘

For a random, equal-density, initial condition, this leads to a domain
length growing as dL/dt « |vap —vBa4l, which from (1.12) is proportional to
the density difference across the interfaces. These differences are typically
of the order of the domain densities themselves, leading to dL/dt « caB —
CBA x ¢(t). Since the typical concentration in a domain of length L is of
order 1/v/L, the domain size should therefore grow as L ~ t2/3 while the
concentration should decay as c(t) ~ t~1/3,

A more microscopic description emerges from the scaled microcanonical
domain profile in which the length is rescaled by t=2/3 and the density by
t1/3 (Fig. 1.3). This profile exhibits good data collapse over most of the
domain, except near the trailing edge. The departure from ‘bulk’ scaling
appears to stem from diffusive boundary layers of size Vt. The relative
extent of this boundary layer with respect to the domain length decreases
as t™1/6 in qualitative agreement with numerical simulations. Janowsky
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[19] has recently obtained similar results for the domain profile, but gives a
somewhat different interpretation.

1.3 Single-species reactions

The kinetics of homogeneous diffusion-controlled single-species annihilation,
A+ A — 0, and coalescence, A+ A — A, is now relatively well understood.

For spatial dimension d > 2, the kinetics is accounted for by the rate equa--

tion, which predicts that c(t) o< t~!. For d < 2, suitably modified rate
equations and the Smoluchowski approach both predict that c(t) o t=d/2,
but with logarithmic corrections appearing for d = 2. In 1D, exact solutions,

based on the image method [20], an occupation number formalism [21], or
a mapping onto the kinetic Ising-Glauber model at zero temperature [22] °

provide definitive results for single-species annihilation. Accompanying the
anomalous kinetics for d < 2 is a spatial ‘ordering’ in which the probabil-
ity of finding particles at the typical separation is enhanced compared to a
random distribution [14,23]. Similarly, for diffusion-controlled coalescence,
exact solutions have been constructed based on analyses of interparticle dis-
tribution functions [14] or on analogies with the voter model [24] and related
probabilistic formulations [25-27].

1.3.1 Heterogeneous diffusive motion

A generalization of single-species annihilation that exhibits a wide range of
phenomenology is heterogeneous annihilation, A; + A; Kig 0 [28]. Here A;
denotes the ith ‘species’, with diffusivity D;, and the reaction rate matrix
K; ; is a function of the diffusivities of the two reacting ‘species’; we use the
terminology of different species to describe a reaction that is actually single-
species annihilation but with distinct rates for different reaction channels.
This simple generalization has a surprisingly rich array of kinetics.

The rate equations can be adapted to account for the kinetics in the mean-
field approximation. When the number of species is finite, the rate equations
predict that the least mobile species decays as t~!, while the other species
decay more quickly, each with an associated exponent that depends on the
diffusivity ratio between it and the slowest species.

When the diffusivities are drawn from a continuous distribution, the evo-
lution of the diffusivity distribution, P(D,t), is described by the integro-
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differential equation

| a_lo_gt)_’tl — _P(D,?) O/dD’ (D +D')P(D' 1)

= —P(D,t)[DPo(t) + P1(t)], (1-13)

5 0
where the kth moment Py(t) = [ dD D* P(D,t). Thus the zeroth morent
0

gives the particle concentration, ¢(t) = Po(t), while the average diffusion
coefficient (D) = P1(t)/Po(t). The solution to (1.13) is ’

P(D,#) = P(D,0) exp[—D ]0 “Po(t)dt — /0 t Pl(t’)dt']

= P(D,0)/Po(t) exp[—D /0 t c(t')dt'], (1.’i4)

where the second line is obtained by first integrating (1.13) over D to relate

the moments Py and Py.

