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Models of how things spread often assume that transmission mechanisms are fixed over time. However,
social contagions—the spread of ideas, beliefs, innovations—can lose or gain in momentum as they spread:
ideas can get reinforced, beliefs strengthened, products refined. We study the impacts of such self-
reinforcement mechanisms in cascade dynamics. We use different mathematical modeling techniques to
capture the recursive, yet changing nature of the process. We find a critical regime with a range of power-
law cascade size distributions with nonuniversal scaling exponents. This regime clashes with classic
models, where criticality requires fine-tuning at a precise critical point. Self-reinforced cascades produce
critical-like behavior over a wide range of parameters, which may help explain the ubiquity of power-law
distributions in empirical social data.
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Introduction—Cascades of beliefs, ideas, or news often
show signs of criticality despite coming from various
sources and spreading through different mechanisms [1].
The signature of criticality is a power-law tail in the cascade
size distribution, scaling as s−τ. Cascade models predict
this behavior at a precise critical point, the phase transition
between a regime where all cascades eventually go extinct
and another where they can grow infinitely. At this point,
cascade models that follow a branching process structure
universally predict a scaling exponent of τ ¼ 3=2 [2]. We
call this critical exponent universal because, for a large
family of spreading mechanisms, its value does not depend
on the details of the model [3]. However, social media data
show that cascade sizes can follow power-law distributions
with scaling exponents much different from the prediction
τ ¼ 3=2. The size of message cascades and reply trees
appear to decay much faster with scaling exponents of τ ¼
3.9 [4] and 4 [5], as do reposting cascades or recruitment to
social movements both with exponents τ ¼ 2.3 [6,7], and
many other data sources on platforms with exponents
around τ ¼ 2 [1]. The difference between the universality

observed in models and the diversity of empirical results is
yet unexplained.
Although cascade models vary, the vast majority of them

use fixed mechanisms such that the same rules apply at
every step of the cascade. For example, a new case of a
disease produces infections through the same mechanism
as previous cases. However, cascades of beliefs and ideas
might be different. Beliefs can be self-reinforced [8] or
modulated by social interactions [9]. Ideas or products can
be refined as they are transmitted from one person to
another.
Self-reinforcing cascade (SRC) model—Imagine a cas-

cading product like a meme, conspiracy theory, rumor, or a
piece of software spreading in a population of agents. At
every transmission step in the cascade, the product has the
chance to independently improve with probability p or get
worse with probability 1 − p. This process can stop for two
reasons: either the quality of the product drops to zero, or
the agents sharing it cannot find others to pass it on to
(see Fig. 1).
As an example, consider open source projects where a

seed piece of software is made available for others to fork
and modify [10]. These modifications can either enhance or
degrade the software, as well as its governance [11,12]. For
instance, better code or governance might make the
software more accessible and easier to adopt and update,
while poorly written code or bad governance practices can
make the software difficult to maintain, eventually leading
to its abandonment [13]. As a result, the quality of the
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software varies with each iteration, demonstrating the
dynamic nature of such cascades.
As a final and very different example, we note that we

originally conceived the self-reinforcing mechanism as a
model of forest fires gaining intensity as they burn trees but
losing intensity as they traverse gaps in forest cover [14].
We explore this idea that cascades can deviate from
universal classes when they can be amplified or attenuated
as they spread.
The SRC model shares conceptual similarities with other

models accounting for popularity-driven nature of many
cascades, using self-exciting point processes [15] or com-
petition between cascades [16]. Cascade models based on
these mechanisms can help explain two different univer-
sality classes, τ ¼ 3=2 and τ ¼ 2 [15], and interpolate
between [16].
More generally, the SRC model provides a cascade

perspective on killed branching random walks where
certain results are known for its critical point in a
continuous limit [17] and bounds on its critical behavior
in the discrete case [18]. Here, we provide exact recursive
solutions, static closed-form expressions for the expected
cascade sizes and their critical point, and a dynamic
analysis of cascade intensity. Beyond theoretical contribu-
tions, our results illustrate how diverse scaling exponents
can easily be observed in cascades and we provide
estimates for the exponents produced by the SRC model.
Recursive solution—Mathematically, we consider a gen-

