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We introduce an aggregation process based on templating, where a specified number of constituent
clusters must assemble on a larger aggregate, which serves as a scaffold, for a reaction to occur. A
simple example is a dimer scaffold, upon which two monomers meet and create another dimer, while
dimers and larger aggregates undergo in irreversible aggregation with mass-independent rates. In
the mean-field approximation, templating aggregation has unusual kinetics in which the cluster and
monomer densities, c(t) and m(t) respectively, decay with time as c ∼ m2 ∼ t−2/3. These starkly
contrast to the corresponding behaviors in conventional aggregation, c ∼

√
m ∼ t−1. We then treat

three natural extensions of templating: (a) the reaction in which L monomers meet and react on an
L-mer scaffold to create two L-mers, (b) multistage scaffold reactions, and (c) templated ligation,
in which clusters of all masses serve as scaffolds and binary aggregation is absent.

I. INTRODUCTION

Irreversible aggregation is a fundamental kinetic pro-
cess in which two clusters from a heterogeneous popula-
tion irreversibly merge to form a larger cluster. We may
represent the reaction as

Ci ⊕ Cj
Ki,j−→Ci+j , (1)

where Ci denotes a cluster of mass i and Ki,j specifies
the rate at which a cluster of mass i (an i-mer) joins to a
j-mer to form an (i+j)-mer. The basic observable in ag-
gregation is the cluster-mass distribution, whose proper-
ties depend on the functional form of the reaction kernel
Ki,j . In the mean-field approximation in which all re-
actants are perfectly mixed, the time dependence of the
cluster-mass distribution is described by an infinite set of
rate equations that accounts for the change in the cluster
concentrations due to reactions with other clusters.

The emergence of complex molecules from prebiotic
building blocks is a key aspect in theories of the origin of
life [1–8]. Aggregation processes that generate growing
(and hence more complex) clusters provide a convenient
starting point for theoretical analyses. Pure aggregation
is too minimal a process, and one would like to enrich
the reaction scheme (1) by additional processes that con-
tribute to the emergence of complex entities. In this
work, we investigate an aggregation process that is aug-
mented by the mechanism of templating. Here a cluster
of a specified mass s serves as a scaffold that facilitates
the reaction (Fig. 1). On this scaffold, two clusters of
masses t < s and s− t meet and merge to form another
cluster of mass s. Clusters of mass s can continue to serve
as scaffolds for subsequent reactions or they can partici-
pate in binary aggregation. The templating reaction can
be viewed as the autocatalytic replication of scaffolds,
a reaction step that seems to be an essential feature in
various origin of life models [9–14]; this is the underlying
motivation for our model.

Our goal is to determine the kinetics of this template-
controlled aggregation. We first treat a simple version of
templating aggregation in which the scaffolds are dimers
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FIG. 1. The steps in templating aggregation on a dimer scaf-
fold: (a) two monomers simultaneously meet on the scaffold
and (b) form a second dimer, so that (c) two dimers result.

and all reaction rates are mass independent. When two
monomers meet on a dimer, the latter serves as a scaf-
fold, and the monomers merge to create another dimer.
Symbolically, this template-controlled merging of dimers
is represented by the reaction scheme

M ⊕M ⊕D → D +D , (2)

where M denotes a monomer and D denotes a dimer.
Clusters of masses greater than or equal to 2 (the dimer
mass), undergo conventional binary aggregation. Thus,
the overall reaction is comprised of 2-body and 3-body
processes. This mixture of different reaction orders un-
derlies the unusual kinetics of our model.
For binary aggregation with mass independent reaction

rates and the monomer-only initial condition, the density
of clusters of mass k at time t, ck(t), is given by [15–19]

ck(t) =
1

(1 + t)2

(
t

1 + t

)k−1

−→
t→∞

1

t2
e−k/t .

From this solution, the monomer density c1(t) and the
total cluster density, c(t) ≡

∑
k≥1 ck(t) both decay alge-

braically with time:

c1 ≃ 1

t2
, c ≃ 1

t
. (3)

These decay laws are independent of the initial condi-
tion and hence universal. For templating aggregation
with scaffold mass s = 2, it is convenient to denote the
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monomer density as m(t) and the density of clusters of
mass 2k as ck(t). In contrast to (3), here we find

m ≃ 2

(3t)1/3
, c1 ≃ 1

2(3t)2/3
, c ≃ 1

(3t)2/3
. (4)

Surprisingly, the monomer density decays slower than the
cluster density, while the opposite occurs in conventional
aggregation. Another unusual feature of templating ag-
gregation is that the decay exponents for dimers and the
total cluster density are the same.