When P(D,t = 0) ~ D# as D — 0, (1.14) can be analyzed by scaling.
Under the assumption of power-law decays for the average concentration
and diffusivity, ¢ ~ t~% and (D) ~ t~8 for t — 00, a natural scaling ansatz
for the time-dependent diffusivity distribution is

P(D,t) ~ t*=*3(Dt?). (1.15)

Substituting this into (1.14) and applying consistency conditions, one finds
[28] the basic exponents to be o = (24 2u)/(3 +2u), 8=1/(3 +2p).

For d < 2, the Smoluchowski theory [12] is ideally suited for adaptation to
heterogeneous A;+A; — 0. As outlined in Sec. 1.2, in the Smoluchowski ap-
proach one computes the particle flux towards a reference absorbing particle
of the rest of the background particles. In 1D, this background concentration
is c(x,1) = co erf(x/v/4Dt), from which the particle flux to the absorber is
¢ = coo /D/nt. This is identified as an effective reaction rate, k.

As an illustrative and intriguing example, consider the ‘impurity’ problem,
namely a background of identical particles with diffusivity D and concentra-
tion ¢, and relatively rare impurities of diffusivity Dy and concentration cr in
1D. In 1D, the survival of an impurity is equivalent to the probability that a
given Ising spin with zero-temperature Glauber dynamics does not flip. This
specific problem has been raised in studies of domain-coarsening phenomena
[29]. In the limit of ¢; < ¢, the influence of background-impurity and im-
purity-impurity reactions can be neglected and the effective (Smoluchowski)
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rate equations are

L~ 2D ~ A D
6 —2kgpct ~ —2‘/-7?{-62’ ¢y & —2kgreer ~ —2\/ jr_tDIch. (1.16)

Here kgp and kgy arée the effective rates for background-background and -
background-impurity reactions, obtained from straightforwardly generaliz-
ing the Smoluchowski theory to particles with different diffusivities. From
the first equation, the background concentration vanishes as ¢ = 1/7/(32Dt}.
(In comparison, c(t)/Cexact (t) = 7/2.) A crucial element of the second equa-
tion is that the decay exponent of the impurity species is determined by the

‘amplitude of c(t). One finds cf(t) ~ ¢~V (1+9)/8  with ¢ = Dr/D.

The special case of the stationary impurity (¢ = 0) merits emphasis.
The above Smoluchowski theory gives the exponent of cr(t) as 1/ V8 &
0.35355 . . ., while numerical simulations give 0.375 [28,29]. By a mapping to
steady-state aggregation with a point monomer source, Derrida et al. [30]
have recently shown that this exponent is, in fact, equal to 3/8. An intuitive
understanding of this result is still lacking,.
 The nonuniversal behavior for the impurity decay has a counterpart in
single-species coalescence. The impurity decay in coalescence can be simply
analyzed, since the ‘cage’ enclosing a given impurity, defined as its near-
est neighbors, evolves only by diffusion [31]. This three-body system of the
impurity and its two nearest-neighbors can be transformed, in turn, to a sin-
gle random walker that diffuses within an absorbing two-dimensional wedge
whose opening angle depends on D/Dj. This gives a survival probability
that decays as ™%, with a = 7/{2cos™![e/(1 + €)]}.

Such a rigorous mapping does not exist for impurity decay in annihilation,
since the cage’s evolution is an intrinsically many-body process. Neverthe-
less, the Smoluchowski theory is qualitatively identical for both annihilation
and coalescence. In both cases, the mechanism underlying the nonuniver-
sal impurity decay is the equivalence to the survival probability S(t) of a
diffusing particle inside an absorbing interval of length L = (At)Y/2. For
this probability, we have S(t) t~A/D) je., the decay exponent is depen-
dent on the dimensionless parameter A/D [32]. The Smoluchowski theory
predictions turn out (fortuitously perhaps) to be quantitatively accurate for
impurity decay in annihilation, but somewhat less accurate in the corre-
sponding coalescence process. For both cases, however, the Smoluchowski
approach provides a useful paradigm for treating this nonuniversal aspect
of the decay kinetics.
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One can also adapt the Smoluchowski approach to heterogeneous anni-
hilation in 1D by incorporating a time-dependent reaction rate in the rate
equation (1.13). This leads to

