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I. INTRODUCTION

How do groups of people come to consensus? While
it’s hard to imagine a large group being able to agree
on anything, there are some settings where unanimity
is necessary—juries are one example. The voter model
(VM) represents an idealization of this opinion evolution
in which each individual, or agent, is influenced only by
other members of the group; there is also no notion of a
“right” or a “wrong” opinion, and there are no external
influences, such as news media. In the VM, each agent,
or voter, can assume one of two states (e.g., 0/1, nor-
mal/mutant, Democrat/Republican). One agent resides
at each node of a lattice or an arbitrary network and up-
dates its state at unit rate until a population of N agents
necessarily reaches consensus.
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FIG. 1: Update rules. (a) VM: a randomly chosen agent
adopts the state of a random neighbor; (b) IP: a randomly
chosen agent exports its state to a neighbor.

In detail, VM evolution is as follows (Fig. 1):

• Pick a random node (a voter).
• The voter adopts the state of a random neighbor.

An anthropomorphic interpretation of VM dynamics is
that each agent has zero self-confidence and merely
adopts one of its neighbor’s state. We also discuss the
related invasion process (IP), whose update rule is:

• Pick a random node (an invader).
• The invader exports its state to a random neighbor.

Pictorially, an invader dictatorially imposes its state on
one of its neighbors; equivalently, an invader replicates
and its offspring replaces an neighboring agent. While
the differences between these two models appear superfi-
cially trivial, they are fundamental on complex networks.
The two basic questions that we will discuss are: (i) What
is the time to reach consensus? (ii) By what route is con-
sensus achieved? We present our collaborative work on
this subject with Vishal Sood and Tibor Antal [1].

II. CONSERVATION LAWS

A crucial feature of VM and IP dynamics on arbitrary
networks is that they satisfy conservation laws that de-
termine their long-time behaviors. Let’s develop the lan-
guage to uncover these laws [2, 3]. Define η as the state
of the entire network, and η(x), which can equal 0 or
1, as the state of node x. In an update, the node state
changes from 0 to 1 or vice versa. Let ηx denote the
network state after the node at x changes state. We may
succinctly write the transition probability that node x
changes state as

P[η → ηx] =
∑
y

Axy
NQ

[Φ(x, y) + Φ(y, x)], (1)

where Φ(x, y) ≡ η(x)[1− η(y)] = 1 if the states at x and
y differ and Φ(x, y) = 0 if these states agree, and Axy is
the adjacency matrix. Although (1) looks formidable, its
meaning is simple: Axy [Φ(x, y)+Φ(y, x)] is non-zero only
when nodes x and y are connected and in opposite states,
so that an update actually occurs. For the VM, the factor
(NQ)−1 = (Nkx)−1 accounts for first choosing any node
x with probability 1/N , and then one of its neighbors
y with probability 1/kx, where kx is the degree of node
x. In the IP, (NQ)−1 = (Nky)−1: first choose node y (a
neighbor of x) with probability 1/N , and then choose x
with probability 1/ky.

The kernel for the evolution of the population is the av-
erage change in the state of a single node, 〈∆η(x)〉. This
change equals the probability that η(x) changes from
0 to 1 minus the probability of a change from 1 to 0:
〈∆η(x)〉 = [1− 2η(x)]P[η → ηx]. Summing this transi-
tion probability over all nodes gives the average change
in ρ, the density of nodes in state 1:

〈∆ρ〉 =
∑
x

〈∆η(x)〉 =
∑
x,y

Axy
NQ

[η(y)− η(x)] . (2)

Since Q is constant on regular lattices, the summand
on the right is antisymmetric in x and y and 〈∆ρ〉 = 0.
Thus 〈ρ〉 is conserved. This innocuous-looking conserva-
tion law has far-reaching consequences. It immediately
gives the fixation or exit probability namely, the prob-
ability E(ρ) that a finite system with an initial density
ρ of 1s attains consensus of 1s. Because ρ is conserved
and because the final state consists of either all 1s or all
0s, we have ρ = E(ρ) · 1 + [1 − E(ρ)] · 0. Thus with no
calculation the fixation probability equals ρ !

The power of this conservation law suggests looking
for analogous laws for the VM and the IP on degree-
heterogeneous networks. To obtain a conserved quantity,
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the factor Q in the denominator of the transition rate
in (1) must somehow be canceled out. This leads us to
generalize the notion of density to the degree-weighted
moments ωm ≡

∑
k k

mnkρk/µm (note that ω0 = ρ and

for simplicity we write ω1 as ω), where ρk ≡
∑′

x
η(x)/Nk

is the density of 1s on the subset of nodes of degree k,
the prime restricts the sum to nodes x of degree k. Here
µm =

∑
k k

mnk is the mth moment of the degree distri-
bution of the network, with Nk (nk) the number (den-
sity) of nodes of degree k. Repeating the calculation in
Eq. (2) for 〈ω〉 for the VM and for 〈ω−1〉 for the IP, it is
immediate to show that the conserved quantities are:

〈ω〉 VM,

〈ω−1〉 IP.
(3)

Since the initial value of the conserved quantity equals its
value in the final unanimous state, the exit probability is

E(ω) = ω VM,

E(ω−1) = ω−1 IP.
(4)

An instructive example is the star graph, where N nodes
are connected only to a single central hub. For the VM,
if the hub is in state 1 and all other nodes are in state
0, then (4) mandates that the probability of reaching 1
consensus is 1/2 ! That is, a single well-connected agent
largely determines the final state. Conversely, in the IP, a
mutant at the hub is very likely to be extinguished (fixa-
tion probability ∝ N−2), while a mutant at the periphery
is more likely to persist (fixation probability ∝ N−1).