eral branching structure for contacts within the population.
At any node, we define GðxÞ ¼ P

b πbx
b as the probability

generating function (PGF) for the number of “children”
neighbors (occupied or not) of that node, πb being the
probability of branching into exactly b children [19]. The
probability π0 is equal to the probability that any node in
the cascade is a dead end without children, one of two ways
for a chain of transmission to end. Importantly, and in line
with recent empirical findings [20], the branching number b

is drawn independently and identically at each node.
However, intensity-dependent distributions for the branch-
ing number are a straightforward extension of the model
(explored in Supplemental Material).
We pick the first node on this structure to start a cascade

of intensity 1 (more generally, I0). Any potential children
will be either receptive to the process with probability p,
and continue the process with intensity 2; or nonreceptive,
such that they end their branch of the cascade by reaching
intensity 0. In the next step, children with nonzero intensity
in the last step (if any) can recruit their own receptive
children (if any) to continue the process with intensity 3; or
convince their nonreceptive children (if any) to continue the
process with intensity 1. In general, intensity increases
when the cascade spreads to receptive nodes and decreases
when it spreads to nonreceptive ones. Any branch of the
cascade dies either when it reaches a dead end or when its
intensity goes to zero.
We can solve this process using a self-consistent recursive

solution. Let H1ðxÞ be the PGF for the cascade size
distribution of a node of intensity 1 [21]. Since the root
node is part of the cascade,H1ðxÞ has to be proportional to x
to count that node. After that, every possible child generated
by GðxÞ is either receptive with probability p or non-
receptive otherwise. Receptive children will have intensity
2 and produce cascades whose size is generated by H2ðxÞ,
while nonreceptive children will have intensity
0 and thus lead to trivial cascades of size 0, i.e,
H0ðxÞ ¼ x0 ¼ 1. We can therefore write H1ðxÞ ¼
xG½pH2ðxÞ þ ð1 − pÞ� to define a recursive self-consistent
equation for the cascade size distribution. In this equation,
we use the fact that a cascade produced by a node is the sum
of the cascades produced by its children, and that the PGF for
the sum of a variable number of independent random
variables is the composition of the PGFs.

FIG. 2. Phase transitions of SRC and directed percolation on
Poisson trees of average branching number l ¼ 3. For the SRC,
we compare our recursive exact solution based on Eq. (1) to
simulations. The critical point marking the emergence of a
supercritical cascade is at p ¼ 1=l ¼ 1=3 for percolation and
at p ¼ ð1 − 2

ffiffiffi
2

p
=3Þ=2 ≈ 0.0286, as computed from Eq. (4), for

the SRC.

FIG. 1. Schematic of a self-reinforcing cascade. Start with a
seed of intensity one. At each generation n, the process gains a
unit of intensity when reaching active neighbors (orange); or,
loses a unit of intensity when reaching inactive neighbors (blue).
Paths of the cascade end when they reach a node with no children
(dead end) or when the intensity falls to zero (absorbing
boundary). The final cascade consists of all nodes where the
process had positive intensity.
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More generally, we can write

HkðxÞ ¼ xG½pHkþ1ðxÞ þ ð1 − pÞHk−1ðxÞ� ð1Þ

as nonreceptive nodes decrease the intensity but do not
necessarily end the process if k > 1. To close the second-
order recursion in Eq. (1) we need another boundary
condition besides H0ðxÞ ¼ 1. To this end, we define k̄
as the maximum intensity allowed, implemented by requir-
ing Hk̄þ1ðxÞ ¼ Hk̄ðxÞ.
All closed-form solutions presented below hold in the

limit k̄ → ∞, i.e., for cascades with no upper bound on
intensity. All numerical simulations are performed in this
limit. In practice, integrating Eq. (1) requires choosing a
finite k̄. However, as shown in the following, cascades
seeded at an intensity enough smaller than k̄ are insensitive
to the latter, which is thus effectively indistinguishable
from k̄ → ∞.
To solve Eq. (1), we iterate it for multiple values of x, up