OP(D,1) _

=L =—P(D,?) 0/ dD'VD+ D P(D',T). (1.17)

The correspondence with the mean-field approach has been sharpened by
introducing the modified variable T' = 4,/t[m, to eliminate the time de-
pendence on the r.h.s. of (1.17). While this equation does not appear to.be
solvable, presumably exact exponent values can be obtained by replacing the
kernel by one with the same homogeneity degree, VD+D — vVD+ VD,
for which a scaling analysis yields the exponents o = (24 2u)/(5 + 4u),
B=1/(5+4p). _i

In summary, the Smoluchowski theory provides a simple and surprisingly
comprehensive account for the kinetics of heterogeneous single-species anni-
hilation, both in the mean-field limit and in 1D.

1.3.2 Ballz’stz’c annthilation

As mentioned in Sec. 1.1, ballistically driven reactions are relatively unex-
plored in spite of their relative simplicity and apparent richness. In such
systems, particles move with their initial velocities until a reaction occurs,
so that the initial condition determines the time dependence. Past work has
primarily been on the ‘+’ model in 1D [33], where each particle velocity is
either +vg or —vg with equal probability. Part of the interest in this reaction
is its equivalence to the polynuclear growth model (Fig. 1.4) [34]. This is a
model of evolving ‘positive’ and ‘negative’ terraces which move at constant
speed and annihilate when oppositely oriented terraces meet.

For the & ballistic reaction, the concentration decays as c(t) o« 4/c(0)/vt.

~ In analogy with the diffusion-controlled case A+ B — 0, this result can

be understood by considering density fluctuations in a domain of length £.
In such a region, there will typically be an imbalance én ~ \/E(—O)_f in the
number of right-moving and left-moving particles. After a time t = L/v,
only this residual fluctuation will remain and the concentration will be of
order c(t) ~ &n/£. Expressing £ in terms of ¢ then gives c(t) o t=1/2, In the
following, extensions to more general velocity distributions will be presented.

1. Continuous velocity distribution

For a continuous zero mean initial velocity distribution, P(v,? = 0), basic
quantities that characterize the reaction include the concentration, c(t) =
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time

Fig. 1.4. Schematic illustration of the equivalence of the space-time evolution of the
deterministic + model and the polynuclear growth model of surface growth. The
initial conditions of the two systems are equivalent. The velocities of the terraces
in the polynuclear growth model representation are indicated.

[dvP(v,t) ~ t~* and the rms velocity, v;ms = [ dv v?P(v, t)/c(t)]l/2 ~ 18,
From a mean-free path argument, the time between collisions for particles
of (fixed) radius r and speed vyms With concentration cist ~ 1 /(cvems™®1),
or cUpms & t~1, leading to the scaling relation o+ 8 = 1. Since the parti-
cle lifetime is proportional to 1/v, faster particles tend to annihilate more
quickly, and the typical velocity decays in time. This parallels the behavior
found in heterogeneous diffusion-controlled single-species annihilation.

The evolution of the velocity distribution in 1D is described by the Boltz-
mann equation [35]

OP(v,t)

