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We investigate the dynamics of a random walk in a random multiplicative 
medium. This results in a random, but correlated, multiplicative process for the 
spatial distribution of random walkers. We show how the details of these 
correlations determine the asymptotic properties of the walk, i.e., the central 
limit theorem does not apply to these multiplicative processes. We also study a 
periodic source-trap medium in which a unit cell contains one source, followed 
by L -  1 traps. We calculate the asymptotic behavior of the number of particles, 
and determine the conditions for which there is growth or decay in this average 
number. Finally, we discuss the asymptotic behavior of a random walk in the 
presence of randomly distributed, partially-absoprbing traps. For this case, a 
temporal regime of purely exponential decay of the density can occur, before the 
asymptotic stretched exponential decay, exp(-atl/3), sets in. 

KEY WORDS: Random walk; randcom multiplicative process; sources and 
traps. 

1. I N T R O D U C T I O N  

The problem of a random walk moving in an environment containing 
static traps has been extensively studied. (1 10) Situations such as a single 
trap,(1 3) a periodic, (4) or a random distribution of traps, (5 8) as well as a 
distribution of trap strengths,(9'1~ have been considered. A relatively good 
understanding of the rate at which the density of random walkers decays 
in such media has now emerged. 

In this paper, we study the dynamics of a discrete random walker on 
a one-dimensional lattice in which traps and sources are present. In our 
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model, each time a random walk A visits a defect B (a trap or source), the 
reaction (3) 

A + B ~ ( I + e ) A + B  (1.1) 

takes place. That is, the defect is unaltered, while the random walker is 
"multiplied" by a factor 1 + e. For  e > 0, the e new walkers are spawned 
when a particle meets the source, while if - 1  ~< e < 0, the defect is a trap, 
and the incident walker is partially absorbed for ~ > - 1 ,  or totally absor- 
bed, when e = -1 .  Equivalently, one can consider the mass of the particle, 
rather than the number of particles, being multiplied by a factor of 1 + e 
upon each visit to the defect. Then the relevant dynamical quantity is the 
mass of a single random walker as it through the medium. It is worth 
emphasizing that these two descriptions for the manifestation of the defect 
can be easily shown to be mathematically equivalent when one averages 
over all configurations of the random walk. 

For  even the simplest cases, such as one trap and one source, or for 
a periodic distribution of traps and sources, the walker visits each of the 
defects at random. Thus, the number of random walkers undergoes a multi- 
plicative process, but one which is not entirely random because of the 
correlations between successive visits of the walker to the defects. We shall 
discuss the conditions that give rise to the growth or decay of the average 
number of particles and elucidate the role of correlations in determining 
the asymptotic behavior of this type of multiplicative process. Potential 
applications of our model include understanding the role of correlations in 
random multiplicative processes and also for providing an idealized 
description of the number of neutrons in a radioactive material, where 
radioactive nuclei (sources) produce additional neutrons, while the 
moderator (traps) absorb neutrons. Within a continuum description, the 
particle density obeys the reaction-diffusion equation 

r 
tj_~ DV2p(x ' t )+ rl(x)p(x, t) (1.2) 

at 

where t/(x) represents a source or trap, respectively, when ~(X)~0. (11-15) 
This model is related to directed self-avoiding walks in random media (16) 
and to interfaces in Ising spin systems in two dimensions, (17) and by a par- 
ticular nonlinear transformation can be mapped to the Burger's equation in 
the presence of a random force. (~8) 

This paper is organized as follows. In Section 2, we outline some basic 
facts about random multiplicative processes in order to motivate the 
correlated multiplicative process induced by a random walk moving in a 
source-trap environment. We present a generating function solultion for 
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the distribution of random walkers in the presence of a single defect (source 
or trap) in Section 3. Explicit expressions for the number of random 
walkers and their spatial distribution are given. In Section 4, we consider 
a source-trap dipole, and derive the condition for the average particle 
number to diverge or converge. Some of these results have been given pre- 
viously, but the present treatment is more complete. We also compare the 
dynamics of a random walk with a purely random multiplicative process to 
understand how correlations affect asymptotic properties. In Section 5, we 
study a random walk in a periodic distribution of defects. We derive a 
formal solution for the average number of particles, and write the general 
condition for the particle number to reach a steady state. We also provide 
a recipe for coarse-graining a periodic source-trap medium into an effective 
homogeneous medium. In Section 6, we exploit this recipe to obtain the 
survival probability of a random walk moving in a random distribution of 
partially-absorbing traps. We find pure exponential decay at short times, 
crossing over to stretched exponential decay asymptotically, with the cross- 
over time depending on the trap strength. We conclude in Section 7. 

