
Rate Equation Approah for Growing NetworksP. L. Krapivsky1 and S. Redner1Center for BioDynamis, Center for Polymer Studies and Department of Physis,Boston University, Boston MA 02215, USAAbstrat. The rate equations are applied to investigate the struture of growing net-works. Within this framework, the degree distribution of a network in whih nodes areintrodued sequentially and attah to an earlier node of degree k with rate Ak � kis omputed. Very di�erent behaviors arise for  < 1,  = 1, and  > 1. The rateequation approah is extended to determine the joint order-degree distribution, the de-gree orrelations of neighboring nodes, as well as basi global properties. The ompletesolution for the degree distribution of a �nite-size network is outlined. Some unusualproperties assoiated with the most popular node are disussed; these follow simplyfrom the order-degree distribution. Finally, a toy protein interation network model isinvestigated, where the network grows by the proesses of node dupliation and par-tiular form of random mutations. This system exhibits an in�nite-order perolationtransition, giant sample-spei� utuations, and a non-universal degree distribution.1 IntrodutionIn this ontribution, we apply tools from statistial physis, in partiular, the rateequations, to quantify geometrial properties of evolving networks [1℄. The utilityof the rate equations have been amply demonstrated for diverse non-equilibriumphenomena, suh as aggregation [2℄, oarsening [3℄, and epitaxial surfae growth[4℄. We will argue that the rate equations are a similarly powerful yet simpletool to analyze growing network systems. In addition to providing omprehensiveinformation about the node degree distribution, the rate equations an be readilyadapted to treat the joint order-degree distribution, orrelations between nodedegrees, global properties, and a variety of intriguing utuation e�ets.We will fous on two lasses of models. In the �rst, whih we simply term thegrowing network, nodes are added sequentially and a single link is establishedbetween the new node and a pre-existing node aording to an attahment rateAk that depends only on the degree of the \target" node (Fig. 1). Here nodedegree is the number of links that impinge on the node. This appealing model,�rst introdued by Simon [5℄ and redisovered by Barab�asi and Albert [6℄, hasbeome extremely fashionable beause of its rih phenomenology and timelyappliations. Examples inlude the distribution of biologial genera, word fre-quenies, publiations, urban populations, inome [5,7℄, and the link distributionof the world-wide web [8{10℄.The seond lass of models are inspired by protein interation networks,where the nodes are individual proteins and the links represent a funtional
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Fig. 1. (a) Growing network. Nodes are added sequentially and a single link joins anew node to an earlier node. Node 1 has degree 5, node 2 has degree 3, nodes 4 and 6have degree 2, and the remaining nodes have degree 1. (b) Protein interation network.The new node dupliates 2 out of the 3 links between the target (shaded green) and itsneighbors. Eah suessful dupliation ours with probability 1� Æ (blue solid lines).The new node also attahes to any other node with probability �=N (red dotted lines).Thus three previously disonneted lusters are joined by the omplete eventrelationship between two proteins in an organism. Muh e�ort has been devotedto infer the struture of suh networks [11{13℄ and to formulate models thataount for their evolution [14{19℄. In the model disussed here [17,18℄, nodesare added sequentially and the new node may \dupliate" a randomly hosentarget, and the new node an link to any other node with with a small probability(Fig. 1). In the dupliation step, the new node links to eah of the neighborsof the target with probability 1 � Æ. Thus the dupliate protein is funtionallysimilar to the original [14℄. The seond proess an be viewed as mutation inwhih a protein an beomes funtionally linked to a random subset of otherproteins. By this latter proess, an arbitrary number of lusters an merge whena single node is introdued. As we shall disuss, this many-body merging leadsto an in�nite-order perolation transition as a funtion of the mutation rate.While the appliability of this model to desribe real protein networks is stillnot settled [14℄, it is a useful starting point for theoretial analysis.Our basi goal is to quantify the struture of these two basi networks by therate equation approah.2 Struture of the Growing Network2.1 The Degree DistributionA fundamental harateristi of any random network is the node degree distri-bution Nk(N), de�ned as the number of nodes with k links in a network thatontains N total nodes. To determine this distribution, we write the rate equa-tions that aount for its evolution after eah node is introdued. For the growth