st — —kP(v,) / dv' Jv — o'| P(&, ). (1.18)
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In spite of its mean-field character, (1.18) and its d-dimensional general-
ization give a quantitatively accurate description of the decay kinetics. This
rate equation can again be analyzed by scaling. Assuming that the velocity
distribution has the scaled form P(v,t) ~ t3~*®(vt?), substituting this into
(1.18), and demanding consistency of both sides of the resulting equation
leads to the exponent relation o + 3 =1 and a nonhnear integro-differential
equation for ®(z). As in heterogeneous dlffusmn_controlled A+ A—0, the
limiting behaviors of the scaling function can be extracted by a combination
of asymptotic and scaling arguments. For an initial velocity distribution
of the form P(v,t = 0) o |v|* for small v, ®(z) has the asymptotic forms
B(z) ~ 2# as z — 0, and B(z) ~ e =12l/B as z — co. If one makes an ansatz
that the full scaling function is the product |z|te1#l/8 | then the governing
equation for &(z) yields 8 = 1/(3 + 2p). As a result, @ and (3 can take on
any value between 0 and 1 as p is varied, subject to o+ 8 = 1. Notice that
when the concentration decays relatively quickly, o < 1, the typical velocity
decays slowly, and vice versa. It is gratifying, although somewhat surprising
in the light of the approximations involved, that the Boltzmann equation
predictions are in relatively good agreement with simulations [35].

2. Discrete three-velocity distribution

Unusual and incompletely understood phenomena arise for discrete velocity
distributions. A generic illustration is the trimodal distribution P(v,t =
0) = p4+6(v — 1) + pob(v) + p—6(v + 1), with py 4+ po +p— =1 [36]. In the
mean-field limit, the kinetics of the symmetric system with py = p_ = p+
is described by the rate equations, ¢+ = —coce — 2¢4, & = —2cpcx, with
corresponding asymptotic behaviors

ci(t)N%c()(oo)e"c"(w)t, co(t) ~ co(c0) exp [e-°o<°°>t]. (1.19)

Here cg(o0) = ¢o(t = 0) e~ 20:(0)/0(0)  Thus the mobile particles decay ex-
ponentially in time, while a residue of stationary particles always remains
whose concentration is vamshmgly small if the initial concentration is rela-
tively small.

However, from both nonrlgorous approaches and an exact solution for the
special case py = p_ [37, 38] ratheg different behavior occurs in 1D. As
a function of py, a transition occurs from a regime where the stationary
partlcles persist, for pg > 1 /4 to a regime where co(t) ~ ¢~1 and c4(t)” 1/2,
for pp < 1/4. At a ‘tricritical’ point located at py = 1/4, the concentratlons
of the mobile and stationary species decay as ¢~ —2/3, While all asymptotic
information is contained in the exact solution, the qualitative approaches
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- are still instructive. The location of the tricritical point may be found by a

stoichiometric argument [36]. Since half the stationary particles react with
+ particles, the fraction of 4+ particles available to react with — particles is
P+ — %p‘o. This is proportional to the number of +— annihilation events per
unit length, A y_. Similarly, the relative number Ay~ of 0— annihilation
events per unit length equals %pg. It is reasonable to assume that the relative
number of annihilation events is proportional to the relative velocities of the

collision partners, so that A’ /ANy— = 2. Combining the resulting relation,

P+ — %po = pp, with the normalization condition, 2p; + po = 1, gives the
exact location of the tricritical point: pg = 1/4, p+ = 3/8.

The two different exponent values for the decay of co(t) and c4(t) in the -

case ¢p(0) < 1/4 can also be understood by a probabilistic argument that ap-
plies in the limit ¢g(0) — 0. For an infinitesimal concentration of stationary

‘impurities’, the moving particles react among themselves with overwhelm- .
ing probability and the background system reduces to the + model, for which -

¢+ (t) ~ t71/2, On the other hand, a stationary particle survives only if it
is not annihilated by moving particles incident from either direction. Since
the probabilities of each of these two events are independent, it follows that
co(t) ~ [cx£(t)]? ~ t1 in the limit ¢y(0) < cx(0).