2. R A N D O M  M U L T I P L I C A T I V E  P R O C E S S  

To motivate studying a random walk in a multiplicative environment, 
consider first the problem of calculating the average of a product of 
random variables. (H'19'2~ As a specific example, suppose that the numbers 
1 + el = 2 and 1 + ~2 = 1/2 appear with equal probability in a product of N 
factors. Typically there will appear an equal number of 2's and 1/2's, so 
that the most probable value of the product JUmp equals 1. However, the 
average value ( Y )  U is 

(~A#)N = ~ m=0 2m(1/2)N--m 

Thus, the mean value and the typical value of the product are very different 
as N ~  oe. More generally, for a process in which the factors 1/2 and 2 
occur with probabilities p and 1 -  p, respectively, then 

(J~)N"~ 2 2m(1/2)N--mpm(1--P) N-m 
m=O 

---- [2p + (1 -- p)/2] u (2.2) 
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The essential reason for the disparity between ~/ ' )N  and ~/~,~p is the 
relatively important role played by rare events. For example, a sequence 
consisting entirely of 2's occurs with an exponentially small probability, but 
the value of this product is exponentially large. This extreme event makes 
a finite contribution to ~d/'~N and a dominant contribution to the higher 
moments of the product. The predominance of rare events means that 
numerical simulations of random multiplicative processes will generally 
yield the most probable value of an observable. (~9) 

An intriguing feature of this random multiplicative process is the sen- 
sitivity of < Y ) N  to short-range correlations in the sequence of variables 
that are being muiltiplied. As an example, suppose that there are "no 
immediate reversals" in the sequence of factors. That is, when a 2 first 
appears in the sequence, the next 5 ~ - 1  elements must also be a 2. Only 
after the 5oth appearance of a 2 does the sequences become uncorrelated 
again. This 5oth-neighbor correlation is equivalent to replacing the 
sequence of N correlated variables, which may either 2 or 1/2, by a 
sequence of N/SO independent variables, which may be either 2 ~~ or (1/2) ~. 
For  this correlated sequence, 

a s  

The larger value of ('/~/'}N compared to the uncorrelated process arises 
because rare events play an increasingly larger role as Lf increases. As 
5 O ~ N ,  the possibility of a product containing only 2's becomes 
increasingly likely, and this event will dominate in the average value. <19/ 
This simple result shows that there is no analog of a central limit theorem 
for this type of correlated multiplicative process. 

For  a diffusing particle moving in a medium containing sources of 
strength a = 1 + ~1 and traps of strength r = 1 + e2, the temporal sequence 
of a's and r's will be correlated, reflecting the propensity for the particle to 
revisit a particular defect before visiting other defects. These correlations in 
the first passage probability become stronger as the spatial dimension is 
decreased, and enhance the probability of rare events relative to the 
uncorrelated process. In the remainder of this paper, we will attempt to 
elucidate the role of these correlations in governing the asymptotic proper- 
ties of a random walk in a source-trap environment. 

3. R A N D O M  W A L K  IN THE PRESENCE OF A SINGLE DEFECT 

We begin by deriving a generating function solution for the temporal 
behavior of a random walk moving on a one-dimensional chain with a 
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single defect located at the origin. Following ref. 3, we define Pn(r) to be 
the probability that a pure random walk is at position r on the nth step 
if it starts at the origin. Similarly, we define Qn(r) to be the expectation 
vallue for the total number of particles, or equivalently, the mass at posi- 
tion r on the nth step, when the particle starts at the origin. We also define 
the Fourier transforms and the corresponding generating functions, 

Q(z, r)= ~ Qn(r)z n (3.1a) 
n = 0  

0n(k )=  ~ Q,(r)e ikr (3.1b) 
r =  - -o~  

Q(z, k)= ~ Q(z, r)e ikr (3.1c) 
r =  - -  o~3  

and similarly for Pn(r). By the construction of the single source process, 
Q,(r) can be written in the convolution form (3) 

Q.(r) = Pn(r) + ~ ~ Qj(O) P~_j(r) (3.2) 
j = O  

where c~ =- g/(1 + ~). In terms of the generating functions, this may be solved 
for both Q(z, r) and Q(z, 0) to yield 

e(z, r) 
Q(z, r) (3.3a) 

1 - c~P(z, O) 

or, in terms of the Fourier transform, 

(1 - z 2 )  1/2 =_ P(z, k) F(z) (3.3b) O(z, k ) =  P(z, k) (1 --Z2) 1/2- 

where P(z, k ) =  ( 1 - z  cos k) 1 is the propagator for the one-dimensional 
symmetric random walk. Thus, for a defect at the origin, P(z, k) is 
"dressed" by the function F(z). 

The dependence of the average number of walkers on n can be com- 
puted by inverting the generating function Q_(z, k) at k = 0. To accomplish 
this, we denote the Taylor expansion of F(z) by 

F(z )=  ~ fnz" (3.4) 
n = O  
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and by straightforward expansion of the square root, we obtain 

~(1+~)  m (2n-3) ! !  
f 2 m - - ( l _ _ ~ 2 ) m + l  E 2nn! (1  __ ~ 2 ) r n _ n +  1 , m~>l (3.5) 

n = l  

where we use ( - 1 ) ! ! - 1 ,  and f o = l  +~. Noticed that F(z) is an even 
function of z, corresponding to the fact that a random walk can visit the 
defect only every other step. Consequently, the average number of particles 
in the system at the 2mth step is :9-2,~- ~ ,  Q2m(r)= ~m+ 1, i.e., ~, changes 
only every second step. 

