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Abstract.  We introduce the reputational voter model (RVM) to account 
for the time-varying abilities of individuals to influence their neighbors. To 
understand of the RVM, we first discuss the fitness voter model (FVM), in 
which each voter has a fixed and distinct fitness. In a voting event where voter 
i is fitter than voter j , only j  changes opinion. We show that the dynamics 
of the FVM and the voter model are identical. We next discuss the adaptive 
voter model (AVM), in which the influencing voter in a voting event increases 
its fitness by a fixed amount. The dynamics of the AVM is non-stationary and 
slowly crosses over to that of FVM because of the gradual broadening of the 
fitness distribution of the population. Finally, we treat the RVM, in which 
the voter i is endowed with a reputational rank ri that ranges from 1 (highest 
rank) to N (lowest), where N is the population size. In a voting event in which 
voter i outranks j , only the opinion of j  changes. Concomitantly, the rank of 
i increases, while that of j  does not change. The rank distribution remains 
uniform on the integers 1, 2, 3, . . . ,N , leading to stationary dynamics. For 
equal number of voters in the two voting states with these two subpopulations 
having the same average rand, the time to reach consensus in the mean-field 

limit scales as exp(
√
N). This long consensus time arises because the average 

rank of the minority population is typically higher than that of the majority. 
Thus whenever consensus is approached, this highly ranked minority tends to 
drive the population away from consensus.
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1. Introduction

The way people form an opinion about a given issue, such as making a political decision 
of choosing a product is a complex social phenomenon. An individual’s opinion can be 
influenced by economic factors, advertising, mass media, as well the opinions of others. 
When opinion changes occur only through interactions between individuals, a natural 
model for this dynamics is the voter model (VM) [1–10]. In the VM, each individual, 
or voter, can assume one of two states, denoted as  +  and  −, with one voter at each 
node of an arbitrary network. A voter is selected at random and it adopts the state of 
a randomly chosen neighboring voter. This update is repeated at a fixed rate until a 
population of N voters necessarily reaches consensus. Each voter is influenced only by 
its neighbors and has no self confidence in its own opinion.

https://doi.org/10.1088/1742-5468/ab190c
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The paradigmatic nature of the VM has sparked much research in probability 
theory [1–4] and statistical physics [5–7, 9–11]. Because of its flexibility and utility, 
the VM has been applied to diverse problems, such as population genetics [12], ecology 
[13, 14], and epidemics [15], and voting behavior in elections [16]. However, consensus 
is not the typical outcome for many decision-making processes. This fact has motivated 
a variety of extensions of the VM to include realistic elements of opinion formation 
that can forestall consensus. Examples include: stochastic noise [17–19], the influence 
of multiple neighbors [20], self confidence [21], heterogeneity [22], partisanship [23, 24], 
and multiple opinion states [25–27].

An important extension of the VM that is relevant to this work arises when either 
the underlying network or the decision-making rule of each voter changes with time 
[28–34]. The latter scenario represents an attempt to account for the feature that the 
influence of individuals may be time dependent—some individuals may become more 
influential and others less so as the opinions of the population evolve. A natural way 
to account for this feature is to assign each individual a fitness that can change with 
time. In a single update, the higher-fitness voter imposes its opinion on its neighbor 
and corre spondingly, the fitness of the influencer increases by a fixed amount, while 
the fitness of the influenced voter does not change. This adaptive voter model (AVM), 
introduced in [34], leads to a consensus time on the complete graph that appears to 
scale as Nα, with α ≈ 1.45, a slower approach to consensus compared to the classic 
VM. We will argue, however, this model exhibits a very slow crossover that masks the 
asymptotic approach to consensus.

This AVM also provides the motivation for our reputational voter model (RVM) to 
help understand the role of individual reputation changes on the consensus dynam-
ics. In the RVM, each voter is endowed with a unique integer-valued reputation that 
ranges from 1, for the voter with the best reputation, to N, for the voter with the worst 
reputation, in addition to its voting state. In an update, two voters in dierent opinion 
states are selected at random and the voter with the higher reputation imposes its vot-
ing state on the voter with the lower reputation. After this interaction, only the reputa-
tion of the influencer voter rises, in analogy with the AVM. As we will show, the eect 
of these reputational changes significantly hinder the approach to consensus. When the 
population initially contains equal numbers in the two voting states and the average 
rank of these two subpopulations are the same, the time to reach consensus scales as 
exp(

√
N). This slow approach to consensus arises because close to consensus the aver-

age rank of the minority population is typically higher than that of the majority. This 
imbalance tends to drive the population away from consensus and thereby leads to a 
long consensus time.