In Sec. II, we analyze the template-controlled aggrega-
tion with dimer scaffolds and derive the decay laws (4),
as well as the decay law for ck(t), the density of clusters
of mass 2k. In Sec. III, we study more general models of
template-controlled aggregation. First, we consider the
model with scaffolds of fixed mass L for arbitrary L ≥ 2.
Then we analyze the effect of multiple levels of templat-
ing. Specifically, we treat a model with two types of tem-
plates, dimers and 4-mers, and the template-controlled
reaction in (2) is supplemented by the reaction

D ⊕D ⊕ F → F + F , (5)

where F represents 4-mers. Under the assumption that
clusters of mass 4 and greater undergo ordinary aggre-
gation, we find kinetic behaviors similar to that quoted
in Eq. (4). Finally, in Sec. IV, we study templated lig-
ation, in which clusters of all masses serve as scaffolds
and in which no binary aggregation reactions occur. In
distinction to the reactions where the scaffolds have a
specified mass, we now find that the cluster density is
the most slowly decaying quantity at long times, with
c ∼ t−1/3, while the monomer density asymptotically de-
cays c1 ∼ t−2/3.

II. TEMPLATING WITH DIMER SCAFFOLDS

Under the assumption that clusters are perfectly mixed
and that the reaction rates are mass-independent, the
rate equations for the monomer and dimer densities are

dm

dt
= −m2c1 ,

dc1
dt

= 1
2m

2c1 − 2cc1 ,

(6)

while the densities of heavier clusters satisfy

dck
dt

=
∑

i+j=k

cicj − 2cck (k ≥ 2) . (7)

The first of Eqs. (6) accounts for the decay of
monomers when two monomers meet on a scaffold to cre-
ate a dimer. Dimer creation is encapsulated by the first
term on the right of the second of Eqs. (6). Equations
(7) account for the conventional aggregation reactions of

heavier-mass clusters. A useful check of the consistency
of Eqs. (6)–(7) is to verify that the mass density

m+ 2
∑
k≥1

kck

is conserved. For templating aggregation, we must ad-
ditionally postulate that both m(0) > 0 and c1(0) > 0.
This condition ensures that scaffolds are always present
to catalyze continuous evolution of the cluster mass dis-
tribution.
To determine the asymptotic behavior of templating

aggregation, we begin by adding the second of Eqs. (6)
and all Eqs. (7) to give

dc

dt
= 1

2m
2c1 − c2 , (8)

where c ≡
∑

k≥1 ck is the total cluster density. The first

two of Eqs. (6) and Eq. (8) constitute a closed system of
three differential equations whose solution would deter-
mine the resulting kinetics.
The form of the equation for the monomer density sug-

gests introducing the modified time variable

τ =

∫ t

0

dt′ c1(t
′) , (9)

to recast the rate equation for the monomer density into
dm
dτ = −m2, with solution

m(τ) =
m(0)

1 +m(0)τ
. (10)

Since the long-time asymptotic behavior is m ≃ τ−1, in-
dependent of m(0), we adopt the simple initial condition
m(0) = 1 for simplicity henceforth.
Using the time modified time variable (9), as well as

the solution (10), we rewrite the equation for the dimer
and cluster concentrations as (8) as

dc1
dτ

=
1

2(1 + τ)2
− 2c ,

dc

dτ
=

1

2(1 + τ)2
− c2

c1
.