To obtain the asymptotic behavior of the number of particles, we 
require the large-m behavior of f2m. When the defect is a source, there is 
a simple pole in F(z) at z~=(1-c~2)1/2< 1, while if the defect is a trap, 
F(z) has a branch point singularity at zc= 1. Exploiting a Tauberian 
theorem, (4'2a) we then find 

~ = ( 1 -  )n+l, ~>0(source)  

~__ 0 f2, ~ .-~ (3.6) 

1, Is[ (zcn) 1/2' ~ < 0 (trap) 

Therefore, in the presence of a single source, the average number of par- 
ticles diverges exponentially with n, whereas it decays as 1/xfls for a trap 
(Fig. 1). In this sense, the effect of a single source is "stronger" than that 
of a single trap on the time dependence of the total number of particles. 

To obtain the moments of the displacement distribution, we use the 
fact that for a pure random walk 

O2mpn(k) k=o (2m)! 
( r ( n )  2m) -- O(ik)2 . . . .  ' 2mm----~. ( r ( n ) 2 )  m 

(2m)! 
- n m ( 3 . 7 )  

2ram! 

Here (r(n) 2m) denotes the average of the 2mth power of the displacement 
after n steps. (Odd moments are zero, by symmetry.) For the single-defect 
problem, the convolut ion form of the generating function, Eq. (3.2), 
immediately leads to the following expression for the moments of the 
displacement: 

n n l) 2m 1 02"Q.,,(k) = E~=~ f t ( r (  - > (3.8) 
<r(n)2m> O,,(k) O(ik) 2m k=o ZT=0f, 
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Fig. 1. Behavior of Q2n as a function of the number of steps n for various values of the defect 
strength e. The data are plotted on a semilogarithmic scale, for which Eq. (3.6) predicts a 
linear behavior for the case e > 0. 

Note  that  these moments  are defined with respect to the walkers which 
survive. For  the second moment ,  we exploit the properties of the ~.n given 
in Eq. (3.6) to obtain the simpler form 

( r ( n ) Z ) _ ~ 2 ~ , = o Q m  ~ [ 2 ( 1 - e 2 ) / c d ] E l - ( 1 - c d )  n/z] source (3.9) 

Qn (2n trap 

Thus, for a single source, the mean-square  displacement converges 
exponentially to a finite limit whose value depends on the source strength. 
A r a n d o m  walk is localized about  the source with a localization length that  
diverges when e ~ 0 +. For  a trap, {r(n) 2) grows linearly in n, but  with an 
ampli tude that  is twice that  of the pure r andom walk, independent of the 
strength of  the trap (Fig. 2). The increased ampli tude follows from the fact 
that  walkers which wander  further away from the origin are less likely to 
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Fig. 2. Plot of the mean-square displacement <r(n)2> for a random walk which starts at the 
defect site, as a function of the number of steps n, for various values of e. Notice that <r(n) 2 > 
saturates at a finite e-dependent value when the defect is a source, and that <r(n) 2> ~2n, 
independent of e, when the defect is a trap. As a guide to the eye, straight lines having slopes 
of I and 2 are also plotted. 

be absorbed ,  bu t  the independence  on the t rap  s t rength follows from the 
recurrence of  the r a n d o m  walk. If  a walk hits the origin once, it will hit an 
inf in i te  n u m b e r  of t imes and  eventua l ly  be absorbed .  Therefore  the mean-  
square  d i sp lacement  is governed,  asympto t ica l ly ,  by walks  which never  hit  
the origin. I t  is also wor th  no t ing  tha t  pure  r a n d o m  walk behav io r  canno t  
be recovered by merely  t ak ing  the l imit  of e ~ 0 in Eqs. (3.6) and  (3.9). 

4. R A N D O M  W A L K  IN T H E  P R E S E N C E  O F  A " D I P O L E "  

To i l lustra te  the compe t ing  effects of t raps  and  sources,  cons ider  a 
r a n d o m  walker  on a line con ta in ing  two defects, with weights ~1 and e2, 
which are  sepa ra t ed  by  a d is tance  L (Fig.  3). The  dynamics  of the spat ia l  
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Fig. 3. A source-trap dipole. 

trap �9 
E 2 

distribution of random walks can be obtained by generating function 
methods. (3"22) A formal solution was given by Eq. (9) of ref, 3, and by 
explicitly writing out this formula, we obtain for the generating function for 
the average number of walkers Q(z) = Zr Q(z, r), 

1 { (e, + e2)~L/2/(1 -z2) 1/2 + 2[e,c%/(t -z2) ] (#  3L/2 _ ~L/2)] 

(4.1) 

where ( =  [1-(1-zZ)t/Z]/z. If Q(z) has a simple pole at a value Zc< 1, 
then the average number of particles at the nth step, ~,,  diverges as z e ". 
The location of such a pole is determined by the condition 

(1 - z 2) - ( cq  + e 2 ) ( 1  - z2) ~/2 + ~1 c~2(1 - ( 2 L )  = 0 ( 4 . 2 )  

To determine whether this equation has a solution, it is useful to write 
sin 0 =  (1 - z 2 )  1/2, which then gives ( =  [(1 - s i n  0)/(1 +s in  0)] 1/2. Now 
Eq. (4.2) becomes 

(sin 0 -  el)(sin 0 -  ~2) = ~1 e2 + s i n  (4.3) 

and this can be solved graphically (Fig. 4). 
Three cases arise. If both defects are traps, then ~i < 0, so that Eq. (4.2) 

has no zeros in the interval (0, 1), and the square-root singularity in the 
numerator of Q(z) leads to the average number of particles decaying 
algebraically in n. A second case is that both defects are sources. 
Then e i>0 ,  and there always exists either one or two zeros of Eq. (4.2) 
in (0, 1). The smaller of the two zeros satisfies the condition 
& <  ( 1 - m a x { ~ ,  0{22}) 1/2, SO that the divergence of ~n is faster than that 
due to either of the two sources alone. 