to k̄ ¼ 100, until all values converge to within a certain
precision threshold (we use 10−12). Once a fixed point has
been reached, we can extract H1ðxÞ, which generates the
cascade size distribution from the seed (assuming I0 ¼ 1).
We can also obtain the probability that a cascade is
supercritical and never ends as 1 −H1ð1Þ, since
infinite cascades are not accounted for in Eq. (1).
Methods are detailed in our Supplemental Material (SM)
[22] and our calculations are available online [23].
Critical point—We first look at the phase transition of

SRC in Fig. 2. We assume that the number of children
nodes is drawn from a Poisson distribution πb ¼ lbe−l=b!
of mean l ≥ 1. The self-intensifying mechanism greatly
reduces the critical point of the process. For an average
branching number l ¼ 3, we find pc at ð1 − 2

ffiffiffi
2

p
=3Þ=2 ≈

0.0286 instead of 1=l ¼ 1=3 for the emergence of a giant
connected component (infinite-size) cascade in a random
network [24].
We now derive a closed-form solution for the critical

point. To gain some insights into the expected behavior of
Eq. (1), we rewrite the system as a recursion over the
expected cascade size mkðpÞ when starting at a node of
intensity k for a given p. To calculate mkðpÞ, we average
the cascade size distribution by taking the derivative of
HkðxÞ and evaluating at x ¼ 1 (with Hkð1Þ ¼ 1 in the
subcritical regime), to obtain

mkðpÞ ¼ 1þ lpmkþ1ðpÞ þ lð1 − pÞmk−1ðpÞ: ð2Þ

This is a second-order linear difference equation with
boundary conditions m1ðpÞ ¼ 1þ lpm2ðpÞ and
mk̄ðpÞ ¼ 1þ lpmk̄ðpÞ þ lð1 − pÞmk̄−1ðpÞ. In the limit
of large k̄, we obtain the exact solution (see SM for
derivation [22])

mkðpÞ ¼
1

l − 1

��
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4pð1 − pÞl2

p
2pl

�k
− 1

�
: ð3Þ

We calculate the critical point pc of the process as the value
of p where the susceptibility of the system diverges, such
that dmk=dp → ∞. We find

pc ¼
1

2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l−2

p �
: ð4Þ

Figure 3 validates the exact closed-form expressions above
by comparing Eq. (4) against the solution from the exact
recursion and Eq. (3) against numerical simulations
(inset plot).
Temporal behavior—To get a better idea of the behavior

of the system around the critical point, we analyze the depth
of cascades and the associated temporal dynamics of
intensity. We write a recursion for QkðnÞ, the cumulative
probability that a cascade generated by a node of intensity k
has depth not larger than n,

QkðnÞ ¼ G½pQkþ1ðn − 1Þ − ð1 − pÞQk−1ðn − 1Þ�; ð5Þ

with initial condition Q0ðnÞ ¼ 1 − δn;0. Crucially, solving
for the tail DkðnÞ ¼ 1 −QkðnÞ reveals that, independently
of the initial intensity, the tail of the depth distribution
decays exponentially for large n as DðnÞ ∼ exp½−nγlðpÞ�,
with γlðpÞ ¼ − ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pð1 − pÞl2

p
. See SM for details [22].