In section 2, we define the models under study: (i) the fitness voter model (FVM), 
where each voter is assigned a unique and unchanging fitness value, (ii) the adaptive 
voter model (AVM) [34], and (iii) the reputational voter model (RVM). In section 3, 
we will show that the FVM has the same dynamics as the classic VM. In section 4, 
we will argue that the consensus time scaling as Nα, with α ≈ 1.45 in the AVM [34], 
is a finite-time artifact and that the dynamics of the AVM eventually crosses over to 
that of the FVM. In section 5, we introduce the RVM and discuss the role of the time-
dependent individual reputations on the opinion dynamics. In section 6, we give some 
concluding remarks.

https://doi.org/10.1088/1742-5468/ab190c
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2. Models

We begin by defining a set of voter models that culminate with the RVM, which is the 
focus of this work. All our models are defined on the complete graph; this structure is 
assumed throughout.

2.1. Classic voter model (VM)

We define the classic VM in a form that is convenient for our subsequent extensions. 
In the VM, voters are situated on a complete graph of N nodes, with one voter per 
node. Each voter is initially assigned to one of two opinion states, +  or  −. The number 
of voters in the  +  and  −  states are denoted by N+ and N−. The opinion update is the 
following:

 (a)  Pick two random voters in opposite opinion states.

 (b)  One of these two voters changes its opinion.

 (c)  Repeat steps (a) and (b) until consensus is necessarily reached.

Figuratively, each agent has no self-confidence and merely adopts the state of one of 
its neighbors. After each update, the time is incremented by an exponential random 
variable with mean value δt ≡ N/(N+N−).

There are two basic observables in the VM: the consensus time and the exit prob-
ability. The consensus time, TN(m), is the average time for a population of N voters to 
reach unanimity when the initial magnetization, which is the dierence in the density 
of  +  and  −  voters, equals m. For the complete graph, the consensus time is (see e.g. [8])

TN(m) = −N
{
(1 +m) ln

[1
2
(1 +m)

]
+ (1−m) ln

[1
2
(1−m)

]}
. (1a)

We are often interested in the zero-magnetization initial condition, in which case, we 
write the consensus time as TN. The main feature of the consensus time on the complete 
graph is that it grows linearly with N.

The exit probability E(m) is defined as the probability that a population of N vot-
ers with initial magnetization m reaches  +  consensus. The form of the exit probability 
is especially simple because the average magnetization is conserved:

E(m) =
1

2
(1 +m). (1b)

In voter models where the magnetization is not conserved, the exit probability is a non-
linear function of m.

2.2. Fitness voter model (FVM)

In the FVM, each voter is assigned an opinion state as well as a unique and fixed fitness 
that is drawn from a uniform distribution in the range [0,F0]. A voter with a larger 
fitness value is regarded as more fit. The opinion update is now:

https://doi.org/10.1088/1742-5468/ab190c
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 (a)  Pick two random voters in opposite opinion states.

 (b)  The less fit voter changes its opinion.

 (c)  Repeat steps (a) and (b) until consensus is necessarily reached.

The time increment for each update is again an exponential random variable with mean 
value δt. The crucial feature of the FVM is the unique fitness of each voter; the actual 
fitness values are immaterial. We will show below that the dynamics of the FVM is the 
same as the VM.

2.3. Adaptive voter model (AVM)

In our version of the AVM, each voter is assigned a unique fitness that is drawn from 
the uniform distribution [0,F0]. The fitness of each voter also changes as a result of 
opinion updates. The opinion update is given by:

 (a)  Pick two random voters in opposite opinion states, with fitnesses f i and f j .

 (b)  The less fit voter changes its opinion.

 (c)  For the fitter voter i, fi → fi + δf.

 (d)  Repeat steps (a)–(c) until consensus is necessarily reached.

After each update, the time is incremented by an exponential random variable with 
mean value δt. As we shall see, the initial fitness range F0, the fitness increment δf  in 
each voting event, and N play important roles in determining the long-time dynamics.

2.4. Reputational voter model (RVM)

In the RVM, each voter is assigned a unique and integer-valued reputation, or rank, 
between 1 and N, with 1 corresponding to the best-ranked voter and N to the worst-
ranked. The opinion update is given by:

 (a)  Pick two random voters in opposite opinion states, with ranks ri and rj .

 (b)  The lower-ranked voter changes its opinion.

 (c)  The higher-ranked voter i gains rank, ri → ri − 1.

 (d)  The rank of the voter with rank adjacent to i is adjusted to eliminate ties (figure 
1).

 (e)  Repeat steps (a)–(d) until consensus is necessarily reached.

As we will see, when the population is close to consensus, minority-species voters are 
typically well ranked and more likely to influence the majority rather than be influenced. 
This eective bias drives the population back to equal densities of  +  and  −  voters, and 
leads to a large consensus time.

https://doi.org/10.1088/1742-5468/ab190c
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3. Dynamics of the fitness voter model (FVM)

The main feature of the FVM is that its dynamics is identical to that of the VM. This 
equivalence will be important to understand the dynamics of the AVM, that will be 
treated in the next section. First consider the dependence of the exit probability E(m) 
on the initial magnetization m. By construction, the fittest voter in the population 
can never change its opinion. Consequently, the final consensus state coincides with 
the initial voting state of this fittest voter. The probability that the fittest voter is in 

the  +  state equals 1
2
(1 +m). Thus E(m) = 1

2
(1 +m), as in the VM.