(11)

Without loss of generality, we choose the initial con-
dition c1(0) = c(0) = ρ. While the full initial-value
problem (11) subject to this initial condition appears
to be intractable, we can deduce the physically rele-
vant long-time behavior by the method of dominant bal-
ance [20], in which we neglect one of the three terms in
each of Eqs. (11) and check that the assumption is self-
consistent.
By this approach, we deduce that in both Eqs. (11),

the right-hand side (RHS) dominates the left-hand side
(LHS). Neglecting the LHS in Eqs. (11), we find

c ≃ 1

4(1 + τ)2
, c1 ≃ 1

8(1 + τ)2
. (12)
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as τ → ∞. A more detailed but straightforward asymp-
totic analysis of Eqs. (11) gives the more complete long-
time behavior

c1 =
1

8(1 + τ)2
− 1

16(1 + τ)4
− 1

16(1 + τ)5
,

c =
1

4(1 + τ)2
+

1

8(1 + τ)3
− 1

8(1 + τ)5
,

(13)

where we drop terms of O(τ−6) and lower. All alge-
braic correction terms are universal, i.e., independent of
the initial conditions. Only terms that are exponentially
small in the τ → ∞ limit depend on the initial condition.
To find the dependence of the cluster densities on the

physical time, we substitute c1 from (12) in the definition
of the modified time (9) and invert this relation to give

t =

∫ τ

0

dτ ′

c1(τ ′)
≃ 8

∫ τ

0

dτ ′ (1 + τ ′)2 ≃ 8

3
τ3 . (14)

If we employ the more accurate asymptotic formula in
(13) for c1(τ), we instead obtain the expansion

t =
8

3
τ3 + 8τ2 +

11

6
τ +O(1) , (15)

with three exact terms. The last term, a constant, cannot
be determined analytically since it depends on the initial
condition. Limiting ourselves to the leading asymptotic

behavior, we substitute τ ≃ (3t/8)
1/3

into (10) and (12)
to arrive at the central results given in Eq. (4).

Figure 2 shows the time dependence of m(t), c(t) and
c1(t) obtained by numerical integration of the first two
of Eqs. (6) and Eq. (8) by Mathematica. As the initial
condition we use m(0) = 1 and c1(0) = c(0) = 0.1.
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FIG. 2. Time dependence of m(t), c(t), and c1(t) on a double

logarithmic scale, with asymptotic decay of t−1/3 for m(t) and

t−2/3 for both c(t) and c1(t), as predicted by Eq. (4). The
ratio c(t)/c1(t) quickly approaches 2 for increasing time, as
predicted by (12).

Having found the dimer concentration c1(t), we now
outline how to obtain all the cluster densities. Based on
the form of the rate equation for ck(t) for k ≥ 2, we

anticipate that ck = Akc; that is, all individual cluster
densities are of the same order as the total cluster density.
Substituting this ansatz into the last of Eqs. (6) we obtain
the following recursion for the amplitudes:∑

i+j=k

AiAj = 2Ak k ≥ 2 . (16)

The already known value A1 = 1
2 plays the role of the

initial condition for this recursion. Solving (16) subject
to this initial condition gives

ck
c

=
1√
4π

Γ
(
k − 1

2

)
Γ(k + 1)

≃ 1√
4π

1

k3/2
, (17)

where the last asymptotic is valid when k ≫ 1 and gen-
erally (17) holds in the t → ∞ limit.
The large-k asymptotic, Ak ∼ k−3/2, holds only up

to a cutoff value k∗, beyond which the Ak must decay
faster than any power law. To understand the origin
of this cutoff, we note that the sum

∑
k≥1 kAk diverges

if Ak ∼ k−3/2 for all k. This divergence contradicts the
mass conservation statement that

∑
k≥1 kck → const. To

resolve this apparent divergence, the power-law behavior
of Ak must break down beyond a cutoff value k∗. To
determine k∗, we compute∑

k≥1

kck ∼ c
∑

1≤k≤k∗

k × k−3/2 ∼ c
√
k∗ .

Since both sums are constant, we see that the threshold
mass is given by k∗ ∼ c−2 ∼ τ4 ∼ t4/3. Thus the power-
law mass distribution is cut off at k∗ to ensure mass
conservation. This cutoff is analogous to what happens
in constant-kernel aggregation with a steady monomer
source [19]. In this latter example, the cutoff is deter-
mined by the condition that the total mass in the system
equals to the total mass that is injected up to a given
time.

III. MORE GENERAL TEMPLATING
REACTIONS

There are two natural generalizations of templating
aggregation that we now explore. One generalization is
to consider scaffolds that are heavier than dimers, and
another to analyze what happens when there are multiple
stages of scaffold reactions.

A. Templating with scaffolds of mass L

Suppose the scaffold has mass L and the simultaneous
presence of L monomers on the scaffold is required to
create a second L-mer. Aggregates of mass L and heav-
ier also undergo conventional aggregation. We assume
that the process begins with monomers and scaffolds. By
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construction, the masses of heavier aggregates are integer
multiples of L.