Rate Equations for Networks 3proess in Fig. 1(a), these rate equations are [20{22℄dNkdN = Ak�1Nk�1 �AkNkA + Æk1: (1)The �rst term on the right, Ak�1Nk�1=A, aounts for proesses in whih a nodewith k � 1 links is onneted to the new node, thus inreasing Nk by one. Sinethere are Nk�1 nodes of degree k�1, suh proesses our at a rate proportionalto Ak�1Nk�1, while the fator A(N) = Pj�1 AjNj(N) onverts this rate intoa normalized probability. A orresponding role is played by the seond (loss)term on the right-hand side. Here AkNk=A is the probability that a node with klinks is onneted to the new node, thus leading to a loss in Nk. The last termaounts for the introdution of a new node with degree one.Let us �rst determine the moments of the degree distribution, Mn(N) =Pj�1 jnNj(N). Summing Eqs. (1) over all k, gives _M0(N) = 1. This aordswith the de�nition that M0(N) = PkNk is just the total number of nodes Nin the network. Similarly, the �rst moment obeys _M1(N) = 2, or M1(N) =M1(0) + 2N . Clearly this quantity must grow as 2N , sine introduing a singlenode reates two link endpoints. Thus the �rst two moments are independent ofthe attahment kernel Ak and grow linearly in N . On the other hand, highermoments and the degree distribution itself depend in an essential way on Ak.For general attahment kernels that do not grow faster than linearly withk, it an be easily veri�ed that the asymptoti degree distribution and A(N)both grow linearly with N . Thus substituting Nk(N) = N nk and A(N) = �Ninto Eqs. (1) we obtain the reursion relation nk = nk�1Ak�1=(� + Ak) andn1 = �=(�+A1). Solving for nk, we obtain the formal solutionnk = �Ak kYj=1�1 + �Aj ��1 : (2)To omplete this solution, we need the amplitude �. Using the de�nition � =Pj�1Ajnj in (2), we obtain the impliit relation1Xk=1 kYj=1�1 + �Aj��1 = 1 (3)whih shows that the amplitude � depends on the entire attahment kernel.For the generi ase Ak � k , we rewrite the produt in (2) as the exponentialof a sum of logarithms. In the ontinuum limit, we onvert this sum to an integral,expand the logarithm to lowest order, and evaluate the integral to yield:nk � 8><>: k� exp h���k1��21�1� �i ; 0 �  < 1;k�� ; � = 1 + � > 2;  = 1;singular  > 1. (4)That is, for all 0 <  < 1, the degree distribution is a robust strethed expo-nential (and pure exponential for  = 0). Conversely, for  > 1 a phenomenon



4 Krapivsky & Redneranalogous to gelation ours in whih a single node has almost all of the networklinks [20,22℄. The regime  > 1 atually has an in�nite sequene of transitions.For  > 2 all but a �nite number of nodes (in an in�nite network) are linked tothe \gel" node whih has the rest of the links of the network. For 3=2 <  < 2,the number of nodes with two links grows as N2� , while the number of nodeswith more than two links is again �nite. For 4=3 <  < 3=2, the number ofnodes with three links grows as N3�2 and the number with more than threeis �nite. Generally for (m+ 1)=m <  < m=(m� 1), the number of nodes withmore than m links is �nite, while Nk � Nk�(k�1) for k � m.The linear kernel ( = 1) is on the boundary between these two generibehaviors and leads to a degree distribution that depends on details of the at-tahment rate. In fat, the exponent � = 1+� an be tuned to any value largerthan 2 [22℄. In the speial ase of the stritly linear kernel, Ak = k, the degreedistribution has the simple formnk = 4k(k + 1)(k + 2) / k�3: (5)To illustrate the vagaries of asymptotially linear kernels, onsider the shiftedlinear kernel Ak = k + �. For this ase, note that A(N) = Pj AjNj(N) givesA(N) =M1(N) + �M0(N). Using A = �N , M0 = N and M1 = 2N , we get� = 2 + �. Hene � = 1 + � = 3 + �. Thus an additive shift in the attah-ment kernel profoundly a�ets the asymptoti degree distribution. From (2), thedegree distribution isnk = (2 + �) � (3 + 2�)� (1 + �) � (k + �)� (k + 3+ 2�) / k�(3+�): (6)Finally, we disuss a simple extension in whih a newly-introdued nodelinks to exatly p earlier nodes [6℄. For the linear attahment kernel, the degreedistribution Nk(N) (now de�ned only for k � p) obeys the rate equationdNkdN = pM1 [(k � 1)Nk�1 � kNk℄ + Æk;p: (7)Following the basi approah outlined after (3), we �nd that the asymptotidegree distribution, nk = Nk=N , is [22℄nk = 2p(p+ 1)k(k + 1)(k + 2) for k � p: (8)Thus for the stritly linear attahment kernel, the number p of links introduedat eah node reation event does not a�et the exponent of the degree distri-bution. Generally, however, this multiple link onstrution a�ets the degreedistribution. For example, for the shifted linear kernel, we �ndnk = onst:� � (k + �)� (k + 3 + �+ �=p) for k � p;np = �1 + p p+ �2p+ ���1 ; (9)



