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We use generating functions to analyze the Kinetics of the reaction 4 +B — (1+€)4 +B where
—1=€e<0and € > 0 correspond, respectively, to B particles that are traps or ‘‘sources.”” For an arbitrary
configuration and strengths of static B’s and mobile 4’s, an exact formal expression for the kinetics of the
reaction is derived. This solution yields either exponential growth, power-law growth or decay, or no
growth asymptotically, depending on the configuration and strength of the B’s.

Consider a system of mobile A4 particles which. interact
only with stationary B particles according to the reaction
A+B— (1+e)A+B. For —1<e<0, the B particles
may be regarded as traps for the A4’s, with the limit e= —1
corresponding to perfect traps. Such a trapping reaction has
been the focus of considerable attention in the literature,
both for its intrinsic theoretical interest!-® as well as for its
many applications.®"1* For a single trap,!~® the survival
probability for an A particle decays with time as =2 for
spatial dimension d=1, and as 1/In¢ for d=2. For d > 2,
the survival probability approaches a finite limit which
depends on 1— R, where R is the probability that a random
walk eventually returns to its starting point. The intriguing
case of a random distribution of traps has been extensively
studied,*® and it is now established that the survival proba-
bility decays as

expllin(1—¢)]-Yd+2dld+2)

where c is the trap concentration.

While there is considerable information about the asymp-
totic behavior in the trapping reaction, very little appears to
be known about the complementary situation of a unimolec-
ular growth reaction, i.e., the case € > 0, where the B parti-
cles may be regarded as catalytic ‘‘sources’’ for A4 particles.
This unimolecular growth reaction is too idealized to
describe more complicated and realistic problems such as
population dynamics!*-'® or chemical reactions with source
terms.'”>!¥ However, we believe that the insights gained
from studying the simplified purely growth reaction will pro-
vide a starting point for understanding the realistic effects of
competing growth and trapping or decay displayed by physi-
cal systems.

The chemical reaction models are often studied by rate
equations or by reaction-diffusion equations which represent
approximations in the spirit of a mean-field theory as the
spatial distribution of the reactants is assumed to be uni-
form. In this Rapid Communication, we employ generating
function methods!®?° to derive the asymptotic properties of
general diffusion-controlled unimolecular growth processes
and a simple mixed unimolecular growth and trapping pro-
cess. While generating function techniques are well known,
they have not been applied to growth reactions, and we ob-
tain new exact solutions for a number of interesting situa-
tions. Our exact generating function solutions indicate that
rate-equation solutions are not always an accurate descrip-
tion of the kinetics, suggesting that similar modifications of
the kinetic laws will occur in more realistic model reactions.
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Several prototypical examples are treated such as a single
source, a regular or a random distribution of sources, and a
system containing one source and one trap, to illustrate the
possible kinetic behaviors. Our calculational approach is
equally valid for the trapping reaction, and we can repro-
duce many of the known results for this reaction in a very
simple manner.

We begin our analysis by treating the case of a single B
source particle at S, and a single random walker (A particle)
at the origin at 1=0. We model the Brownian diffusion of
A by a discrete-time isotropic random walk; at unit time in-
tervals, the A particle moves with equal probability to one
of its nearest-neighbor sites. When the original A4 first
reaches the source at S, € new A’s are produced. The parti-
cles in this first generation can then reproduce upon subse-
quent returns to S. At the nth step, the number of new
particles produced by the source is denoted by a,(3).

The exact growth rate for the A4’s can be calculated by the
following approach. Let P,(T) denote the probability that a
particle is at T on the nth step if it starts at the origin in the
pure random-walk model. Similarly, let Q,(T) be the ex-
pectation value for the total number of particles at T on the
nth step if a particle starts at the origin and one source is at
$ in the reacting system. Then by the definition of the
reaction, Q,(T) equals the probability for the random walk-
er to propagate to T without touching the source plus the
sum over all earlier times, of the number of A4 particles
created at the source, multiplied by the appropriate
random-walk probability of propagating from § to T. That
is,

O (T)=P,(F)+a1(B)P,-1(T—F)+a(3)P,—»(T—-7)
+ 0 +a,(3)P(T-3) . (1a)

By construction, a,(3) is simply equal to [e/(1+€)]
x Q,(3). Substituting this in Eq. (1a) and using the fact
that Po(0) =1 gives

a,(3)=[P,(3)+ a1(3)P,_1(0) + a,(3) P,_»(0)

+ - +a,-1(3)P(0)] (1b)
Now defining the generating functions
0(zT)=3 0.(T)z",
n=0
and similarly for P(z, T) and a(z %), we find
0, T)=P( )+ LLET=PES]

1+e—€eP(z0)
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By summing over all T, we obtain the generating function
for the total number of particles on the lattice at the nth
step,

0(=-30GT)=3 02"

n=0
0, is the total number of A4’s at the nth step. Using!®20
P(2)=3 P(zT)=(1-2z)"!
T

(corresponding to particle conservation in the pure random-
walk model), we find

1+e+elP(3)—P(70)]
1+e—€P(z0)

For the trapping reaction, — 1 =<<e < 0, Q, may be interpret-
ed as the probability for a random walker to survive to »n
steps if the trap absorbs an incident particle with probability
—e€.