We can determine the kinetics of this model by adapt-
ing the analysis of the previous section in a straightfor-
ward way. In what follows ck now denotes the concentra-
tion of clusters of mass kL. Within this model, the first
two of Eqs. (6) and Eq. (8) become

dm

dt
= −mLc1 ,

dc1
dt

= 1
L mLc1 − 2cc1 ,

dc

dt
= 1

L mLc1 − c2 .

(18)

In terms of the modified time variable defined in (9), the
solution for the monomer density for the initial condition
m(0) = 1 now is

m(τ) =
1

[1 + (L− 1)τ ]1/(L−1)
. (19)

Using this solution for the monomer density and also em-
ploying the same dominant balance method as in the pre-
vious section, we obtain

c ≃ 1

2L

1

[1 + (L− 1)τ ]L/(L−1)
,

c1 ≃ 1

4L

1

[1 + (L− 1)τ ]L/(L−1)
.

(20)

We now express these two densities in terms of the
physical time:

t =

∫
dτ ′

c1(τ ′)
≃ 4L

2L− 1
[1 + (L− 1)τ ](2L−1)/(L−1) .

(21)

Combining (19) and (20) with (21), we thereby find the
densities of monomers, L−mers, and the total cluster
density decay as

m(t) ≃
(
2L− 1

4L
t

)−1/(2L−1)

,

c(t) ≃ 1

2L

(
2L− 1

4L
t

)−L/(2L−1)

,

c1(t) ≃
1

4L

(
2L− 1

4L
t

)−L/2L−1)

.

(22)

As one might expect, the overall reaction kinetics slows
down as the scaffold size and consequently the reaction
order L increases. The ratios ck/c are again stationary
in the long-time limit and are given by the same for-
mula (17) as for L = 2. Stationarity again holds up to a
threshold mass k∗ that grows as k∗ ∼ c−2 ∼ t2L/(2L−1).

B. Multiple levels of templating

Another natural scenario is a reaction that relies on
multiple levels of templating. Here we treat the simplest
case of two levels of templating in which: (a) a new dimer
template is created when two monomers react on an ex-
isting dimer template, and (b) a new 4-mer template is
created when two dimers react on an existing 4-mer tem-
plate (Fig. 3). In this formulation, dimers are not free to
aggregate; only clusters of mass 4 and greater can react
via conventional aggregation.

(a)

(b)

FIG. 3. Templating aggregation with two levels of templating:
(a) two monomers react on a dimer scaffold, (b) two dimers
react on a 4-mer scaffold.

Let m(t) and D(t) denote the density of monomers
and dimers, respectively, and let ck with k ≥ 1 now de-
note the density of clusters of mass 4k. In close analogy
with Eqs. (6), the rate equations for the various cluster
densities now are:

dm

dt
= −m2D ,

dD

dt
= 1

2m
2D −D2c1 ,

dc1
dt

= 1
2D

2c1 − 2cc1 ,

(23)

while the densities of heavier clusters satisfy Eqs. (7).
Summing the last of Eqs. (23) and all of Eqs. (7) we
deduce the evolution equation for the total cluster density

dc

dt
= 1

2D
2c1 − c2 . (24)

Equations (23) and (24) again constitute a closed sys-
tem from which we can, in principle, determine the ki-
netic behavior. However, these coupled nonlinear equa-
tions do not possess an exact solution. Instead, we again
use the method of dominant balance to infer the asymp-
totic behavior. We first neglect the LHS in the last of
Eqs. (23) to give c ≃ D2/4. We substitute this result into
(24), where we also neglect the LHS to find c1 ≃ D2/8.
Thus

c ≃ 1
4D

2 , c1 ≃ 1
8D

2 . (25)

There are various choices of which terms to neglect in
Eqs. (23), and the dominant balance that proves consis-
tent is to keep the LHS in the second of Eqs. (23). Since
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FIG. 4. Time dependence of m(t), D(t), c(t), and c1(t) on a

double logarithmic scale, with asymptotic decay of t−1/3 for
D(t) and t−2/3 for m(t), c(t), and c1(t).