Rate Equations for Networks 5whose asymptoti behavior is nk � k�(3+�=p). Thus the degree distribution ex-ponent depends strongly on p. This result again shows that �ne details of thegrowth proess an be vitally important when the attahment rate is asymptot-ially linear.2.2 Order DistributionIn addition to node degree, we further haraterize a node aording to its or-der of introdution by assoiating an order index J to the J th node that wasintrodued into the network [22,23℄. Let Nk(N; J) be the probability that theJ th node has degree k when the network has N total nodes. The original degreedistribution may be reovered from this joint order-degree distribution throughNk(N) = PNJ=1Nk(N; J). The joint distribution evolves aording to the rateequation � ��N � ��J�Nk = Ak�1Nk�1 �AkNkA + Æk1Æ(N � J): (10)The seond term on the left aount for the order index evolution. We assumethat the probability of linking to a given node depends only on its degree andnot on its order.The homogeneous form of this equation suggests that the solution shoulddepend on the single variable x � J=N . Writing Nk(N; J) = fk(x), onverts(10) into an ordinary, and readily soluble, di�erential equation [22℄. For the twogeneri ases of Ak = k and Ak = 1, the order-degree distributions are:Nk(N; J) =8>>><>>>:q JN �1�q JN �k�1 Ak = k;JN [ln(N=J)℄k�1(k � 1)! Ak = 1: (11)For the average order index hJki =Pk J Nk(N; J)=Nk(N) of a node of degreek, we �nd hJkiN = 8>><>>: 12(k + 3)(k + 4) Ak = k;(2=3)k Ak = 1: (12)Similarly, the average degree hkJ i =Pk k Nk(N; J) of a node of order index Jis hkJ i = 8<: (J=N)�1=2 Ak = k;ln(N=J) + 1 Ak = 1: (13)The main messages from these results are that for Ak = k, high degree nodesmust have been introdued early in the network development. Conversely, forthe ase of random attahment, Ak = 1, high degree nodes ould also have



6 Krapivsky & Rednerbeen introdued relatively late in the network history. This di�erene plays aruial role in determining the properties of the node with the highest degree(Setion 3.2).2.3 Degree CorrelationsThe rate equation approah also allows us to obtain degree orrelations betweenonneted nodes [22℄. These develop beause a node with large degree is likelyto be old [22,24{26℄. Thus its anestor is also old and hene has a large degree.To quantify these degree orrelations, de�ne Ckl(N) as the number of nodes ofdegree k that attah to an anestor node of degree l (Fig. 2(a)). For example,in the network of Fig. 1, there are N1 = 6 nodes of degree 1, with C12 = C13 =C15 = 2. There are also N2 = 2 nodes of degree 2, with C25 = 2, and N3 = 1nodes of degree 3, with C35 = 1.
k lFig. 2. De�nition of the node degree orrelation Ckl for k = 3 and l = 4For simpliity, we onsider the linear attahment kernel for whih the degreeorrelation Ckl(N) evolves aording toM1 dCkldN = (k�1)Ck�1;l � kCkl + (l�1)Ck;l�1 � lCkl + (l�1)Cl�1 Æk1: (14)The proesses that gives rise to eah term in this equation are illustrated inFig. 3. The �rst two terms on the right aount for the hange in Ckl due to theaddition of a link onto a node of degree k�1 (gain) or k (loss) respetively, whilethe seond set of terms gives the hange in Ckl due to the addition of a link ontothe anestor node. Finally, the last term aounts for the gain in C1l due to theaddition of a new node. A ruial feature of this equation is that it is losed; the2-partile orrelation funtion does not depend on 3-partile quantities.

(i) (ii) (iii) (iv) (v)Fig. 3. Proesses that ontribute ((i){(v) in order) to the terms in the rate equation(14) for the ase k = 3 and l = 4 ((i){(iv)). The newly-introdued node and link areshown dashed. The last ase (v) arises only for k = 1



Rate Equations for Networks 7As in the ase of the node degree, the N dependene is simply Ckl = Nkl.This redues (14) to an N -independent reursion relation. While the details ofthe solution are unwieldy [22℄, the asymptoti solution is relatively simple in thesaling regime, k !1 and l!1 with y = l=k �nite:kl = k�4 4y(y + 4)(1 + y)4 : (15)For �xed large k, the distribution kl has a maximum at y� = (p33 � 5)=2 �=0:372. Thus a node of degree k is typially attahed to an anestor node whosedegree is 37% that of the daughter node. In general, when k and l are both largeand their ratio is di�erent from one, the limiting behaviors of kl arekl ! � 16 (l=k5) l � k,4=(k2 l2) l � k. (16)Here we expliitly see the absene of fatorization in the degree orrelation:kl 6= nknl / (k l)�3.2.4 Global PropertiesThe rate equations an be adapted to determine the in-omponent and out-omponent of the network with respet to a given node x [22℄. The former isjust the set of nodes that point to the node, plus all nodes that refer thesedaughter nodes, et. The latter are the set of nodes that an be reahed byfollowing direted links that emanate from x (Fig. 4). We study the distributionof these omponent sizes for the onstant attahment kernel, Ak = 1, beausemany results about omponents are independent of the form of the kernel andthus it suÆes to onsider the simplest situation.
in-component