Let us now treat the consensus time. For the VM on the complete graph, the initial 
magnetization uniquely specifies the system. From this initial state, there are many 
trajectories that eventually take the system to consensus. To compute fundamental 
quantities like the exit probability and the consensus time, we need to average over all 
stochastic trajectories of the voting dynamics. For the FVM on the complete graph, the 
initial state is specified by both the magnetization and the fitness of each voter. The 
computation of the exit probability and the consensus time requires averaging over all 
stochastic trajectories and over all fitness values.

Thus let us compare the fate of a single pair of voters ij in the state  +− in the VM 
and in the FVM. For the VM, this pair changes to either  ++ or  −− equiprobably. In 
the FVM, if the fitness of voter i, fi > fj, then this pair changes from the state  +− 
to  ++. However, if fi < fj, then this pair changes from  +− to  −−. Since it is equally 
likely that fi > fj or fi < fj, then in averaging over all stochastic trajectories and over 
all fitness assignments, the ij pair in the FVM equally likely changes to  ++ or to  −−. 
Thus the dynamics of the VM, averaged over all stochastic trajectories, is the same 
as that of the FVM, when averaged over all stochastic trajectories and over all ini-
tial fitness assignments. A detailed microscopic derivation of this equivalence is given 
appendix A.

4. Dynamics of the adaptive voter model (AVM)

4.1. Consensus time and exit probability

In [34], it was reported that the consensus time scales as TN ∼ Nα, with α ≈ 1.45. 
Instead, we will argue that this exponent estimate is a finite-time eect. To support 

1 2 3 4 5 6 7 8 9 10

Figure 1. Update event in the RVM. Voters are arranged in rank order. The voter 
with rank 3 changes the opinion of the voter with rank 6. After the voting event, 
the ranks of the influencer and an adjacently ranked voter are shued to avoid 
ties.

https://doi.org/10.1088/1742-5468/ab190c
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this assertion, we show simulation data for the dependence of TN versus N in figure 2 for 
representative parameter values: (a) initial width of the fitness distribution F0  =  1 (b) 
F0  =  N and (c) F0 = N2, and δf , the change in individual fitness in a voting event, fixed 
to be 1. The data in the figure are based on 104 realizations for N up to 214 = 16 384. On 
a double logarithmic scale, the data of TN versus N appears relatively straight, which 
suggests that a linear fit is warranted. However, there is a small but consistent down-
ward curvature in the data, a feature that becomes apparent by studying local slopes 
of TN versus N based on k successive data points (insets to figure 2). The choice of k is 
important: for too-small k values, successive local slopes fluctuate strongly and cannot 
be reliably extrapolated, while for k too large, the systematic trend in the local slope is 
averaged away. We find that for k  =  10, there is a good compromise between minimiz-
ing statistical fluctuations and uncovering systematic local trends.

In figures 2(a) and (b), corresponding to F0  =  1 and F0  =  N respectively, the local 
slope is non-monotonic in N. The source of this crossover behavior appears to be the 
broadening of the fitness distribution as a function of time. This leads to rank-changing 
events becoming progressively less frequent. When rank changes stop occurring, the 
dynamics should be the same as the FVM, for which TN ∼ N . However, consensus 
interrupts this gradual crossover. Conversely, for F0 = N2, the initial fitness distribu-
tion is suciently broad that rank-changing events never occur. The dynamics thus 
coincides with that of the FVM, for which TN ∼ N . For this case, the simulation data 
for the local slope appears to extrapolate to a value that is close to the expected value 
of 1 (figure 2(c)).

Simulation results for the exit probability is shown in figure 3 for: (a) F0  =  1, (b) 
F0  =  N, and (c) F0 = N2, with δf = 1 in all cases. In (a) and (b), the exit probability 
E(m) is a non-linear function of m, which means that the magnetization is not con-
served. The non-linearity indicates that there is an eective bias in the dynamics that 
tends to drive a population with non-zero magnetization back to the zero-magnetiza-
tion state and thus forestalls consensus. Note the curious feature, for which we have no 
explanation, is that E(m) is non-monotonic in m for small N. When F0 = N2, the exit 
probability is linear in m. As discussed above, rank-changing events no longer occur for 
F0 = N2, so that the dynamics should be the same as the VM.