At each generation n, we can calculate the expected
maximal number of positive steps in intensity Pmaxðn; pÞ
(i.e., the number of receptive nodes met) over all paths. To
solve for the dynamics of Pmaxðn; pÞ we define the
cumulative probability RnðxÞ ¼ Prob½Pmaxðn; pÞ ≤ x�, with

FIG. 3. Critical threshold pc of SRC on Poisson trees of
different average branching number l. Results are obtained by
solving the exact recursion in Eq. (1), the explicit solution in
Eq. (4), and the critical condition of the traveling wave in Eq. (9).
The results match up to the numerical precision at which we solve
the recursion. The inset validates the explicit solution in Eq. (3)
for the expected cascade size mk, comparing it with 104

simulations per value of initial intensity, performed at p ¼ 0.01
and l ¼ 3.
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initial condition R0ðxÞ ¼ 1x≥0. This obeys the recursion

Rnþ1ðxÞ ¼ G½pRnðx − 1Þ þ ð1 − pÞRnðxÞ�: ð6Þ

We then use a traveling wave ansatz RnðxÞ ¼
R̃ðy ¼ x − vmaxnÞ. We linearize Eq. (6) in the region far
ahead of the front and look for an exponential solution,
1 − R̃ðyÞ ∼ e−μy ≪ 1. We find that the values of the
velocity vmax and the decay exponent μ of the centered
cumulative probability function R̃ðyÞ are related and found
by solving a transcendental equation,

vmaxðpÞ ¼
1

μ
ln ½lð1 − pÞ þ lpeμ� ¼ peμ

1 − pþ peμ
: ð7Þ

The first equality comes from the linearization of Eq. (6);
the second one from solving for the minimum value of the
corresponding speed, in accordance to the principle of
velocity selection [25].
The traveling wave ansatz comes with a universal

logarithmic correction [26–28], such that we have
Pmaxðn; pÞ ¼ vmaxðpÞnþ ð3=2μÞ log n. Assuming an ini-
tial intensity I0, the expected maximal intensity Imaxðn; pÞ
after n generations will be I0 plus the difference between
positive and negative steps after n generation; that is,

Imaxðn; pÞ ¼ Pmaxðn; pÞ − ½n − Pmaxðn; pÞ� þ I0

¼ 2Pmaxðn; pÞ − nþ I0: ð8Þ

By definition of pc, Imaxðn; pÞ should diverge as n → ∞
for p > pc and go to zero for p < pc. Therefore, at pc,

lim
n→∞

dImax

dn
¼ 2vmaxðpcÞ − 1 ¼ 0 ⇒ vmaxðpcÞ ¼ 1=2: ð9Þ

We again find pc by imposing vmaxðpcÞ ¼ 1=2 in
Eq. (7).
Extended critical behavior—Figure 4 shows that below

pc, the cascade size distributions of the SRC feature steep
power-law tails with tunable scaling exponents τ > 2. The
exponent decreases when p increases until reaching τ ¼ 2
at p ¼ pc, as required for the expected cascade size to
diverge. This behavior becomes even more persistent for
more heterogeneous branching distributions [22].
Why do we find a critical-like scaling off the critical

point? By combining all of our analyses, we can (i) estimate
the scaling exponents in the subcritical regime, (ii) derive
the critical exponent, and (iii) characterize the exponential
cutoffs in the supercritical regime. Importantly, the pres-
ence of power-law tails in the subcritical regime has
recently been proven in the context of killed branching
random walks in Ref. [18] without explicit solutions for the
scaling exponents.
Mathematically, cascade size increases exponentially

with the intensity k as s ∼ exp ðakÞ, where a can be readily
identified from Eq. (3). On the other hand, according to our
traveling wave solution, the distribution of the maximal
intensity ImaxðnÞ at a given generation has an exponential
tail. Based on the tail of cascade depth DkðnÞ ¼ 1 −QkðnÞ
from Eq. (5), we can integrate over exponentially
decaying cascade depths. The tail of cascade sizes is then
generated by the exponential of a quantity, Imax, distributed
with an exponential tail e−bImax . This combination of
exponentials is a known mechanism to produce power-
law tails [30]. As detailed in SM [22], we can thus combine
the rates a and b to estimate the scaling exponent

(b)(a)