The interesting case is that of a "dipole" consisting of a source, with 
cq > 0, and a trap, with 0~ 2 < 0. By comparing the slopes of each side of Eq. 
(4.3) at sin 0=0, one finds that a solution exists in (0, 1) only for L>L,., 
with 

L~.=~ ~ ~ (4.4) 
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Fig. 4. Illustration of the graphical solution to Eq. (4.3), which describes the behavior of a 
random walk in the presence of a source-trap dipole. The dashed parabola 
(s in0-cq)(s in  0 - ~ 2 )  intersects the solid curve ~ 2 ~  2L at the dot only for sufficiently 
large L. 

This gives a "phase boundary" that delineates between trap-dominated and 
source-dominated dipoles (Fig. 5). Exponential growth of ~n occurs for 
L > L c ,  and algebraic decay occurs in the opposite case. Notice that an 
infinitesimally weak source can dominate if L is sufficiently large, which 
stems from the recurrence of random walks. 

We can now make contact with the random multiplicative process of 
Section 2. If the random walker is on the source, then it will take of the 
order of L 2 time steps to arrive for the first time at the trap, a distance L 
away. During this process, each of the L sites between the dipole, including 
the source, will be visited of the order of L2/L = L times. Thus, at a simple- 
minded level, the dynamics of a random walker in the presence of a dipole 

Lc{E~, E -1/2 

- - 1 / 4  

1 2 3 4 1/E~ 

Fig. 5. "Phase diagram" of a random walk in the presence of a source--trap dipole for 
various values of e2. For L > Lc(el, e2), the source dominates, and the number of random 
walkers diverges exponentially in time. 
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can be replaced by that of an uncorrelated random multiplicative process 
in which the factors in the product are the dipole and source strengths 
raised to the Lth power. This defines the effective correlation range of the 
multiplicative process induced by the random walk as L. 

For  this L-correlated multiplicative process, the average value of the 
product of the factors (1 + el) or (1 + e2) is, from Eq. (2.3), 

( jV') N= I.( I + 8I)L-k- (1-1- ~2)L ] 
2 (4.5) 

For fixed el and •2, (~/')N is an increasing function of N for sufficiently 
large L, even for el very close to zero, i.e., an infinitesimally weak source. 
Similar considerations suggest that the correlation range of the effective 
multiplicative process will be of order In L for a dipole in two dimensions, 
and will be finite for higher dimensions. 

5. PERIODIC DEFECT DISTRIBUTION 

5.1. Generating Function Approach 

Motivated by the fact that sources tend to dominate over traps, we 
now study a periodic system in which sources of strength el are located at 
r = nL, with n = 0, 4-1, __ 2 ..... while traps of strength e2 occupy all of the 
remaining sites (Fig. 6). To obtain a formal solution for the distribution of 
particles, we start with the master equations for the evolution of the 
average number  of particles at position r at the nth step 

Q n ( r ) = W ( r - l ~ r ) Q n  l ( r - 1 ) + W ( r + l - - + r ) Q n _ l ( r + l  ) (5.1) 

For  the period L system, the transition function, W ( r +  1 ~ r ) ,  equals 
(1 + el)/2 - a/2, or (1 + ~2)/2 - z/2, respectively, if r is at the location of a 
source or a trap. (The related problem of vibrations on this "generalized" 
diatomic chain was considered some time ago/23)) 

It is convenient to classify sites according to their location in the 
period as sites (l), for r = l +  mL,  with m an arbitrary integer, and corre- 

Fig. 6. The periodic distribution of sources and traps considered in the text. Shown is the 
case where L = 4. 
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spondingly append the superscript (l) to Qn(r). The master equations then 
become 

Q(0)(r) = 1 t r [ - [~(L--  1)( v Q~I~ ~VL~n 1 v - - l )  -k- 1( r + l ) ]  

O(1)(r ) = 1  (0) ) + O(2) ~r[Q, l ( r - 1  , ( r + l ) ]  
(5.2) 

l~-r~(L 2)t. 1 ) + Q ~ l ( r + l ) ]  Q~L- 1)(r  ) = g ~ C ~ n - - 1  , "  - -  

To solve these equations, we introduce the transform function 

O(')(z, k )=  ~ y, O(ff)(r)e ikr (5.3) 
n = 0  rE(l )  

With the initial condition of a single particle located at the origin, 0(Z)(z, k) 
is the solution of the matrix equation, 

where Q is the column vector [omitting the arguments of Q(~)(z, k)] 

/ 0<~ 
O= / (5.5) 

and M is the L x L matrix 

t 0 
�89 

\�89 -'k 

~zae 0 ...  0 �89 ik 
0 lzz e i k  0 "" 