Figure 2. Average consensus time TN versus N for the AVM on the complete 
graph of N sites with: (a) F0  =  1, (b) F0  =  N, and (c) F0 = N2, with δf = 1. The 
insets show local 10-point slopes as a function of 1/ lnN. The error bars are the 
standard deviation in a linear least-squares fit.

https://doi.org/10.1088/1742-5468/ab190c
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To summarize, in spite of the simplicity of the AVM update rule, its basic proper-
ties are surprisingly complex. When the initial fitness distribution is suciently broad 
or equivalently, the fitness increment δf  in a single voting eect is suciently small, 
rank-changing events do not occur, so that the dynamics is the same as the FVM, 
which, in turn, is the same as that of the classic VM. The dynamics of the AVM has a 
paradoxical character in the time range where rank-changing events do occur. Figure 3 
shows that the average magnetization is not conserved because E(m) strongly deviates 

from the form E(m) = 1
2
(1 +m) that arises in the magnetization-conserving VM. The 

non-linear dependence of E(m) in this figure indicates the presence of an underlying 
bias that tends to drive the system to zero magnetization whenever m �= 0. In other 
examples of voter-like models with non-conserved magnetization [35, 36], a similar non-
linearity for E(m) was observed. As a result of the eective bias that drives the system 
to zero magnetization, the consensus times in these models were found to grow faster 
than a power law in N [35, 36]. The observation of an apparent power-law dependence 
of TN on N found above and in [34] is possibly a manifestation of the gradually dimin-
ishing eective bias. The main message from our analysis is that the exponent α in 
TN ∼ Nα is strongly N-dependent and less than the value 1.45 reported in [34].

4.2. Dynamical non-stationarity

By directly adapting the theory given in [37, 38] for the fitness distribution in a model 
of social competition, the distribution of individual fitnesses in the AVM approaches a 
uniform distribution in [0,F (t)], with F (t) = F0 + δf t/2. Consequently, as the fitness 
distribution broadens, changes in fitness rank become more rare. When rank changes 
can no longer occur, the subsequent dynamics approaches that of the FVM.

To understand this transition, we estimate the time dependence of fitness-rank 
changes. Consider two voters i and j  of adjacent ranks, with fi(0) > fj(0); that is, voter 
i is initially fitter than voter j . Their fitnesses f i and f j  at a later time t are

fi(t) = fi(0) + vit±
√
Dt,

fj(t) = fj(0) + vjt±
√
Dt.

 (2)

Here vi is the systematic change in fitness because a higher-ranked voter typically is 
more influential than a lower-ranked voter. The ‘speed’ vi at which the ith voter gains 

Figure 3. Exit probability as a function of initial magnetization m for the AVM 
on the complete graph of N sites with: (a) F0  =  1, (b) F0  =  N, and (c) F0 = N2, for 
δf = 1 in (a)–(c). These data are obtained by averaging over 105 trajectories.

https://doi.org/10.1088/1742-5468/ab190c
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fitness is proportional to the fraction of voters with lower fitness. For a uniform fitness 
distribution, vi = fi δf/F . Thus the speed of the best-ranked voter is δf  and that of the 
worst-ranked voter is 0. The term ±

√
Dt denotes the change in fitness due to stochastic 

eects, which give rise to rank-changing events.
In the absence of stochasticity, no rank-changing events occur. To assess the role of 

stochasticity on rank changes, we assume a negative stochastic term for f i and a posi-
tive stochastic term for f j  and find the condition under which the ranks of these two 
voters can switch [39, 40]. That is, suppose that at some time t, fi(t) < fj(t). From 
equation (2), this criterion gives

fi(0)− fj(0) + (vi − vj)t <
√
4Dt. (3a)

Now vi − vj = δf/N, while the diusion coecient associated with the stochasticity is 
proportional to (δf)2. Thus equation (3a) becomes

F0

N
+

δf

N
t < δf

√
4t. (3b)

Dividing through by δf , defining a = 1/N , and b = F0/(Nδf), the solution to (3b) is

t =
1

2a2
[
(1− 2ab)±

√
1− 4ab

]
. (4)

There are no solutions for 4ab  >  1, which translates to F0/δf > N2. That is, for 
a given N, if either the initial fitness range is suciently large or the fitness change 
in a single voting event is suciently small, no rank changes occur. In this limit, the 
dynamics of the AVM reduces to the FVM, which, in turn, is the same as the VM. For 
4ab  <  1, the physically relevant situation is 4ab � 1. Now there are two solutions (see 
figure 4):

t∗ ≈
(

F0

Nδf

)2

, t∗ ≈ N2. (5)

Between these two times, rank-changing events occur. We may estimate the time 
dependence of the number of rank changes as follows. The typical fitness dierence of 
neighboring-ranked voters at time t is ∆ ≡ F (t)/N. In a single voting event, the typi-
cal number of rank changes is dr ≈ δf/∆ = Nδf/F (t), as long as δf > ∆. Thus we 
estimate the number of rank changes per unit time as

Nr(t) �
Nδf/F (t)

δt
=

Nδf/δt

F0 + δf t/2
. (6a)

We can make this estimate more precise by computing the number of rank changes 
averaged over the uniform distribution of fitnesses. Consider the case where F0  =  1 and 
δf = 1. For the first voting event between two voters with fitnesses f i and fj < fi, their 
fitnesses after the voting event will be f i  +  1 and f j  respectively. The number of rank 
changes due to these changes is dr = N(1− fi). Averaging this expression over the uni-
form distribution of fitnesses subject to the constraint fi > fj, gives dr = N/3. Then 
using δt = 4/N  as the time increment for this first voting event, the initial number of 
rank changes per unit time is N2/12. Using this for Nr(t  =  0) in (6a), the number of rank 
changes per unit time at any later time is

https://doi.org/10.1088/1742-5468/ab190c
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Nr(t) =
N2δf/12