FIG. 4. Extended critical behavior around the critical point pc for a Poisson tree of l ¼ 3ðpc ≈ 0.0286Þ. (a) Cascade size distributions
for p above and below pc. Above pc, we find a scaling relationship with exponential cutoff s−τðpÞ × e−s=s̄½ncðpÞ� based on the critical
generation ncðpÞ given in Eq. (11) if p is close to pc. Below pc, we find arbitrarily steep power-law decays as a function of p; for
instance, τ ≈ 3.5 for p ¼ 0.01. Results from 108 simulations are reported for two p values with logarithmic binning. The recursion is
exact. (b) Scaling exponents versus p obtained with our approximate solution, Eq. (10), and by fitting power-law tails to our exact
solution from recursion. Goodness of fit is evaluated with the Kolmogorov-Smirnov (KS) statistic [29]; markers show its minima and
lines show an acceptable range (KS < 0.05).
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τðpÞ ¼ 1þ b=a as

τðpÞ ≈ 1þ μ½1 − vmaxðpÞ� þ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pð1 − pÞl2

p
ln
	
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4pð1 − pÞl2

p �
− lnð2plÞ

ð10Þ

when p < pc, as shown in Fig. 4(b). Notice that,
consistent with a derivation shown in our SM using only
the traveling wave at p ¼ pc, Eq. (10) correctly pre-
dicts τðpcÞ ¼ 2.
Moving to the supercritical regime, we can characterize

the distributions further using the universal logarithmic
correction to Pmaxðn; pÞ. This correction implies that the
process is expected to spend ncðpÞ generations close to
extinction before the linear growth of the wave front
dominates (validated in Fig. 5). At small n, the critical
condition reads dImax=dn ¼ 2vmaxðpÞ − 1 − 3=ðμnÞ ¼ 0,
and we find

ncðpÞ ¼
3

μ½2vmaxðpÞ − 1� : ð11Þ

As is the case with most cascade models, we expect an
exponential cutoff on the cascade size distribution which is
here imposed by the critical generation nc and should thus
be of order s̄ðncÞ ¼ ðlnc − 1Þ=ðl − 1Þ, the maximum size a
cascade can reach by generation nc. We estimate the
cascade size s to be distributed as a power law with
exponential cutoff s−τðpÞ × e−s=s̄ðncðpÞÞ. As Fig. 4(a)
shows for p ¼ 0.038, for which nc ≈ 10.66 and τ ≈ 1.9,
our estimation is in excellent agreement with the exact
results from recursion. Nonetheless, as the value of p

increases, nc decreases, and additional correction terms
would eventually come into play to push the cutoff to higher
values (first with a nonuniversal term of order 1=

ffiffiffi
n

p
) [28].

We illustrate this using p ¼ 0.06 in Fig. 4(a), where Eq. (11)
predicts nc ≈ 3.91, yet we obtain a much better fit with the
value nc ¼ 6 used in the figure. However, the exact value of
τðp > pcÞ, and whether this value truly deviates from
τðpcÞ ¼ 2, remains an open problem.
Discussion—The self-reinforcing cascade process is a

parsimonious model to capture the fact that the strength of
individual beliefs or the quality of products may vary and
thus influence their ability to spread further. This variability
is aligned with real-world phenomena, where not all
individuals or contents are equally influential in the
transmission of ideas or behaviors. With this simple
mechanism, the SRC model can produce a wide range
of scaling behaviors for cascade size distributions, whereas
classic cascade models are constrained by a unique and
universal scaling exponent obtained only at a precise
critical point.
The shape and statistics of SRC are surprising in two

ways. One, they follow a fat-tailed cascade size distribution
in their subcritical regime. Two, the tail of their depth
distribution remains exponential even at the critical point.
Thus, subcritical and critical SRC are short but very broad
compared to classic cascade models. The unique shape of
SRC could help identify signatures of varying cascade
intensity or quality in empirical data. We could expect this
mechanism to appear in cascades where content is able to
change (e.g., mutations in epidemics or personalized social
media posts) as opposed to cascade with fixed content (e.g.,
cascade of clones, or reposting in social media), and SRC
could provide more realistic models in these cases. In
addition, the search remains open for a general model that
provides anomalous exponents for both size and depth
distributions as found empirically [1].
We outlined several important properties of self-reinforc-