x
out-componentFig. 4. In-omponent and out-omponents of node x

The In-Component The number of in-omponents with s nodes, Is(N), sat-is�es the rate equation dIsdN = (s� 1)Is�1 � sIsA + Æs1: (17)



8 Krapivsky & RednerHere the loss term aounts for proesses in whih the attahment of a new nodeto an in-omponent of size s inreases its size by one. This gives a loss rateproportional to s. If there is more than one in-omponent of size s they must bedisjoint, so that the total loss rate for Is(N) is simply sIs(N). A similar argumentapplies for the gain term. Dividing by A(N) =Pj AjNj(N) onverts these ratesto probabilities, where A(N) =M0(N) � N for the onstant attahment kernel.It is again easy to verify that eah Is grows linearly in N . Thus we substituteIs(N) = N is into Eqs. (17) to obtain is = is�1(s � 1)=(s + 1) and i1 = 1=2.This immediately gives is = 1s(s+ 1) : (18)The s�2 tail for the in-omponent distribution is independent of the form of theattahment kernel [22℄. The exponent value also agrees with reent measurementsof the web [10℄.The Out-Component The omplementary out-omponent (Fig. 4) from eahnode an be determined by mapping the out-omponent to an underlying net-work \genealogy".We build a genealogial tree for the growing network by takinggeneration g = 0 to be the initial node. Nodes that attah to those in generationg are de�ned to form generation g + 1; the node index does not matter in thisharaterization. For example, in the network of Fig. 1(a), node 1 is the anestorof 6, while 10 is the desendant of 6; there are 5 nodes in generation g = 1 and4 in g = 2 (Fig. 5).
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1Fig. 5. Genealogy of the network in Fig. 1(a). The nodes indies indiate when eahis introdued. The nodes are also arranged aording to generation numberThe genealogial tree is onvenient beause the number Os of out-omponentswith s nodes equals Ls�1, the number of nodes in generation s � 1 in the tree(Fig. 5). We therefore ompute Lg(N), the size of generation g when the networkhas N total nodes. We again treat the onstant attahment kernel; more generalases are treated in [22℄. We determine Lg(N) by noting that Lg(N) inreaseswhen a new node attahes to a node in generation g � 1. This ours withrate Lg�1=M0, where M0(N) = 1 +N is the number of nodes. Thus _Lg(N) =Lg�1=(1 +N), with solution Lg(�) = �g=g!, where � = ln(1 +N). ThusOs(�) = �s�1=(s� 1)!: (19)



Rate Equations for Networks 9The generation size Lg(N) rapidly grows with g for g < � , and then dereasesand beomes of order 1 when g = e � . To aommodate a network of N nodes,the genealogial tree uses approximately e� generations. Therefore the networkdiameter is 2e� � 2e lnN , sine the maximum distane between any pair ofnodes is twie the distane from the root to the last generation.3 Finiteness, Flutuations, and Extremes3.1 Role of FinitenessThus far, we have foused on asymptoti properties when the number of nodes issuÆiently large that the ansatz Nk = N nk is valid. We now onsider the role of�niteness on growing networks with attahment rate Ak = k+� (� > �1) [27,28℄.This interpolates between linear attahment (for � = 0) to random attahment,Ak = 1 (for �!1).
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(b)Fig. 6. (a) Normalized degree distribution for networks of 102; 103; : : : ; 106 nodes (up-per left to lower right), with 105 realizations for eah N , for Ak = k for a \triangle"initial ondition. The dashed line is the asymptoti result nk = 4=[k(k + 1)(k + 2)℄;the last three data sets were averaged over 3, 9, and 27 points, respetively. (b) Theorresponding saling funtion as de�ned in F (�) in (20) from simulation data of 106realizations of a network with N = 104 nodes for the \dimer" initial ondition (irles).The solid urve (red) is the analytial result of (25)As quoted in (6), the degree distribution of a network with N � 1 nodesis Nk(N) / Nk�(3+w) for attahment rate Ak = k + �. However, for �niteN the degree distribution must eventually deviate from this predition beausethe maximal degree annot exeed N . To establish the range of appliability ofEqs. (6), we estimate the largest degree in the network, kmax by the extremestatistis riterion Pk�kmax Nk(N) � 1 [29℄. This yields kmax / N1=(2+�). Thedegree distribution should therefore deviate from (6) when k beomes of the order