F0 + δf t/2
. (6b)

This prediction is consistent with the simulations shown in figure 5.
The simple reasoning given above shows that the dynamics of the AVM is non 

stationary. At early times, rank-changing events occur frequently (as long as δf  is not 
pathologically small) and these rank changes are responsible for the slow approach to 
consensus. However, at suciently long times, rank changing events stop occurring and 
the dynamics crosses over to that of the FVM. Thus over a substantial time range the 
dynamics of the AVM is governed by crossover eects.

4.3. Magnetization zero crossings

The non-stationarity of the AVM also manifests itself in the times between successive 
zero crossings of the magnetization. For a system that starts at zero initial magneti-
zation, there are typically multiple instances when the magnetization returns to zero 
before consensus is reached. We define τn as the average time between the (n− 1)st and 
nth zero crossing, with the 0th crossing occurring at t  =  0. Each τn is averaged over those 
trajectories that have not yet reached consensus by the nth crossing. A basic feature 
of these magnetization zero crossings for the AVM is that τn varies non-monotonically 

*

0 /N δf time
rank change

regime tt
*

F

Figure 4. Schematic of the left-hand and right-hand sides of equation (3b) (red 
and blue respectively). For this example, rank changes can occur only in the 
intermediate time regime between t* and t*.

10-5

10-4

10-3

10-2

10-1

100 101 102 103 104

N
r(

t)
/N

2

t

N=64
N=128
N=256
N=512

Figure 5. Time dependence of the number of rank changes per unit time, Nr(t), 
scaled by N2 in the AVM for F0  =  1 and δf = 1. Data for t  >  TN are dominated by 
noise and are not shown. The data are generated by averaging over 105 realizations. 
The dashed line is the prediction in equation (6b).
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with n (figure 6). In this plot, the number of ‘surviving’ trajectories decreases as n 
increases (roughly a fraction 10−3 of all realizations survive until n  =  2500), and the 
behavior of τn becomes progressively noisier. In contrast, the dynamics of the classic 
VM is stationary and successive zero-crossing times are all the same; the derivation of 
the crossing time for the VM is given in appendix B.

We can qualitatively understand the non-monotonicity of the AVM zero-crossing 
times in terms of the time dependence of the rank changes of the voters. As derived in 
equation (6b), rank changes are frequent at early times and become progressively less 
common. These rank changes give rise to an eective bias v(m) towards zero magne-
tization (see also the next section). At early times, these frequent rank changes imply 
a strong bias to zero magnetization; this leads to zero-crossing times that are smaller 
than in the VM. At later times, we can assess the role of the bias on magnetization 
trajectories in terms of the Péclet number [41], Pe ≡ |v(m)m|/D(m), where D(m) is 
the diusion coecient associated with the trajectories. As time increases and the bias 
becomes weaker, only those trajectories that approach close to m = ±1 experience a 
Péclet number Pe  >  1 and get driven back towards zero magnetization. These large-
deviation trajectories lead to a zero-crossing time that is larger than that of the VM. 
Finally, at late times (t � N2), rank changes become suciently rare that the dynam-
ics approaches that of the VM and the zero-crossing times also approach that of the 
VM. This asymptotic limit will be reached only when the number of zero crossings n is 
of the order of N2 when rank changes no longer occur.

5. Dynamics of the reputational voter model (RVM)

5.1. Eective potential

In RVM, each voting event leads to a fixed number of rank changes (figure 1). This 
implies that the dynamics is stationary, which simplifies the analysis of this model. We 
will argue that the dynamics of the magnetization is equivalent to that of a random 

 0.5

 1

 1.5

 2

 2.5

 0  500  1000  1500  2000  2500

τ n

n

Figure 6. Dependence of τn, the nth zero-crossing time on n for 106 realizations 
with N  =  256. The data are smoothed by averaging over 15 successive points. The 
parameters are F0  =  1 and δf = 1. The dashed line is the exact zero-crossing time 
for the VM (appendix B). The average number of zero crossings is 900.3.
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walk that is confined to an eective potential well, leading to an anomalously long con-
sensus time compared to the VM and the AVM.

In a single voting event, the magnetization m changes by δm ≡ ±2/N and the 
average time for such a voting event is δt = N/(N+N−), where N± are the number of 
voters in the  +  and  −  states, respectively. We define w(m → m′) as the probability 
that the magnetization changes from m to m′ in a single voting event and P (m, t)δm 
as the probability that the system has a magnetization between m and m+ δm. The 
Chapman–Kolmogorov equation for the time dependence of P (m, t) is

P (m, t+ δt) = w(m− δm → m)P (m− δm, t) + w(m+ δm → m)P (m+ δm, t).