ing cascades and proposed a few analytical approaches to
better understand these processes: exact probability gen-
erating functions for cascade size, exact recursions over
cascade depth, and the traveling wave technique for
cascade intensity. Combining all three approaches, we
were able to characterize the different scaling behaviors
produced by the model. Altogether, this effort may provide
a useful framework for those seeking to understand
cascading behavior in complex real-world systems.
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FIG. 5. Expected maximal intensity over generations n pro-
duced by the logarithmically corrected Imaxðn; pÞ for different
values p > pc. We compare the solution with the average
maximal intensity observed in at least 106 given the process is
not extinct at generation n − 1. By definition, surviving cascades
in simulations are always at intensity greater than zero. None-
theless, the traveling wave solution captures the general long-time
behavior of Imaxðn; pÞ.

PHYSICAL REVIEW LETTERS 135, 087401 (2025)

087401-5



Data availability—The data that support the findings of
this Letter are openly available [31].

[1] Daniele Notarmuzi, Claudio Castellano, Alessandro
Flammini, Dario Mazzilli, and Filippo Radicchi,
Universality, criticality and complexity of information
propagation in social media, Nat. Commun. 13, 1308
(2022).

[2] Theodore Edward Harris et al., The Theory of Branching
Processes (Springer, Berlin, 1963), Vol. 6.

[3] Filippo Radicchi, Claudio Castellano, Alessandro
Flammini, Miguel A. Muñoz, and Daniele Notarmuzi,
Classes of critical avalanche dynamics in complex net-
works, Phys. Rev. Res. 2, 033171 (2020).

[4] Márton Karsai, Kimmo Kaski, Albert-László Barabási, and
János Kertész, Universal features of correlated bursty
behaviour, Sci. Rep. 2, 397 (2012).

[5] Ryosuke Nishi, Taro Takaguchi, Keigo Oka, Takanori
Maehara, Masashi Toyoda, Ken-ichi Kawarabayashi, and
Naoki Masuda, Reply trees in twitter: Data analysis and
branching process models, Social Network Anal. Mining 6,
1 (2016).

[6] Karol Wegrzycki, Piotr Sankowski, Andrzej Pacuk, and
Piotr Wygocki, Why do cascade sizes follow a power-law?,
in Proceedings of the 26th International Conference on
World Wide Web (2017), pp. 569–576.

[7] Javier Borge-Holthoefer, Alejandro Rivero, Iñigo García,
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[18] E. F. Aidékon, Y. Hu, and O. Zindy, The precise tail
behavior of the total progeny of a killed branching random
walk, Ann. Probab. 41, 3786 (2013).

[19] Herbert S. Wilf, Generating Functionology (Academic
Press, New York, 1994).

[20] James P. Gleeson, Tomokatsu Onaga, Peter Fennell, James
Cotter, Raymond Burke, and David J. P. O’Sullivan,
Branching process descriptions of information cascades
on Twitter, J. Complex Netw. 8, cnab002 (2020).

[21] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Random
graphs with arbitrary degree distributions and their appli-
cations, Phys. Rev. E 64, 026118 (2001).

[22] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/5mph-sws5 for additional analyses.

[23] See notebook at http://bit.ly/SRCnotebook to reproduce the
calculations.

[24] Michael Molloy and Bruce Reed, A critical point for
random graphs with a given degree sequence, Random
Struct. Algorithms 6, 161 (1995).

[25] Satya N. Majumdar and P. L. Krapivsky, Extremal paths on
a random Cayley tree, Phys. Rev. E 62, 7735 (2000).

[26] Maury D. Bramson, Maximal displacement of branching
Brownian motion, Commun. Pure Appl. Math. 31, 531
(1978).

[27] Éric Brunet and Bernard Derrida, Shift in the velocity of a
front due to a cutoff, Phys. Rev. E 56, 2597 (1997).

[28] Éric Brunet, Some aspects of the Fisher-KPP equation and
the branching Brownian motion, Habilitation à diriger des
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