The asymptotic properties for the single source reaction
may now be derived by examining the singular behavior of
0Q(2). In one dimension,!*?

- 1-(1— 2)1/2 17
b= A= 0=20)

and substituting this in Eq. (2b) yields a simple pole in
Q(2) at z,=~1+2¢/(1+¢€) < 1. Therefore, the total parti-
cle number at the nth step, O, grows asymptotically as

0=+ (2b)

[(14€)/VT+2elm . ' 3

Moreover, from Eq. (2a), the 4’s have an exponential
distribution about = the source; Q,(T)~ Q,(3)(1
+2€)!T =2, Thus, the mean-square displacement from
the source, averaged over the ensemble of all A particles,
approaches a finite limit proportional to [In(1+2€)]1~2 as
h— oo,

In two dimensions, a similar picture is obtained. From
the asymptotic behaviors!®!l  P(z0)=(1/7)In(1—-z)
+ .-+, when z— 1, and P(z0) =1+ Py(0)z*+ - -+, for
z<< 1, we find that Q(z) has a simple pole at
ze=1— e~ "¢ for € small, and at z, = 2/~/e for € large. This
leads to

Qn~(1+“e‘"/‘)" , e<<l1 (4a)
~(e2)", e>>1 . (4b)

An additional interesting situation is the single source reac-
tion on a fractal set with fracton dimension? d;=<2. The
singular behavior of P(z,0) (Ref. 22) leads to the asymp-
totic kinetics

O, ~ n?7Y (one trap)
—{1-[e/(1+ )17

The exponential growth for d (or dy) =<2 is predicated on a
random walk being recurrent, that is, the probability of
eventual return to the starting point, R, equals unity.!>-2
This means that every new particle born at the source re-
turns to produce further generations. However, for d > 2, a
random walk is transient, corresponding to R < 1. Now the
competition between the eventual return probability and the
source strength € leads to three possibilities. Substituting in

=" (one source) . (35)
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Q(2) the asymptotic form valid for d > 2 ,
P(z0)=(1-R)"'+a(l—2z)¥"14 ...

(with o a lattice-dependent constant), we find after some
straightforward analysis

1— R
On 1—R(+e) ’ O<e<e,
~p¥?2-1 e=¢,=(1—R)/R
~(Ve/2d)", e>> e . (6)

These results illustrate the competing effects of the
random-walk transience and the source strength in govern-
ing the kinetics.

The above results can be generalized to a uniformly
biased random walker. The asymptotic behavior can be
easily appreciated by employing the Gaussian approximation
for P,(T) valid for a small drift velocity V. Thus using

P (T)~n"expl— (T -%n)¥nl ,
we obtain the approximate generating function P(z,0)
~ (z—z9)¥?} t"or2 d#2, and P(z0)~In(z—2z) for
d=2 , with zo~ e*". Substituting this in Q(z), we find in
d =1 three possible growth laws

2 —n

€
a+e?| v{vc

O~ [e‘,2_

2]1/2

1+ 2e
1+e

~n, v=v,’£[ln

'

~[Q+e)—¢/ (=D, v> v, . Q)

again illustrating the competing effects of transience (due to
the drift) and the source strength. Figure 1 summarizes the
results of our analysis for d=1,2, and d> 2. As the
dimension increases, the random walk becomes more
strongly transient and the portion of the diagram in which
exponential growth occurs decreases. In d=2, the ex-
ponential growth region extends to e€e=0 within an area
whose width vanishes exponentially in e.