 
(7a)

Expanding this equation to second order in a Taylor series gives the Fokker–Planck 
equation

∂

∂t
P (m, t) = − ∂

∂m
[v(m)P ] +

∂2

∂m2
[D(m)P ], (7b)

where the drift velocity and diusion coecient are given by

v(m) = 2[2w(m → m+ δm)− 1]/(Nδt) = [2w(m → m+ δm)− 1](1−m2)/2,

D(m) = 2/(N2δt) = (1−m2)/2N ,

and where the second equalities follow by expressing the time step δt = N/(N+N−) in 
terms of the magnetization, δt = 4/[N(1−m2)].

In figure 7, we plot the ratio v(m)/D(m) versus m. For this data, we take the 
initial magnetization to be zero, and define the initial average ranks of voters in 
the  +  and  −  states to be equal. The quantity w(m → m+ δm) is measured as the 
probability that the magnetization of the system increases from m to m+ δm. The 
important feature is the non-zero drift velocity that drives the population away from 
consensus and ultimately leads to a long consensus time. Empirically, we also find that 
the curves of v/D for dierent N all collapse onto a single universal curve when the 
data is scales by 

√
N  (inset to figure 7). The resulting scaled curve has a sigmoidal 

shape that is turned on its side. We find, therefore, that this curve is well fit by the 
archetypal sigmoidal function f(m) = −0.65 tanh−1 m, where the amplitude 0.65 gives 
the minimum deviation between the data for v/m and the fit.

5.2. Consensus time and exit probability

Because the drift velocity drives the system away from consensus, we anticipate that 
the consensus time will grow faster than a power law in N, as shown in figure 8. For 
this data, the initial magnetization is set to m  =  0 and the voter ranks are chosen 
so that the average ranks of  +  and  −  voters are, on average, equal. The data in this 
figure indicate that TN grows faster than a power law in N. There is also an extremely 
slow crossover to the asymptotic behavior (inset to figure 8(a)) and it is not possible to 
determine the functional form of TN based on simulation data up to N  =  1024.

To give a more principled and reliable estimate for the N dependence of TN, we 
write the backward Kolmogorov equation for the consensus time [8, 42]

TN(m) = w(m → m+ δm)TN(m+ δm) + w(m → m− δm)TN(m− δm) + δt.

 (8a)
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In the continuum limit this recursion becomes [8, 42]

v(m)

D(m)

∂TN(m)

∂m
+

∂2TN(m)

∂m2
= − 1

D(m)
.

 (8b)
For arbitrary functional forms of v(m) and D(m), the formal solution of (8b) is [42]

TN(m) =

∫ 1

m

e−A(m′)

[∫ m′

0

eA(m′′)

D(m′′)
dm′′

]
dm′, (9)

where A(m) =
∫ m

0
[v(m′)/D(m′)]dm′. While it is generally not possible to solve (9) ana-

lytically, we can numerically integrate this equation. Here, we use our empirical obser-
vation that v(m)/D(m) =

√
Nf(m), with f(m) = −0.65 tanh−1 m (inset to figure 7). 
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Figure 7. Dependence of v(m)/D(m) for the RVM on m for dierent N. The 
inset shows the data collapse when v/D is divided by 

√
N . The solid curve is the 

empirical fit f(m) = −0.65 tanh−1 m (see text). The data represent averages over 
104 realizations.

Figure 8. (a) Dependence of lnTN  versus N on a double logarithmic scale based 
on: (i) 104 realizations of the RVM (red triangles), and (ii) numerical integration of 
equation (9) (blue circles). The inset shows the local slopes of these two datasets 
as a function of 1/ lnN. (b) Exit probability of the RVM as a function of initial 
magnetization m for dierent N. These data are based on 105 realizations.
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The outcome of this numerical integration for N up to 106 is also shown in figure 8(a). 
The simulation data and the integration data are nearly the same, and the local slopes 
of these two datasets show similar behaviors. However, since we can obtain integration 
data up to N  =  106, we can now see the asymptotic trend in the local slope, which indi-

cates that the local slope eventually converges to 1
2
 (inset to this figure). Thus we argue 

that the consensus time for the RVM has the dependence TN ∼ exp(
√
N).

Due to the non-zero drift velocity in the RVM, the magnetization is not conserved, 
a feature that again manifests itself in the non-linear dependence of the exit prob-
ability E(m) on initial magnetization (figure 8(b)). We again define the initial state so 
that the ranks of  +  and  −  voters are equal, on average. As N increases, E(m) gradually 
approaches a step function; this is a consequence of v(m)/D(m) being an increasing 
function of N. The step-like form of E(m) is also consistent with the consensus time 
growing faster than any power law in N as shown in figure 8(a).

6. Summary and discussion

We studied a set of voter-like models on the complete graph, corresponding to the 
mean-field limit, in which each voter has a characteristic fitness that is a measure of its 
influence on others. Our motivation for investigating these models is that, in real life, 
some individuals are influential and other less so; moreover, the influence of each indi-
vidual can change with time as opinions evolve. While our models are highly stylized, 
perhaps they provide a useful first step to understand the role of individual persuasive-
ness on how opinions change in a population.