10 Krapivsky & Rednerof kmax. The existene of a maximal degree suggests that the degree distributionshould have the �nite-size saling form (see also [27,28,30{32℄)Nk(N) ' NnkF (�); � = k=kmax: (20)To determine the �nite-N behavior of the network, we start by writing theexat reursion relation for the degree distribution after a single node is added:Nk(N + 1) = Nk(N) + (k � 1)Nk�1(N)� kNk(N)2N : (21)To solve this reursion we introdue the two-variable generating funtion [28℄N (w; z) = 1XN=1 1Xk=1Nk(N)wN�1 zk ; (22)to transform (21) into�2(1� w) ��w + z(1� z) ��z � 2�N = 2z(1� w)2 : (23)The exat solution to this equation an be obtained by standard methods andhas the unwieldy form [28℄,N (w; z) = (3� 2z�1)(1� w)2 � 11� w + 2(z�1 � 1)(1� w)3=2 + 2(1� w)�1=2(z�1 � 1) + (1� w)1=2�2(z�1 � 1)2(1� w)2 ln h1� z + z(1� w)1=2i : (24)By expanding N (w; z), we an determine all the Nk(N). By this approah, we�nd that the saling funtion de�ned in (20) isF (�) = erf��2�+ 2� + �3p4� e��2=4 ; (25)where erf(x) is the omplementary error funtion. A related result was foundpreviously in [27℄. This saling funtion quantitatively aounts for the large-degree tail of the degree distribution (Fig. 6(b)).3.2 Extremes and Lead ChangesWe now investigate properties assoiated with the statistis of the node withthe largest degree { the most popular node [33℄; see also [34℄. The degree ofthis node an be determined by a simple extreme statistis argument [29,33,34℄.Here we disuss related, soially-motivated questions of the identity of the mostpopular node (the leader). These inlude the dependene of the leader identityon network size, the rate at whih lead hanges our, and the probability thata leader retains the lead as a funtion of network size.



Rate Equations for Networks 11Leader Identity We �rst determine the order index of the leader node. Tostart with an unambiguous leader, we initialize the system with 3 nodes, withthe initial leader having degree 2 (and index 1) and the other two nodes havingdegree 1. A new leader arises when its degree exeeds that of the urrent leader.For the linear attahment rate, Ak = k, the average order index of the leaderJlead(N) saturates to a �nite value of approximately 3.4 as N !1 (Fig. 7(a)).With probability � 0:9, the leader is one of the 10 earliest nodes, while theprobability that the leader is not among the 30 earliest nodes is less than 0:01.Thus only the earliest nodes have appreiable probabilities to be the leader; therih really do get riher. In the ase of Ak = k + �, the average index of theleader also saturates to a �nite value that is an inreasing funtion of �.For random attahment (Ak = 1), the leader index grows as Jlead(N) � N with  � 0:41 (Fig. 7). The leader is still an early node (sine  < 1), butnot neessarily one of the earliest. From our simulations, a node with indexgreater than 100 has a probability of approximately 10�2 of being the leader fora network of 105 nodes. Thus, in random attahment, the order of node reationplays a signi�ant, but not deterministi, role in the identity of the leader node.
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(b)Fig. 7. (a) Average index of the leader Jlead(N) as a funtion of the total number ofnodes N for 105 realizations of a growing network. Shown are the ases of attahmentrates Ak = 1 and Ak = k. (b) Average number of lead hanges L(N) as a funtion ofnetwork size N for 105 realizations of the network for Ak = 1 and Ak = kFor onstant attahment rate, the identity of the leader an be simply reado� from (13); thus the index of the leader node, Jlead(N) = N(2=3)kmax [33℄. Weestimate the maximum degree from the extremal riterionPk�kmax Nk(N) � 1.Using Nk(N) = N=2k, we �nd 2kmax � N , or kmax � lnN= ln 2. ThereforeJlead(N) / N ; with  = 2� ln 3ln 2 � 0:415 037;in exellent agreement with our numerial results.For the linear attahment rate, (13) now gives Jk(N) � 12N=k2. SineNk(N) � 4N=k3, the extremal riterion Pk�kmax Nk(N) � 1 now gives kmax �



12 Krapivsky & RednerpN . Therefore Jlead(N) � 12N=k2max = O(1) indeed saturates to a �nite value.A similar result holds in the general ase Ak = k + �. Thus the leader is one ofthe �rst few nodes in the network.Lead Changes The average number of lead hanges L(N) grows logarithmi-ally in N for both Ak = 1 and Ak = k (Fig. 7), although the details of theunderlying distributions of the number of lead hanges, P (L), are quite di�erent.For Ak = 1, P (L) has a sharp peak, while for Ak = k, P (L) has a signi�ant tailthat stems from repeated lead hanges among the two leading nodes. We alsoobserve numerially that the number of distint nodes that enjoy the lead growslogarithmially in N .This logarithmi behavior an be easily understood. For Ak = 1, the numberof lead hanges annot exeed the maximal degree kmax � lnN= ln 2. For thegeneral ase Ak = k + �, when a new node is added, the lead hanges if theleadership is urrently shared between two (or more) nodes and the new nodeattahes to a o-leader. The number of o-leader nodes (with degree k = kmax)is N=k3+�max , while the probability of attahing to a o-leader is kmax=N . Thus theaverage number of lead hanges satis�esddN L(N) / kmaxN Nk3+�max : (26)Sine kmax grows as N1=(2+�), (26) redues to dL(N)=dN / N�1 or L(N) /lnN . This argument an be adapted to arbitrary attahment rates that do notgrow faster than linearly with k.Fate of the First Leader Finally, we study the survival probability S(N) thata node that was initially in the lead (has the maximum degree) remains in thelead as the network evolves. For Ak = k + � with � < 1, S(N) is non-zero asN !1 (Fig. 8). Thus the rih get riher holds in a strong form { the lead neverhanges with a positive probability.For onstant attahment rate the situation is more interesting, as being rihat birth is not as deterministi an inuene as in the ase of linear attahment.Numerially, S(N) deays very slowly to zero as N ! 1 (Fig. 8); a power lawS(N) / N�� is a reasonable �t, but the loal exponent is still slowly dereasingat N � 108 where it has reahed �(N) � 0:18. To understand this behavior,onsider the degree distribution of the �rst node. This quantity satis�es thereursion relationP (k;N) = 1N P (k � 1; N � 1) + N � 1N P (k;N � 1) (27)whih redues to the onvetion-di�usion equation� �� lnN + ��k�P = 12 �2P�k2 (28)
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Fig. 8. Probability that the �rst node leads throughout the evolution for 105 realiza-tions for N � 107 for Ak = k (upper), and N � 108 for Ak = 1 (lower)in the ontinuum limit. The solution is a GaussianP (k;N) = 1p2� lnN exp�� (k � lnN)22 lnN � : (29)Thus the degree of the �rst node grows as lnN , with utuations of the orderof plnN . On the other hand, from the degree distribution Nk(N) = N=2kthe maximal degree grows as kmax = v lnN with v = 1= ln 2 � 1:44, and itsutuations are negligible.We now estimate S(N) as the probability that the degree of the �rst node ex-eeds the maximal degree. For large N , this riterion, S(N) �Pk�kmax P (k;N),beomes S(N) / Z 1v lnN dkplnN exp�� (k � lnN)22 lnN �/ N�� (lnN)�1=2 ; (30)with � = (v � 1)2=2 � 0:0979 : : :. The reursion (27) an, in fat, be solvedexatly and gives P (k;N) = �Nk �=N !, for the dimer initial ondition, where �Nk �is the Stirling number of the �rst kind [35℄. Using this instead of the Gaussianapproximation leads to the exat exponent � = 1 � v + v ln v � 0:08607. Ineither ase, the logarithmi fator leads to the very slow approah to asymptotibehavior seen in Fig. 8.4 Protein NetworksFinally, we study a toy protein interation network model that evolves by thebiologially-inspired proesses of protein dupliation and subsequent mutation,as illustrated in Fig. 1(b) [14,16{18℄. By adapting the rate equation to aount