1 ik ~z~e 0 �89 . . .  
�9 . . , " , . " . . " 

�9 0 

0 0 1 ik o ~  �9 �9 ~zre 

(5.6) 

As an illustrative example, consider the case L = 3. Then the solution to 
Eqs. (5.4)-(5.6) yields 

0~o~ = 1 - �88 2 

1 - � 8 9  - 1 z 2 r 2  - -  � 8 8  ~ c o s  3 k  
(5.7) 

xz r cos 2k 0 ' 1 ) = 0  ( 2 ) =  I Z . C G o s k _ [ _  1 2 2 

1 - lz2ar -- Zzl 2r 2 _ �88 2 cos 3k 
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In particular, by setting k = 0 and a = z = 1, these expressions reduce to the 
generating functions for the probabil i ty that  a pure r a n d o m  walk occupies 
the set of (l) sites. Specifically, for the (0) sites, we find 

1 - z2/4 
Q@(z, k = 0; a = z = 1 ) - 1 - 3z2/4 - z 3 / 4  (5.8) 

and the n th term in the power  series representation of the r ight-hand side 
yields the probabil i ty that  a pure r andom walk, starting at the origin, 
occupies the set of  sites r = 3j, with j an arbi t rary integer, at the n th  step. 

While the complete solution for arbi t rary period is unwieldy, the con- 
dition for the average number  of particles to reach a steady state can be 
analyzed in detail. A steady state occurs when the generating function is 
singular at z c = 1, and thiS, in turn, is equivalent to the vanishing of  the 
following determinant,  when 2 = 1 and k = 0: 

~ ( ~ )  = 

-)~ a' 

b - 2  

0 b 

b' 0 

" ' "  0 

b' 0 . . .  

- 2  b' . . .  

b - 2  b' 

0 . . .  b -)~ 

a 

0 

0 

L x L  

(5.9) 

w h e r e a ,  a '  1 +i~ b' 1 +ik = s a e -  and b, = s z e -  . To solve this, define 

DL()~) = 

- 2  b' 

b - 2  

0 b 

0 0 

" ' "  0 

b' 0 . . .  

- 2  b' --- 
�9 , . " . . 

b - 2  

0 -.. b 

0 

0 

0 
: 

b' 

- - )  L x L  

(5.1o) 

The determinant  ~L(2) obeys the recursion relation 

~L(2) =- - )~DL l ( ) O - ( a ' b + a b ' ) D L _ 2 ( 2 ) + ( - 1 ) ' - ~ ( a ' b " ~ - ~ + a b ' - ~ )  

(5.11) 

while DL(2 ) has the explicit solution (see, e.g., ref. 24) 

DL(2) = c~?~ 1 + c27~-~ (5.12a) 
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where 

- 2 + _ ( 2 2 - 4 b b ' )  1/2 2 )L2--2b 2 
- - - +  (5.12b) 71,2- 2 , c l . 2 -  2 2 (22-4bb ' )  1/2 

The results for cl,2 are based on the initial condit ions D I ( ) ~ ) = - ) ~  and 
D2(,~ ) = 2  2 .  bb'. Using this result for DL(,~), the condit ion for a steady 
state, ~L(2 = 1 ) =  0, gives the "balance" condit ion 

O'ba l  . . . .  (L) = { [-1 + (1 -- r2)1/2] L -- [1 -- (1 -- r2)t/2] L } 

X ("g{ [ l  "F ( l  - -  2 7 2 ) 1 / 2 1 L -  1 - -  [ I  - -  ( i  - -  ' [ 2 ) I / 2 ]  L - I  

+ 2VL- 2(1 __ ~=)1/2 })-1 (5.13) 

Thus, when o-= O'ba 1 . . . .  (L), the average number  of  particles in the system 
remains constant  at long times. 

Equat ion  (5.13) can be simplified by substituting cos 20 = (1 - r 2 ) m  to 
yield 

l + x  L 
O'balance(L) = x ( l  + X L-2) (5.14) 

where x = t a n O = [ 1 - ( 1 - r 2 ) l / 2 ] / r .  The qualitative behavior  of the 

Fig. 7. 

a ballance { L} L/=U~ LL=~176 

P 
x 

A plot of the "balance" condition O'S.lance(L) versus  x for various values of L. Notice 
that -1 O'balance(OO) nonuniformly in L. abalanoe(L ) converges to -1 
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balance condition is shown in Fig. 7. We see that ~ba~ . . . .  (L) converges non- 
uniformly to Oba I . . . .  (cO), where 

1 "C 
O'bal . . . .  ((30) X 1 - - ( 1 - - Z 2 )  1/2 ( 5 . 1 5 )  

Thus, a single source can dominate over a uniform background of traps 
provided that a > aba, . . . .  (OO). On the other hand, for weak traps, r = 1 - 6  
(with 6 L ~  1), the balance condition reduces to a m  1 + ( L - 1 ) 6 .  This 
corresponds to writing the balance condition in terms of the typical event 
in which each site is equiprobably occupied, namely, az L-  1 = 1. 