For the fitness voter model (FVM), where the fitness of each voter is distinct and 
fixed, a simple, but striking result is that its voting dynamics turns out to be identical 
to the classic VM. Our main focus was on voter models in which the fitness of each 
voter, as well as its opinion, can change in an elemental update event. We found that 
the coupled dynamics of the fitness and voting state of each voter leads to rich dynam-
ics and also to very slow and subtle crossover eects. This type of coupled dynamics 
between voting state and fitness also shares some conceptual commonality with voter 

Figure 9. Dierence between the average rank of  +  and  −  voters, R+ −R−, as a 
function of m for dierent N. The inset shows the data collapse when R+ −R− is 
scaled by 

√
N . The data represent averages over 104 realizations.
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models in which the connections between voters can change as their opinions in each 
update [28–34].

We investigated two examples in which changing individual voter fitness controls the 
consensus dynamics. In the adaptive voter model (AVM), the fitness of the influencer 
voter increases by a fixed amount while the fitness of the influenced voter is unchanged 
in a single voting event. This same model was recently investigated in [34], where it 
was reported that the consensus time TN ∼ Nα, with α ≈ 1.45. We argued instead that 
the dynamics of the AVM is more subtle than this simple power law. In particular, 
the dynamics has a non-stationary character, in which the fitness distribution of the 
population broadens in time. Eventually, the width of this distribution broadens to the 
point where fitness updates no longer change the relative ranks of individual voters. 
When this occurs, the opinion dynamics slowly crosses over to that of the FVM, which 
in turn is the same as the classic VM. This crossover is interrupted by consensus, and 
the dependence of TN on N appears to be a power law, but with an exponent that is 
smaller than 1.45 (figure 2).

We also introduced the reputational voter model (RVM), which has the advantage 
that its dynamics is stationary. In the RVM, each voter is assigned a unique integer-
valued rank that ranges from 1, for the best-ranked voter, to N, for the worst-ranked 
voter. In an update, the influencer voter moves up by 1 in rank while the rank of the 
influenced voter is unchanged. A salient feature of this dynamics is that the voters in 
the minority opinion tend to be higher ranked than those with the majority opinion.

Consider a single update event, in which a voter with a  −  opinion is converted to  +. 
For this to occur, the reputation of this  −  voter must be lower than the  +  voter. After 
this update, the average rank of the  +  voters becomes a bit worse: the influencer voter 
moves up by one rank, but the influenced voter, whose rank is typically much lower, 
now joins the list of  +  voters. Concomitantly, the  −  voters have lost one voter whose 
average rank is low, so that the average rank of this group improves. We have not been 
able to go beyond this heuristic observation to compute the magnitude of the rank 
dierence as a function of the magnetization. Nevertheless, the trend from figure 9 is 
clear: for nonzero m, the minority voters are better ranked and for fixed m this rank 
dierence appears to grow as 

√
N  (inset to figure 9). This rank dierence is the mech-

anism underlying the drift velocity that drives the system away from consensus. The 
primary consequence of this bias is that TN grows faster than a power law in N and the 
numerical evidence suggests that TN ∼ exp(

√
N) (figure 8(a)).

There are multiple ways in which fitness, or rank changes of voters can be imple-
mented; we only treated the case where the influencer voter becomes ‘stronger’, while 
the influenced voter is not aected. It is also natural to consider the cases where: (i) the 
influencer voter becomes stronger and the influenced voter becomes weaker, and (ii) the 
influencer voter is unaected and only the influenced voter becomes weaker. In case (i), 
simulations indicate that the dynamical behavior is similar to the situation where only 
the influencer voter becomes stronger. In case (ii), however, the dynamics appears to 
be in the same universality class as the VM. Namely, the consensus time TN ∼ N  and 
the exit probability E(m) = (1 +m)/2. The latter behavior arises because the highest-
ranked voter does not change its opinion throughout the dynamics, a situation that 
also arises in the FVM.
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Appendix A. Equivalence between the FVM and the VM

For notational simplicity, let L and M  =  N  −  L denote the number of voters 
with  +  and  −  opinions, respectively. We define the probability for L to increase by 1 
in a time step δt as φ(L → L+ 1) and φ(L → L− 1) = 1− φ(L → L+ 1) for the prob-
ability for L to decrease by 1. We also define f  and g to represent the fitness of voters 
with  +  and  −  opinions, respectively. We define a voter configuration as

C(f ,g,L+ 1) ≡ {( f1, f2, . . . fL+1)(g1, g2, . . . gM−1)} (A.1)
in which there are L  +  1 voters with  +  opinion (left set in C) and M  −  1 voters 
with  −  opinion (right set). In each set, we order the individual fitnesses so that fi < fi+1 
and gi < gi+1. When the number of  +  voters increases from L to L  +  1, the system moves 

from one of N (L) =

(
N

L

)
 configurations to one of N (L+ 1) =

(
N

L+ 1

)
 configurations.