14 Krapivsky & Rednerfor these growth steps, we show that: (i) the system undergoes an in�nite-orderperolation transition as a funtion of mutation rate, with a rate-dependentpower-law luster-size distribution everywhere below the threshold, (ii) there aregiant utuations in network struture and no self-averaging for large dupliationrate, and (iii) the degree distribution has a power-law tail with a peuliar rate-dependent exponent.4.1 In�nite-Order Perolation TransitionThe protein network has rih perolation properties beause the mutation pro-ess in Fig. 1(b) an lead to an arbitrary number of lusters being joined in asingle step of the evolution. To study these perolation properties, we onsiderthe simpler limit where mutations an our, but no dupliation (� > 0; Æ = 1).Let Cs(N) be the number of lusters of size s � 1. This distribution obeys therate equation dCsdN = �� sCsN + 1Xn=0 �nn! e�� Xs1���sn nYj=1 sjCsjN ; (31)where the sum is over all s1 � 1; : : : ; sn � 1 suh that s1+ � � �+ sn+1 = s. The�rst term on the right aounts for the loss of Cs due to the linking of a lusterof size s with the newly-introdued node. The gain term aounts for all possiblemerging proesses of n initially separated lusters whose total size is s� 1.Employing the now familiar ansatz that Cs(N) = Ns, and introduing thegenerating funtion g(z) =Ps�1 ss esz, (31) beomesg = ��g0 + (1 + �g0) ez+�(g�1); (32)where g0 = dg=dz. To detet the perolation transition, we use the fat thatg(0) = P ss is the fration of nodes within �nite lusters. Thus in the non-perolating phase g(0) = 1 and the average luster size hsi = P s2s = g0(0),while in the perolating phase the size of the in�nite luster (the giant ompo-nent) is NG = N(1 � g(0)). To determine g0(0), we substitute the expansiong(z) = 1+zg0(0)+ : : : into (32) and take the z ! 0 limit. This yields a quadratiequation for g0(0), with solutiong0(0) = hsi = 1� 2� �p1� 4�2�2 : (33)This real only for � � 1=4, thus identifying the perolation threshold as � = 1=4.For � > �, we express g0(0) in terms of the size of the giant omponent by settingz = 0 in (32) to give g0(0) = e��G +G� 1� (1� e��G) : (34)As � ! �, we use G ! 0 to simplify (34) and �nd hsi ! (1 � �)��2 = 12.On the other hand, (33) shows that hsi ! 4 when � ! � from below. Thus



Rate Equations for Networks 15the average size of �nite lusters jumps disontinuously from 4 to 12 as � passesthrough � = 1=4.The luster size distribution s exhibits distint behaviors below, at, andabove the perolation transition. For � < �, the asymptoti behavior of san be read o� from the generating funtion as z ! 0. If s has the power-lawbehavior s � B s�� as s!1, then the orresponding generating funtion g(z)has the small-z expansion g(z) = 1 + g0(0) z + B� (2 � �) (�z)��2 + : : :. Theregular terms are needed to reprodue the known zeroth and �rst derivativesof the generating funtion, while the asymptoti behavior is ontrolled by thedominant singular term (�z)��2. Substituting this expansion into (32) we �ndthat the dominant terms are of the order of (�z)��3. Balaning all ontributionsof this order gives � = 1 + 21�p1� 4� : (35)Thus a power-law luster size distribution with a non-universal exponent arisesfor all � < �; that is, the entire range � < � is ritial.At the transition, (35) gives � = 3. However, s / s�3 annot be orret asit implies that g0(0) diverges. The above expansion of the generating funtion isalso not valid for � = 3. As in other suh situations, we antiipate a logarithmiorretion. A detailed analysis of the generating funtion under this assumptiongives [18℄ s � 8s3 (ln s)2 as s!1: (36)The size of the giant omponent G(�) is obtained by solving (32) near z = 0.A detailed analysis shows that near �G(�) / exp�� �p4� � 1� ; (37)so that all derivatives of G(�) vanish as � ! �. Thus the transition is of in�niteorder. Similar behaviors were observed [23,36{38℄ for growing network modelswhere single nodes and links were introdued independently. This generi growthmehanism seems to give rise to fundamentally new perolation phenomena.Giant Flutuations In the omplementary limit of no mutations (� = 0), in-dividual realizations of the network evolution utuate strongly. We an under-stand the underlying mehanism for these utuations most diretly by studyingthe limit of deterministi dupliation (Æ = 0), where all the links of the dupliatedprotein are ompleted [18℄. There is still a stohasti element in this growth, asthe node to be dupliated is hosen randomly. Consider the generi initial stateof two nodes that are joined by a single link. We denote this graph as K1;1,following the graph theoreti terminology [39℄ that Kn;m is the omplete bipar-tite graph in whih every node in the subgraph of size n is linked to every nodein the subgraph of size m. Dupliating one of the nodes in K1;1 gives K2;1 orK1;2, equiprobably. By ontinuing to dupliate nodes, it is easy to verify that at
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Fig. 9. Evolution of the omplete bipartite graph Km;n after one deterministi dupli-ation. Only the links emanating from the top nodes of eah omponent are shownevery stage the network always remains a omplete bipartite graph, say Kk;N�k,and that every value of k = 1; : : : ; N � 1 ours with equal probability (Fig. 9).Thus the degree distribution remains singular { it is always the sum of two deltafuntions! For �xed N , an average over all realizations of the evolution gives theaverage degree distribution hNki = 2�1� k � 1N � 1� : (38)This loss of self averaging is generi; di�erent realizations of the growth leadto statistially distinguishable networks for any initial ondition. Similar giantutuations also arise in the general ase of imperfet dupliation where Æ > 0[18℄.4.2 Non-Universal Degree DistributionFinally, onsider the evolution when both inomplete dupliation and mutationour (Æ < 1, � > 0). In eah growth step, the average number of links L inreasesby � + (1� Æ)D (Fig. 1(b)), where D is the average node degree of the network.Therefore, L = [� + (1� Æ)D℄N . Combining this with D = 2L=N gives [16,17℄D = 2�2Æ � 1 ; (39)a result that applies only when Æ > Æ = 1=2. Below this threshold, the numberof links grows as dLdN = � + 2(1� Æ) LN ; (40)and ombining with D(N) = 2L(N)=N , we �ndD(N) = 8<: �nite Æ > 1=2,� lnN Æ = 1=2,onst:�N1�2Æ Æ < 1=2. (41)