this term is negative, the simplest choice now is to neglect
the first term on the RHS of this equation. We thus have
dD
dt = −D4/8. Solving this equation and substituting
this solution into (25) and also into the first of Eqs. (23)
and solving these two equations we finally obtain

m ≃ c ≃ 2c1 ≃ (3t)−2/3 , D ≃ 2(3t)−1/3 . (26)

The decay laws for c and c1 are the same as in the tem-
plating with dimer scaffolds, and even the amplitudes are
identical [cf. (4)]. The density of monomers decays sim-
ilarly to c and c1, and only the dimer density has the
slowest decay of t−1/3. We used Mathematica to numer-
ically integrate Eqs. (23) and (24) and the results are
shown in Fig. 4. The asymptotic behaviors are in excel-
lent agreement with the theoretical predictions (26).

IV. TEMPLATED LIGATION

We now investigate a self-templating reaction in which
clusters of all masses can serve as scaffolds. This tem-
plated ligation process [9, 10, 14, 21, 22] is represented
by the reaction scheme

Ci ⊕ Cj ⊕ Ci+j
Li,j−→ Ci+j + Ci+j . (27)

We assume that this ligation reaction is the only dynam-
ical process in the system. In particular, binary aggrega-
tion of clusters does not occur in this model. The absence
of aggregation reactions means that an initially compact
mass distribution with a maximum mass J remains com-
pact forever; that is, cj(t) = 0 for all j > J . However,
for unbounded initial mass distributions that decay suf-
ficiently rapidly with mass, the emergent behaviors are
universal, that is, asymptotically independent of the ini-
tial condition. One such example is the exponential ini-
tial mass distribution cj(0) = 2−j−1 whose mass density
is normalized to 1: ∑

j≥1

cj(t) = 1 (28)

If the ligation rates Li,j are mass independent, the
equations for the evolution of the cluster-mass distribu-
tion are

dck
dt

= ck
∑

i+j=k

cicj − 2ck
∑
j≥1

cjcj+k . (29)

These equations are hierarchical and therefore appear to
be unsolvable. A mathematically related non-recurrent
structure arises in the rate equations for cluster eat-
ing [23] and for combined aggregation-annihilation reac-
tions [24], albeit these problems are more tractable since
reactions are binary. We also notice that in templated
ligation, the total cluster density, c =

∑
k≥1 ck, and the

monomer density c1 satisfy

dc

dt
= −

∑
i,j≥1

cicjci+j , (30a)

dc1
dt

= −2c1
∑
j≥1

cjcj+1 . (30b)

and these cannot be solved recursively. In contrast, in
aggregation with mass-independent reaction rates, the
analogous equations dc

dt = −c2, dc1
dt = −2cc1, are closed

and readily solvable.
Nevertheless, we can extract the essential long-time

behavior from Eqs. (29) by invoking scaling. Similarly
to aggregation [25, 26] (see also [18, 19] for reviews), one
expects that the mass distribution approaches the scaling
form

ck(t) = c2Φ(kc) (31)

in the scaling limit t → ∞, k → ∞, with kc = finite.
The mass conservation statement (28) and the defini-

tion of the cluster density then lead to the integral con-
straints∫ ∞

0

dxxΦ(x) = 1,

∫ ∞

0

dxΦ(x) = 1 . (32)

Here we have replaced the summations by integrations,
which is appropriate in the long-time limit where scaling
is valid.
Substituting the scaling ansatz (31) into (30a), the

time dependence of the total cluster density is given byw

dc

dt
= −Bc4 , (33a)

with

B =

∫ ∞

0

dx

∫ ∞

0

dyΦ(x)Φ(y)Φ(x+ y) . (33b)

Solving the first of these equations gives the time depen-
dence of the cluster density

c ≃ (3Bt)−1/3 . (34)
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Using (34) and the scaling form (31) we conclude that
the density of monomers is then

c1 ≃ Φ(0)(3Bt)−2/3 . (35)

We can obtain an alternative expression for the ampli-
tude B from the integral of the scaled mass distribution
that is simpler than the the double integral in Eq. (33b).
Assuming Φ(0) > 0 and substituting (35) into (30b) we
obtain

B =

∫ ∞

0

dyΦ2(y) . (36)

To obtain the scaling function itself, we substitute the
scaling form (31) into the governing equations (29) and
find that the scaling function Φ(x) obeys the non-linear
integro-differential equation

B

[
2Φ(x) + x

dΦ(x)

dx

]
= 2Φ

∫ ∞

0

dzΦ(z)Φ(z + x)

− Φ

∫ x

0

dyΦ(y)Φ(x− y) . (37)

Notice that integrating (37) over all x, we recover (33b).
In the limit x → 0, Eq. (37) reduces to (36). These
relations serve as useful consistency checks.