For an arbitrary configuration of B particles (sources or
traps), we may derive an exact expression for Q(z) by a
generalization of the methods used for the single source
problem. For a system containing N B particles each with
strength €;= —1 and located at §;, the recursion relation
for Q,(T) is [in analogy with Eq. (1a)]

Qu(F)=P(T)+ 3, au(Z3)P_n(T~F), ®
m,—'sl

where a,(3;) denotes the number of new particles pro-
duced by a source at §; on the mth step. Now using
am(3) = (e;/1+€)0n(3,), we first rewrite Eq. (8) in
terms of the a,(3;), i=1,2, ..., N, and solve the result-
ing system of linear equations by generating functions.
After a number of steps we find

p— 1 1 ’
Q(z)~—1_z 1+_—_det§?§ det®'(k)|, )

where & is the N X N matrix
(l+€1)_‘€]P(Z,0), 1=_[,
~e,P(z,'§,-—‘s’,), i &,
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FIG. 1. Phase diagram of the single source growth reaction for (a) d =1, (b) d=2 and (c) 4 > 2. Exponential growth occurs in the
upper-left portion of the squares while a finite limit for the number of particles occurs in the lower-right. On the boundary dividing ex-
ponential growth from no asymptotic growth, power-law growth occurs. In d =2, the region of exponential growth is exponentially small as
€— 0. For d > 2, the phase boundary is described by €, =[1—R (v)1/R (v), where R (v) is the eventual return probability for a biased

random walk.

and #'(k) is a matrix obtained from # by replacing the kth
column with a vector whose ith component is €,P(z5;).
The expression (9) is essentially the same as that of Rubin
and Weiss?® who used it to treat the statistical properties of
the number of visits to a subset of points on a lattice.

The expression (9) for Q(z) is exact, and from it we can
deduce that for a fixed arbitrary configuration containing fin-
itely many sources, the growth law is purely exponential.
For a random distribution of sources, it does not appear pos-
sible to perform the average over source configurations ex-
actly. Nevertheless, our numerical calculations indicate that
the growth law remains purely exponential, in contrast to
the slower than exponential decay associated with a random
distribution of traps.*®* The exponential growth coincides
with the mean-field or rate-equation prediction for the
growth rate, Q,~ €*", where € is the average strength of
the sources, and c their concentration.

For a regular distribution of equal strength sources on a
lattice with periodic boundary conditions, we use the fact
that the matrix 9 has a treelike structure and the deter-
minant in Eq. (9) can be computed straightforwardly.?*
Now the relevant pole in Q (z) which governs the long-time
behavior of Q, is determined by

1+e—ezP(z,_s’1)==0 (10)

s i

when sources are located at the regular array of sites {3,}.
From this expression, we can discuss the asymptotics of two
cases by taking the limit where the size of the system goes
to infinity. One is a regular but spatially inhomogeneous
source distribution, such as a single line or plane of sources.
In this situation, the relevant quantity to classify the reac-
tion is the co-dimension d.,= d— d’, where d’ is the dimen-
sion of the source set. For d,, =<2, a random walk is re-
current with respect to the source set, and the sum in Eq.
(10) diverges as z — 1. Therefore, a pole in Q (z) occurs at
a value z, < 1, leading to exponential growth, independent
of e. For de, > 2, the random walk is transient with respect
to the source set and the possibilities outlined in Eq. (6) can
occur.

For a regular and spatially homogeneous source distribu-
tion, a random walk is always recurrent with respect to the
source set, implying exponential growth. Although the time
dependence of the growth law is simple, the dependence on

the source density c and on € is more complicated. We may
approximately treat these dependences by employing the
continuum Gaussian approximation for P,(T) in Eq. (9).
This yields the growth law

1+e€ "
1+e(l1—c)

for any dimension. This growth rate is expected to be accu-
rate in the limits of ¢ > % and € << 1, as can be verified by
comparing with the exact growth law for a completely occu-
pied lattice [Q,=(1+€)”], and a lattice with alternating
sites occupied [Q, = (1+ €)"/?].

Finally, from Eq. (9), we have treated the simplest case
of a ‘“‘mixed’’ reaction, a dipolar system containing one
source and one trap. In one dimension, the effects of
source and the trap compete to give either exponential
growth or power-law decay as indicated in Fig. 2.

In conclusion, we have discussed the unique kinetics of
random walkers which interact with static sources or static
traps by a unimolecular reaction. Generating function
methods have been used to derive an exact formal expres-

Exponential
growth

Power - law
decay

O 1
€t

FIG. 2. Phase diagram of a system consisting of one source of
strength €; and one trap of strength €, separated by a distance / in
one dimension. The boundary separating exponential growth from
power-law decay is given by €;= {e,/[1+2(/—1)e,]}.
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sion of the number of A’s as a function of time. A variety
of kinetic behaviors are found, which depend on the con-
figuration and the reactivities of the B’s. Several generaliza-
tions of the model are amenable to the exact generating
function approach including a distribution of source
strengths, and competing growth and trapping. These
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models should serve as useful systems to make contact with
realistic kinetic phenomena.
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