5.2,, Coarse-Graining Solution 

Further insight into the periodic distribution can be gained by a 
coarse-graining approach, wherein the original random walk process is 
mapped onto a random walk only on the sublattice r = mL. In jumping 
between these sites, the average number of particles (or the mass of the 

1 JV walker) increases by a factor 5( ) c ,  and each jump requires an average 
time (t)c, where the average is taken over all walks in the ensemble. In 
this fashion the original problem is reformulated as a random walk in a 
uniform medium with defects of strength ( J g ) L  and a time rescaling factor 
of ( t ) L .  

To calculate these quantities, we require the probability of getting 
from r = O  to r = L  for the first time in n steps, Q(n;L), and the corre- 
sponding generating function 

Q(z;L)= ~ Q(n; L)S (5.16) 
n = O  

In this section, we employ a slightly different notation for the Q's than 
what was used previously, to explicitly denote that we define the Q's for 
the interval 0 to L. In terms of this generating function, 

and 

( J g ' ) c = 2  ~ Q(n;L)=2Q(z;L)~= 
n=O I 

(5.17) 

( t ) L  _ Z,~__0 nQ(n; L) 1 aQ(z; L) 

Zn~=o Q(n; L) Q(z', L) ~?z z = l  
(5.18) 
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so that the initial terms in the power series for Q(z; L) can be represented 
as 

Q(z;L)=�89 2) (5.19) 

We now follow the approach of Goldhirsch and Gefen <25/ and com- 
pute the generating function Q(z; L) in terms of 

(1) T(z; L), the generating function for leaving r = 0 and arriving at 
r = L, for the first time, without ever having returned to r = 0; and 

(2) R(z; L), the generating function for leaving r = 0 and returning to 
it for the first time, without having visited r = L. (The first step is assumed 
to have been taken to the right.) Our analysis is greatly simplified if T 
and R are defined on a lattice uniformly populated by defects of 
strength/~2. 

Using the generating functions defined above and their usual property 
of transforming convolutions of the probability densities into simple multi- 
plication, we obtain (omitting the arguments z and L, for simplicity) 

where rrl, 2 = 1 + G1.2- The term [2(rr,/a2)R]" accounts for n returns to the 
origin, while the final transition to the point r = L is represented by 
(a~/a2) T. The prefactor rr~/a2 accounts for the fact that Q(z; L) is defined 
on the period L chain of Fig. 6, while R(z; L) and T(z; L) are defined on 
the uniform chain of ~2 defects. 

In close analogy with ref. 24, the generating functions R(z; L) and 
T(z; L) obey the recursion relations 

R(z; L ) =  (1~ (5.21a) 
1 - R(z; L - 1 ) 

T ( z ; L ) 2 = [ R ( z ; L + I ) - R ( z ; L ) ] [ 1 - R ( z ; L ) ]  (5.21b) 

Equation (5.21a) has the solution 

with 

-1 "2 (5.22a) R(z; L) = a2Z L L 
21 --22 

)~,2 = �89 ___ [ i  -072z)2]  '/2 } (5.22b) 

Expanding Eqs. (5.20)-(5.22) about z = 1, one can now derive <JV')L and 
<t>~. 
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We first specialize to the case of e 2 = 0, that is, a chain with periodic 
defects of strength e~ placed a distance L apart. We then find 

L - 1  L 2 - 1  
R(z; L) = - -  - -  (1 - z) + (9((1 -- z) 2) (5.23a) 

2L 3L 

1 L 2 + 2  
T(z; L) 

2L 6L 

1 
Q(z; L ) -  

2(1 - ~ I L )  

- -  (1  - z )  + ( 9 ( ( 1  - z )  2 )  (5.23b) 

X{1 -- L----~+[-L2+2 L2-]~ l --21L] (1--z)}W(-9((l--z)2) (5,23c) 
Using Eq. (5.19), the expressions for ( J V ) L  and ( t ) c  can now be 
immediately read off from (5.23c). Several cases are of interest: 

(a) Period L = 1 (uniform chain of el defects). Substituting L = 1 in 
Eq. (5.23c) correctly gives ( t ) l  = 1 and (~A/')I = 1/(1 - ~ 1 ) =  1 +e l .  This 
serves as a useful consistency check. 

(b) ~ =0.  This corresponds to a pure random walk, sampled at 
{ r = mLI m = 0, ___ 1, + 2,... }. We find, as expected, ( J V )  L = 1, so that the 
number of walkers is constant, and ( t ) L = L  2, which is the first passage 
time between two sites a distance L apart. 

(c) e l > 0  (periodic source distribution). We find ( J V ' ) c =  
1/(1 - ~ L ) ,  which diverges for L c = 1/cq = (1 + el)/el. Clearly, the expec- 
ted number of particles increases between visits to adjacent sources, since 
a random walk recurs to a given source several times before reaching 
neighboring sources. The number of recurrences increases with separation 
L, until at L = Lc the walker becomes infinitely multiplied and localized 
about the original source. Correspondingly, the first passage time for a 
jump to an adjacent source is larger than for the pure random walk model. 
For  L ~ L o ,  ( t ) L , ~ L 2 + ~ L ( L  2 -  1 ) ~ ,  and ( t ) L  diverges when L ~ L  c. 
These conclusions complement the results for a single source given in 
Section 3. 