The time dependence given in Eq. (34) together with
the equation (37) for Φ constitutes a formal solution
cluster-mass distribution for the ligation reaction. While
the explicit solution of (37) is likely not possible, we have
found, in a direct way, the time dependence of the cluster
densities.

V. SUMMARY AND DISCUSSION

We introduced an aggregation model that is driven by
templating. Here an aggregate of a specified mass acts
as a scaffold upon which smaller clusters meet and merge
to create a cluster that also can act as a scaffold. Clus-
ters whose mass is either larger than or equal to the scaf-
fold mass also undergo conventional aggregation. Within
the mean-field description and also under the assump-
tion that the all reaction rates are mass independent, we
solved for the kinetics of the cluster mass distribution.

One basic result for this type of templating-controlled
aggregation is that the ensuing kinetics is much slower
than in conventional aggregation. For the simple case
where the scaffold is a mass-2 dimer and two monomers
must meet on this scaffold to create another dimer, we
found that the monomer density decays with time as
t−1/3, while the densities of clusters of mass 2 or greater,
as well as the total cluster density, all decay as t−2/3.
Therefore the decay of the monomer density is slower
than that of the cluster density. In conventional aggre-
gation, the density of clusters of any mass decays as t−2,
while the total cluster density decays as t−1. Thus the
monomer density decays faster than the cluster density.

To summarize, the relation between the monomer and
cluster densities is m ∼ c2 in ordinary aggregation and
m ∼

√
c in templating aggregation.

The templating reaction is three-body in nature, and
this feature is the underlying reason for the much slower
kinetics compared to conventional aggregation. Intrigu-
ingly, the relative cluster densities ck/c in templating ag-
gregation, Eqs. (17), are the same as in ordinary aggrega-
tion driven by the source of small mass clusters [18, 19].
This property is the chief qualitative difference with ordi-
nary aggregation where the mass distribution approaches
a scaling form in the long time limit.
We extended our model to a scaffold of arbitrary mass

L, upon which L monomers meet and react to create
another L-scaffold. Another natural extension that we
studied is to allow multiple levels of templating. For
a two-stage templating reaction in which dimers and 4-
mers act as scaffolds to promote the reaction, we ob-
served similar behavior as in single-stage templating in
which nearly all cluster densities decay as t−2/3. In this
two-stage reaction, it is only the dimer density that now
decays as t−1/3.
We also introduced and investigated a templated liga-

tion reaction, where clusters of all masses serve as scaf-
folds, and there is no free aggregation. The ensuing ki-
netics is much slower than in templating aggregation.
Namely, the total cluster density decays as t−1/3, while
individual cluster densities decay as t−2/3. In contrast
to templating aggregation, the mass distribution in tem-
plated ligation approaches a scaling form. However, even
with mass-independent ligation rates, templated ligation
is theoretically more challenging than templating aggre-
gation. We were able to only determine the time depen-
dence of basic observables, but the amplitudes of these
decay laws and the precise form of the scaled mass dis-
tribution remain unknown.
At a theoretical level, templating-driven aggregation

can be viewed as a form of conventional binary aggre-
gation, but with a non-trivial time dependent source of
scaffolds (either dimer or dimer and 4-mer) that serve as
the input to the aggregation process. It is remarkable
that the non-trivial and slow time dependence of these
small elemental clusters modifies the densities of all heav-
ier clusters so that the overall aggregation reaction also
has a slow time dependence compared to conventional
aggregation. From the perspective of applications, there
are many situations where the notion of templating plays
a major role of many types of reactions. In addition to
the applications for models of the origin of life mentioned
in the introduction [1–14], other applications include, for
example, self assembly of colloids [27], synthesis of exotic
materials [28–30], and protein aggregation [31]. Perhaps
our simple modeling can provide a starting point for un-
derstanding these types of template-controlled reactions.

We thank Steen Rasmussen for stimulating conversations
that helped nucleate this project. This work has been
partially supported by the Santa Fe Institute.
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