When the initial concentrations of the three species are arbitrary, there
are three ‘phases’—regions of the phase diagram where a single species per-
sists in the long-time limit (Fig. 1.5). As just discussed, the stationary
species decays relatively quickly along the boundary between the + phase
(where right-moving particles persist) and the — phase. The complementary
situation of the decay of —’s along the +0 phase boundary also exhibits pe-
culiar characteristics. For simplicity, consider an infinitesimal concentration
of —’s in a background of equal concentrations of 0’s and +’s. By a Galilean
transformation, this is equivalent to ‘fast impurities’ in a symmetric &+ back-
ground. A Lifshitz-type argument suggests that the survival probability of
this fast impurity decays slower than exponentially but faster than a power
law in time. . L L

The basis of this argument is to consider a subset of configurations which
give the dominant contribution to the impurity survival probability S(t), but
which are sufficiently simple to evaluate [36]. For the impurity to survive to
time ¢, the background =+ particles must annihilate only among themselves
up to this time. On a space-time diagram, the dominant contribution to
S(t) stems from a sequence of ever larger self-annihilation triangles that
just ‘miss’ the impurity world line (Fig. 1.6). The base of the nth triangle
Ty o [(vo+1)/(vo —1)]" = B" and the number of triangles in this self-
annihilation sequence up to time ¢ is N ~ In¢/1n 3. Because the probability
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Fig. 1.5. Phase diagram of the 1D three-velocity model in the triangle defined by the
relative concentrations of the three species. Along the broken line, c4(t) ~ t~1/2,
while co(t) ~ t™1. At the point marked by the small circle, c+(0) = 3/8, ¢ (0) =
1/4, all species decay as t~2/3, Along the dotted lines, the nature of the decay is
unknown, except very close to the extrema that correspond to the ‘fast impurity’
problem (see below). The symbols inside the triangle indicate the concentrations
of the species dominant in the long-time limit.

of a particle annihilating with its nth neighbor asymptotically decreases as
n~3/2 [33], a self-annihilation triangle of base x, occurs with probability
an Finally S(t) is the product of the occurrence probabilities of this
self-annihilation triangle sequence,

Int/1n g
st~ ]I (2208™) %% ~ exp[~31n%t/(41n B)). (1.20)

n=1

This result has been confirmed numerically.

A natural continuation of the above line of modeling is to the four-velocity
model with particle velocities +vq and wvp, vo > vy, and with relative
concentrations ¢; and cp. While the rate equations predict that the faster
species decays as 72 /Y1 and the slower species decays as t71, the 1D system
exhibits tricritical behavior reminiscent of the three-velocity model. Namely,
there exists an initial condition, which depends on vy /vq, for which all four
species appear to decay at the same power-law rate of approximately =072,
A comprehensive understanding of these and more general discrete velocity
systems is still lacking.
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y time

AA AA

2x, 2x, 2%,
Fig. 1.6. World line of & fast impurity in a background of equal concentrations
of + particles. Successive triangles of self-annihilating background particles are
indicated.

X

1.3.3 The stochastic = model

As a final example of a single-species annihilation process that exhibits un-
usual kinetics, consider the ‘stochastic’ + model, where particles execute
biased diffusion with fixed bias (either right or left) for each particle [36].
For the deterministic + model, particles with the same velocity never meet,
by definition. However, in the stochastic £+ model, the superimposed diffu-
sion permits same-velocity particles to annihilate, a mechanism that leads
to surprising behavior. This can be determined by dimensional analysis. If
the particle diffusion coefficient is D, then the stochastic &+ model is fully
characterized by the initial concentration cy, the velocity vg, and D. From
these parameters, the only variable combinations with the dimensions of
concentration are, ¢, 1/(vpt), and 1/v/Dt. From basic considerations about
the nature of the decay, the time-dependent concentration is anticipated to

have the form -
c(t) o (o) (v%;t)y (_\/%)__t)l—u—v. (1.21)

The exponents y and v can be determined by requiring that ¢(t) matches
with (a) the diffusion-limited result c(t) — (Dt)~'/2 when t < 7, ~ D/12,
the crossover time below which drift can be ignored, and (b) the ballistic
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result c(t) — (co/vot)/? fort < 7p ~ 1/(Dc}), which is the time for adjacent
particles to meet by diffusion. This matching gives

e(t) ~ (_%)1/2 (7%})1/2 oc 1734, (1.22)

Interestingly, the concentration decays as t=1/2 for both the diffusion-limited
and the ballistically limited reactions, but the combination of both mecha-
nisms leads to a faster, t=3/%, decay.