(d) el < 0  (periodic distribution of traps). The expected number of 
particles between successive visits to adjacent traps decreases as ( Y ) c  = 
1/(1 + IC~l[ L). Also, ( t ) L  is decreased with respect to pure random walks, 
since walks that avoid recurring to the origin are not absorbed and out- 
weigh slower recurring walks. From Eq. (5.23c), one has the asymptotic 
forms ( t ) L ~ L 2 - 2 L ( L  2 -  1)h~ll for L ,~I / I~l l  , and (t)L ~lgL2 for 
L>> 1/1~11. 

822/56/3-4-14 
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We now turn to the general case of e2 < 0. A full analysis of Eqs. 
(5.20)-(5.22) becomes very tedious and unenlightening. However, in the 
limit L ~ oo the analysis simplifies, and we find 

2 f f ( 1 - - ' C 2 ) 1 / 2 ( ' C )  L 
(./g") L -- Z _ a--~-- ~ - - ~ ) 1 / 2  ] 1 + ( l _ r 2 )  m (5.24) 

Notice that by demanding ( Y ) L  = 1, w'e recover the steady-state condi- 
tion on (~(z) given in Eq. (5.15). 

We apply now these general conclusions in order to determine how to 
coarse grain a periodic chain of traps. That is, for chain A, with traps r at 
sites {r=mLIm=O, -t-1, +2,...}, we wish to find an equivalent uniform 
chain B with traps z' on every site (Fig. 8). By the equivalence of A and B 
we mean that (.Ar)(LA)= ( Y ) ( L  m, SO that in the asymptotic limit the 
particle densities on the two chains decay at the same rate. For  chain A we 
have [see case (d) of Eq. (5.23c)] 

1 
< y > ~ A ) _  (5 .25)  

1 + I (~-  1)/zlL 

For chain B, we first use the fact that ( J V ) c = 2 Q ( 1 ;  L) from Eq. (5.19). 
Then from Eq. (5.20), we compute Q(1; L) for the case where a~ =or2 = r ' .  
Finally, we substitute the expressions given in (5.21) and (5.22) for T(1; L) 
and R(1; L) to arrive at 

.F t L  

( ~ > ( c B )  = 2 [1  + (1 - - ' g t 2 ) l / 2 ] L  "1- [1  - ( 1  - -  "/7'2)1/2-1L (5 .26)  

( A ]  0 I I I I 0 J I I 0 I I 
T T 

U 
( S }  o o o o o o o o o o o o o o 

Fig. 8. Coarse graining of (A) a periodic chain of traps z, which period L, into (B) a uniform 
chain of traps z'. 
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Equating the two for the case of weak traps, we find the coarse-graining 
condition 

e' = e/L + (9(L -3) (5.27) 

This coarse-graining relation is used in the next section. 

6. A P P L I C A T I O N :  R A N D O M L Y  D I S T R I B U T E D ,  P A R T I A L L Y  
A B S O R B I N G  T R A P S  

As an application of coarse-graining, consider a random distribution 
of partially absorbing traps ( - 1  < ~ < 0) on a one-dimensional chain. The 
corresponding problem of perfect traps is exactly soluble, and the average 
number of particles decays as ~5 8) 

(sV'(t)) ~ exp[ ~a(cZt) 1/3 ] (6.1) 

where a is a constant and c is the (small) trap concentration. The stretched 
exponential decay arises because of very large (but rare) trap-free regions 
that occur in a random distribution, in contrast with the purely exponen- 
tial decay that occurs when the traps are homogeneously distributed. 

For partially absorbing traps 3 we develop an approximation which is 
based on properly averaging over rare events, together with the coarse- 
graining procedure of the previous section. Consider the trap-free interval 
( - L / 2 ,  L/2). When L is large, the random walk probability density p(x, t) 
can be described by 

Op(x, t) c32p(x, t) 
Ot c3x 2 ' 

ap(x, t) ~?2p(x, t) 
Ot ~?x 2 

L 
Ixl <2 (6.2a) 

L ,~2p(x, t ) ,  tXl  > 2  (6.2b) 

The term --22p(x, t) in Eq. (6.2b) accounts for the absorption of the 
walker by the traps within a continuum description. We can estimate the 
value of 22 corresponding to partially absorbing traps by first approximat- 
ing the region Ix] > L/2 by a periodic chain of traps of strength e and 
period L = 1/c. This region can then be coarse-grained using Eq. (5.27) to 
obtain a corresponding uniformly absorbing chain filled with traps of 
strength ~'. In the continuum limit ~' =exp( -22 ) ,  so that 

�9 ~ = [ - (1  - -  t ) e - ]  1/2 (6.3) 

3 See, however, ref. 26 for a derivation of the asymptotic behavior of the particle density for 
partially absorbing traps. 
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In the large-time limit, only the lowest eigenvalue solution of Eq. (6.2) 
is relevant. This is 

p(x, t)= {A cos(ml/2x) e o~,, 
exp[ - (2 2 - 0 ) )  1/2 tXl ] e ~', 

Ixl < L/2 
(6.4) 