We focus on one such event in which L increases and thereby system ends in the 
configuration C(f ,g,L+ 1) specified in equation (A.1). In this event, one out the L  +  1 
voters which are currently in  +  opinion set of C(f ,g,L+ 1), must have left  −  opinion set 
of the previous configuration. Let f i (1 � i � L+ 1) be fitness of this relocated voter and 
denote Ci(f

′,g′,L) as the previous configuration from which system reached C(f ,g,L+ 1). 
It is important to note: (a) the dierence between C(f ,g,L+ 1) and Ci(f

′,g′,L) is only 
the opinion of the voter with fitness f i; (b) in both configurations, the number of  +  opin-
ion voters whose fitness is larger than f i is L  +  1  −  i. Using these two facts, the probabil-
ity for the system to move from Ci(f

′,g′,L) to C(f ,g,L+ 1) is given by

hi =
1

N (L)
× 1

M
× L+ 1− i

L
. (A.2)

The first factor is the probability for the system to be in one out of N (L) possible 
configurations. The second factor is the probability that the voter with fitness f i is 
picked from M  =  N  −  L elements in the group of  −  voters. The third factor is the prob-
ability to pick a voter in the  +  set in Ci(f

′,g′,L) whose fitness larger than f i.
This probability hi should be summed over all 1 � i � L+ 1 to enumerate all pos-

sibilities that lead to C(f ,g,L+ 1). Thus the probability to reach C(f ,g,L+ 1) from 
all eligible configurations by an event in which L increases is

L+1∑
i=1

hi =
1

N (L)

L+ 1

2M
. (A.3)

This probability is independent of the fitness of the voters in C(f ,g,L+ 1). Therefore, 
in an event in which L increases by 1, any one out of N (L+ 1) configurations can be 
reached with the probability given in equation (A.3).

In equation (A.2), we assumed that all configurations with L voters in the  +  voting 
state have the same probability 1/N (L). This assumption is justified because, at time 
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t  =  0, all N (L = N/2) configurations are chosen with equal probability. Because of 
equation (A.3), at any later time all N (L) configurations with fixed L are visited by the 
system an equal number of times, on average.

In equation (A.3) we found the probability to reach one out of N (L+ 1) configurations 
by an event in which L increases. To obtain φ(L → L+ 1) we must sum over all pos-
sibilities that result in all N (L+ 1) dierent configurations. Because each of these 
probabilities are same (equation (A.3)), we have

φ(L → L+ 1) =
L∑
i=1

hi N (L+ 1) =
1

N (L)

L+ 1

2M
N (L+ 1) =

1

2
. (A.4)

That is, the probabilities for the number of  +  opinion voters to increase and decrease 
in a single time step are equal, i.e. φ(L → L+ 1) = φ(L → L− 1) = 1/2. These are 
the same as the transition probabilities in the VM, which establishes the equivalence 
between the FVM and the classic VM.

Appendix B. Zero crossings statistics of the magnetization in the VM

For the VM, we want to determine: (a) the conditional time T−(m) for the population 
to start at magnetization m  =  0 and return to m  =  0 without reaching consensus, and 
(b) the conditional time T+ (m) to start at m  =  0 and reach consensus without return. 
These conditional exit times satisfy the backward Kolmogorov equations

D(m)
d2
[
E±(m)T±(m)

]
dm2

= −E±(m), (B.1)

subject to the boundary conditions: E±(0)T±(0) = E±(1)T±(1) = 0. Here E±(m) are the 
exit probabilities to m  =  0 and m  =  1 and are given by E+ (m)  =  m and E−(m)  =  1  −  m.

The solutions to (B.1) are

E+(m)T+(m) = N
[
(1 +m) ln(1 +m)− (1−m) ln(1−m)− 2m ln 2

]
,

E−(m)T−(m) = 2N
[
2m ln 2− (1 +m) ln(1 +m)

]
.

 (B.2)

To obtain the escape and return times, we consider the initial condition m  =  2/N, 
which is the outcome after a single voting event (where a  +− pair changes to  ++) and 
include the time increment to go from m  =  0 to m  =  2/N. Then from (B.2), the escape 
time is

τe =
4

N
+ T+

(
2

N

)

=
4

N
+

N2

2

[(
1 +

2

N

)
ln

(
1 +

2

N

)
−

(
1− 2

N

)
ln

(
1− 2

N

)
− 4

N
ln 2

]

≈ 2N(1− ln 2) +O
(

1

N

)
.

 

(B.3a)
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Similarly, the return time, equivalent to the zero-crossing time, is

τ0 =
4

N
+ T−

(
2

N

)

=
4

N
+

2N

1− 2
N

[
4

N
ln 2−

(
1 +

2

N

)
ln

(
1 +

2

N

)]

≈ 4(2 ln 2− 1) +O
(

1

N

)
.

 

(B.3b)

Note that the average escape time τe is O (N), while the average return time τ0 is O (1).
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