1.3.4 Ballistic aggregation

Another intriguing class of ballistically driven reactions is irreversible ag-
gregation, A; + A; — Aiyj, where A; denotes a species with mass 1. In
the situation where each aggregation event conserves momentum, a scaling
approach [39] shows that the cluster concentration c(t) = % 1 cx(t), where
c(t) is the concentration of clusters of mass k, decays as c(t) ~ ¢—2d/(d+2)
Numerical simulations indicate that this mean-field prediction holds even
in 1D. However, there are significant discrepancies in microscopic aspects
of the reaction in 1D [40]. For example, the scaling approach gives c(t) ~
exp(—constant x 1/ 3) for cluster mass k much less than the typical mass,
while a Lifshitz tail argument gives cg(t) ~ t7%, a result that has been
verified numerically [40].

The result for the cluster concentration can be reproduced by a mean-
free-path argument that parallels the earlier ‘microscopic’ formulation of
the rate equation. Consider a monomer-only initial condition in which each
particle has the same speed but random direction. The momentum of an
aggregate of mass m is proportional to mY/? since it is the sum of mn random
momenta. Consequently, the time between collisions at any stage of the
reaction is At ~ 1/(cvo), where c is the concentration, v = p/m m=1/2
is the typical velocity, and o is the cross-section. In this time interval, the
concentration decrement is of order Ac ~ —c. Thus ac/at o~ —¢/[1/(cvo)].
For a typical aggregate with mass m « 1/c, the r.h.s. can be rewritten in
terms of the concentration only, using v ~ /2 and ¢ ~ ¢~ (4=D/?  leading
to c(t) ~ —20/(d+2) :

In the following, a complementary problem of ballistic aggregation, which
models traffic flow on a 1D road with no passing, will be discussed [41].
Consider zero-size cars that move ballistically in one direction. We suppose
that whenever a faster car or cluster overtakes a slower object, the larger
final cluster assumes the velocity of the overtaken object. This reaction can
be schematically represented as Am, v; + Amy,ve = Am;+mg,min{os,vs}s where
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Ap; v; denotes a cluster with velocity v; and which contains m; cars. Scaling
approaches, together with the statistical properties of the minimal random
variable of a sample, determine basic system observables.

- Let m and v be the typical cluster mass (or number of cars) and cluster
velocity at time ¢t. Without loss of generality, the minimal car velocity may

be taken to be zero. The typical distance, ¢, between clusters therefore

grows as £ ~ vt. Since the typical cluster mass is proportional to the typical
intercluster distance, one also has m ~ £ ~ vt. To find the typical velocity,
one has to relate the cluster size to its velocity. Such a relation may be

found exactly for a ‘one-sided’ problem in which the ‘leading’ car is placed’

at x = 0 and other cars are only in the domain x < 0. This leading car
ultimately forms a cluster that includes all consecutive cars to its left whose
initial velocities are larger than v. The probability that there are exactly
k such cars equals II_IT® | where IIy = 1 —-II_ = [*P(v/,t = 0)dv' is

the probability that a car has velocity larger than v. The average number

of cars in the cluster that ultimately forms is therefore given by (m(v)) =
S0 KII_TIE =TI, /TI_.

For a power-law small-velocity tail of the initial velocity distribution,
P(v,t = 0) < v* for v < 1 (with g > —1 for normalizability), (m(v)) &
v~17#, Under the assumption that this ‘one-sided’ result also applies to the
original ‘two-sided’ problem and also using m ~ vt one obtains

.—1 o : :LL+1 -3 : 1
me~ct ~ %, with o= ——; v~ t7P with 8=——. (1.23
= b=z | )

In analogy with ballistic annihilation with continuous velocities, the expo-
nent relation o + 3 = 1 is a consequence of the relation ¢ ~ 1/vt.