Ixl > L/2 

where 09, the lowest eigenvalue, and A/B are determined from the con- 
tinuity of p and 8p/3x at x = +_L/2. We thus find the following condition 
for the lowest eigenvalue: 

cot  ~ (6.5) 
(,~2 _ 42)1/2 

where ( -  ~ol/2L/2, and )~- 2L/2. Equation (6.5) can be solved graphically, 
and a zeroth-order estimate for the lowest eigenvalue (0 is (Fig. 9) 

{ ;~, ,~ ~ 1 (6.6) 
~o--- re/2, ~>>1 

1 / i  x~. ._ . /  .~ ~.>>1 

for k<<! ~>>1 

\ 
~ c o t  

Fig. 9. Illustration of the graphical solution to Eq. (6.5). The right-hand side of this equation 
and the corresponding solutions to the equation are shown dashed for the two cases of ,~ ~ 1 
and ;~ >> 1. 
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The crossover between these two limits occurs for ,~ _~ 1, or 2 ~- 1/L. Thus, 
the time dependence of the particle density is 

f e  -~2t, )oL ,~ 1 (6.7) 
p(t) ~- ~e_~2t/L2, 2L ~ 1 

Having found the survival probability of a particle in a trap-free interval of 
size L, the expected number of particles for a random trap distribution can 
be calculated by averaging pL(t) over all possible interval sizes. For a 
Poisson distribution, the probability of having a trap-free region of size L 
is p(L)  ~: e -CIr. Then, by steepest descents, we find 

fo Se ;.L* 1 
(JV ' ( t ) )  ~ pL(t) p (L)  dL ~ "~e . . . . .  t.(,.2,),,,3, 2L* >> 1 (6.8) 

Here L*..~ (t/c) 1Is is the value of L at which the integrand achieves its 
maximum. Therefore, we find two regimes for the decay of (JV(t) ) .  For 
early times, t < t*, the decay is a pure exponential, as for a homogeneous 
distribution of traps, while for later times, t > t*, the decay has the same 
functional form as for perfect traps, independent of the trap strength. The 
crossover time t* depend on the trap strength and on concentration as 

t* = c/2 3 ~ c - t / 2 ( 1  - -  Z') 3/2 (6.9) 

It should be emphasized that t* gives the time scale beyond which partial 
traps appear to behave as perfect traps. This has no connection with the 
characteristic time that separates the e x p ( - t  1/2) early time decay of the 
particle density from the asymptotic e x p ( - t  1/3) decay in the case of 
randomly distributed perfect traps. Notice also that we have only given 
results for weak traps, i.e., ( 1 -  r) /c l /2~ 1, since it is only in this case that 
there are two distinct times regimes, as expressed by Eq. (6.8). 

7. D I S C U S S I O N  

We have studied the dynamics of a random walk moving in a one- 
dimensional medium containing traps and sources. For a single source, the 
number of walkers (or the mass of a single walker) grows exponentially 
with time and the mean square displacement converges to a constant. For 
a single trap, the number of walkers decays as n. -1/2 and the mean square 
displacement grows asymptotically as 2n, twice as fast as for a random 
walker in a free environment. 

For a source-trap "dipole," there may be either a trap-dominated 
algebraic decay or a source-dominated exponential growth of the number 
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of walkers, depending on the distance L between the two defects. In par- 
ticular, a very weak source ultimately dominates over an arbitrarily strong 
trap if L is large enough. The dipole was also useful for elucidating the role 
of correlations in the multiplicative process governing the number of 
walkers induced by the successive visits of the walker to the same defect. 
We have shown that there is an equivalence between a random walker in 
the presence of a dipole of span L consisting of a source o- and a trap ~, 
and a random multiplication of the equiprobable factors a/~ and T L. 

The role of rare events in determining the dynamics of a random 
walker was seen from our treatment of a periodic source-trap distribution. 
For  a period-L chain consisting of a source followed by L -  1 traps, the 
most probable number of random walks grows as ar(L-1). Hence, we 
would expect that for a ~ 1/z L there would be no change in the mass of the 
walker. However, from Eqs. (5.14)-(5.15) the condition for a stationary 
average number of walkers is a ~ 1/x ~ 1/T as L ~ oe. This shows that the 
very rare walks which visit the source L times as frequently as any of the 
traps dominate the average. Likewise, for a single source in a homogeneous 
background of traps, the walks which stay confined to the source dominate 
the average, so that a single source may win over the traps. In most practi- 
cal situations, such as in Monte Carlo simulations, the sample of random 
walks available is much smaller than the complete ensemble of possible 
walks, and one observes most probable values rather than true averages. 
Thus, in a random distribution of traps and sources, we expect sources to 
dominate because of very rare events in which the sources are visited an 
anomalously large number of times. However, in a practical realization we 
would observe the most probable outcome and the sources will not 
necessarily dominate. 

The analysis of periodic distributions provides an effective coarse- 
grained homogeneous trapping medium to account for systems containing 
a random distribution of traps at low concentration. In Section 6, we used 
this coarse graining to study the trapping of random walkers on a linear 
chain with a random distribution of partially absorbing traps. For  short 
times, there is a simple exponential decay in the number of walkers which 
depends on the strength and concentration of traps, as in the case of a 
homogeneous absorbing medium. For  later times, large trap-free regions 
favor the longer survival of particles and we find the same anomalous 
decay as for the case of perfect traps. This early-time regime of exponential 
decay is special to partial traps. 
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