Rate Equations for Networks 17Without mutation (� = 0) the average node degree always sales as N1�2Æ, sothat a realisti �nite average degree is reovered only when Æ = 1=2. Thus muta-tions play a onstrutive role, as a �nite average degree arises for any dupliationrate Æ > 1=2.We now apply the rate equations to study the degree distribution Nk(N) forthis ase of Æ > 1=2 and � > 0. The degree k of a node inreases by one at arate Ak = (1 � Æ)k + �. The �rst term arises beause of the ontribution fromdupliation, while mutation leads to the k-independent ontribution. The rateequations for the degree distribution are thereforedNkdN = Ak�1Nk�1 �AkNkN +Gk: (42)The �rst two terms aount for proesses in whih the node degree inreases byone. The soure term Gk desribes the introdution of a new node of k links,with a of these links reated by dupliation and b = k � a reated by mutation.The probability of the former is Ps�a ns�sa�(1 � Æ)aÆs�a, where ns = Ns=Nis the probability that a node of degree s is hosen for dupliation, while theprobability of the latter is �b e��=b!. Sine dupliation and random attahmentare independent proesses, the soure term isGk = Xa+b=k 1Xs=a ns�sa�(1� Æ)aÆs�a �bb! e�� : (43)
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Fig. 10. The degree distribution exponent  as a funtion of Æ from the numerialsolution of (46)Substituting Nk(N) = N nk into the rate equations yields�k + � + 11� Æ �nk = �k � 1 + �1� Æ�nk�1 + Gk1� Æ : (44)Sine Gk depends on ns for all s � k, the above equation is not a reursion.However, for large k, we redue it to a reursion by noting that as k ! 1, the



18 Krapivsky & Rednermain ontribution to the sum in (43) arises when b is small. Thus a is lose to k,and the summand is sharply peaked around s � k=(1� Æ). We may then replaethe lower limit by s = k, and ns by its value at s = k=(1 � Æ). Further, if nkdeays as k� , we write ns = (1� Æ)nk and simplify Gk toGk � (1� Æ) nk 1Xs=k�sk�(1� Æ)kÆs�k 1Xb=0 �bb! e��= (1� Æ)�1nk; (45)sine the former binomial sum equals (1� Æ)�1.These steps redue (44) to a reursion, from whih we dedue that nk hasthe power-law behavior nk � k� , with  determined from [18,40℄(Æ) = 1 + 11� Æ � (1� Æ)�2: (46)The exponent  has a strong dependene on Æ (Fig. 10). Further, sine the re-plaement of ns by (1�Æ)nk is valid only asymptotially, the degree distributionshould onverge slowly to the predited power law form. This slow approah toasymptoti behavior is observed in large-sale simulations [18℄. The orrespond-ing exponent (Æ) is independent of the mutation rate � but depends sensitivelyon the dupliation rate. Nevertheless, the presene of mutations (� > 0) is vitalto suppress the non-self-averaging as the network evolves and thus make possiblea smooth degree distribution.5 OutlookWe hope that the reader is persuaded that the rate equations are a powerful,yet readily appliable tool, to investigate the struture of growing networks. Forinrementally growing networks, we have obtained rather omplete results for thedegree distribution and some of the most important ensuing onsequenes. Wealso studied a toy protein interation network model that evolves by dupliationand mutation. In the absene of dupliation, the network undergoes an in�nite-order perolation transition as a funtion of the mutation rate. In the absene ofmutation, the network exhibits giant sample-spei� utuations. It is only withthe inlusion of mutations that robust and statistially similar networks an begenerated.In summary, the rate equation approah is well-suited to treat a wide rangephenomenology assoiated with evolving networks. Its full potential in this �eldis just starting to be fully exploited.The work on protein networks was in ollaboration with Byungnam Kahngand Jeenu Kim. This researh was supported in part by NSF grant DMR9978902.
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