An extension of the above reasoning allows one to solve for the mass and
velocity distributions in the traffic model. As an illustration, consider the
survival probability of a given car with velocity v, S(v,t). Here ‘survival’
means that the car does not overtake traffic, but if overtaken still ‘survives’,
i.e., a survivor leads a cluster of size m > 1. The survival probability can
be found by considering the possible collisions of a car with initial velocity
v and position = with slower cars. A collision with a slower v'-car does
not occur up to time ¢ if the interval [z, + (v — v')t] does not include the
v'-car. For a continuous initial velocity distribution and a Poissonian initial
spatial distribution, the probability that the v'-car is not in the interval
[z, + (v — v)t] is exp{—dv’' P(v',t = 0) (v — v)t}. The probability that
the initial car survives up to time ¢ equals the product of these pair survival
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factors for every v’ < v. Hence
bl

S(v,t) =exp{—t/ovdv'(v—v')P(v',t:O)}, (1.24)

and the cluster velocity distribution is P(v,t) = P(v,t =0)8(v,1).
For P(v,t = 0) ~ v* as v — 0, (1.24) gives the asymptotic velocity
distribution as

P(v,t) «x v exp {—constant X tv"+2} : (1.25)

This universal form validates the scaling assumption that the asymptotic
decay and the shape of the limiting distribution are determined solely by
the exponent u that characterizes the low-velocity tail of Py(v). From (1.25),
the total concentration, c(t) = f;° dv P(v,t), and the average cluster velocity
(v(t)) = [ dvvP(v,t)/ [ dvP(v,1) are found to agree with (1.23). Extensions
of this reasoning determine the complete distribution of clusters of mass m
and velocity v.

1.4 Summary

The scaling approach is a simple yet powerful tool for analyzing the kinetics
of simple reaction processes. In diffusion-limited two-species annihilation, a
scaling analysis leads to an understanding of the coarsening mosaic of A and
B domains from the initial density fluctuations. A relatively simple-minded
adaptation of the rate equation approach reveals that the spatial distribution
of reactants involves a multiplicity of scales that originates from the existence
of a new length, £4p, the separation between AB nearest-neighbor pairs.
Consideration of the density profile of a single domain provides a revealing
picture of the ‘internal’ spatial organization of reactants. Scaling approaches
are also useful in elucidating some of the unexpected features of two-species
annihilation when the reactants undergo driven diffusion. '

Although many aspects of 1D single-species reaction kinetics are exactly
solvable, scaling approaches provide a relatively simple route to a compre-
hensive understanding. An attractive feature of the scaling formulation is
that the apparently disparate processes of diffusion-controlled and ballis-
tically controlled reactions may be analyzed in essentially identical man-
ners. Although quantitative details depend on the specifics of a particular
reaction, qualitative features are universal and are captured by a scaling
description.
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One intriguing aspect of single-species reactions, for which scaling appears
to have limited utility, is the case of discrete diffusivity or velocity distri-
butions. For example, in diffusive A + A — 0 in 1D with an infinitesimal
fraction of immobile particles in a background of equally mobile particles
the density of the immobile particles decays as t~3/8

hilation with three different velocity species in 1D, a wide range of kinetics
arises, either ‘critical’, with two species decaying as t~1/2 and the minority
species decaying more quickly, or ‘tricritical’, where all three species decay
as t~2/3, While this latter behavior has been found by an exact solution, an
intuitive understanding is still lacking and the full range of phenomenology
appears ripe for further exploration. Finally, for combined ballistic and dif-
fusive reactant motion, the concentration decays more rapidly than in the
limiting situations where only one transport mechanism is operative. This
interesting behavior can be accounted for by dimensional analysis. However,

"a microscopic theory has yet to be developed.
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