III. VOTER MODEL ON NETWORKS

A. Complete Graph

To understand the VM and the IP on complex net-
works, first consider the complete graph, where the VM
and the IP are identical. In each update event, ρ →
ρ ± δρ, with δρ = 1/N , corresponding to a voter under-
going the respective state changes 0→ 1 or 1→ 0. The
probabilities for these respective events are:

R(ρ) ≡ P[ρ→ ρ+ δρ] = (1− ρ)ρ

L(ρ) ≡ P[ρ→ ρ− δρ] = ρ(1− ρ) .
(5)

We term R and L as the raising and lowering operators.
We now use these transition probabilities to write the

evolution equation for the average time T (ρ) to reach
consensus when the fraction of agents initially in state 1
is ρ (the backward Kolmogorov equation [4, 5]):

T (ρ) = δt+ R(ρ)T (ρ+δρ) + L(ρ)T (ρ−δρ)

+[1−R(ρ)− L(ρ)]T (ρ) . (6)

This simple-looking, but deceptively powerful equation
expresses the average consensus time as the time δt for a

single update step plus the average time to reach consen-
sus after this update. The three terms account for the
transitions ρ→ ρ±δρ or ρ→ ρ, respectively. Expanding
Eq. (6) to second order in δρ gives

v(ρ)
dT (ρ)

dρ
+D(ρ)

d2T (ρ)

dρ2
= −1 , (7)

with drift velocity v(ρ) ∝ [R(ρ) − L(ρ)] and diffusivity
D(ρ) ∝ [R(ρ) + L(ρ)]. On the complete graph, the drift
term is zero and only the diffusion term, which quantifies
the stochastic noise, remains. For the boundary condi-
tions T (0) = T (1) = 0 (consensus time equals 0 if the
initial state is consensus) the solution is

T (ρ) = −N
[
(1− ρ) ln(1− ρ) + ρ ln ρ

]
. (8)

For equal initial densities of each opinion, T
(

1
2

)
= N ln 2,

while for a single mutant, T
(

1
N

)
≈ lnN . The linear

dependence on N represents the generic behavior for the
consensus time of the VM on Euclidean lattices in spatial
dimensions d ≥ 3.

B. Complete Bipartite Graph

An important clue to understanding how degree het-
erogeneity affects the dynamics is provided by studying
the simplest network network that contains of nodes with
different degrees—the complete bipartite graph Ka,b. In
this graph, a+b nodes are partitioned into two subgraphs
of size a and b (Fig. 2). Each node in subgraph a links
to all nodes in b, and vice versa. Thus a nodes all have
degree b, while b nodes all have degree a.

b nodes

a nodes

degree a

degree b

FIG. 2: The complete bipartite graph Ka,b.

We can immediately determine the exit probability by
using the conservation law from Eq. (3), 〈ω〉 = 1

2 (ρa+ρb).
For example, when one subgraph contains only 0s and the
other only 1s, the probability to reach 1 consensus is 1

2 ,
independent of the a and b subgraph sizes.

To determine the dynamical behavior, let Na,b be the
respective number of voters in state 1 on each subgraph,
with ρa = Na/a, ρb = Nb/b the respective subgraph
densities. In an update, these densities change according
to the raising/lowering transition probabilities,

Ra ≡ P[ρa, ρb → ρ+
a , ρb] =

a

a+ b
ρb(1− ρa),

La ≡ P[ρa, ρb → ρ−a , ρb] =
a

a+ b
ρa(1− ρb),
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with ρ±a = ρa ± a−1. Here Ra is the probability to in-
crease the number of 1s in subgraph a by 1, for which
we need to first choose an agent in state 0 in a and then
an agent in state 1 in b. Similarly, La gives the cor-
responding the probability for reducing the number of
1s in a. Analogous definitions hold for Rb and Lb by
interchanging a↔ b.

From these transition probabilities, the rate equations
for the average subgraph densities are ρ̇a = ρb − ρa and
ρ̇b = ρa − ρb. Their solutions show that the subgraph
densities are driven to the common value 1

2 [ρa(0)+ρb(0)]
in a time of order 1 (Fig. 3(a)). Thus the total density
of 1s, which evolves as ρ̇ = (aρ̇a + bρ̇b) (a+ b), becomes
conserved in the long-time limit. Therefore, there is a two
time-scale approach to consensus: initially, the effective
bias quickly drives the system to equal subgraph densities
ρa = ρb; subsequently, diffusive fluctuations drive the
population to consensus. This dynamical picture also
arises for general complex networks.
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FIG. 3: Evolution of subgraph densities for single VM real-
izations on: (a) a complete bipartite graph of 2 × 105 nodes
(with a = b = 105), and (b) a configuration model of 2× 105

nodes with degree distribution nk ∼ k−2.5. In (a), the dotted
curve is the transient from the initial state (ρa, ρb) = (1, 0)
before the slow approach to consensus after ≈ 104 time steps
(solid). In (b), the initial state is (ρk>µ1 , ρk≤µ1) = (0, 1).
Shown are ρ6(t) (degree less than µ1 = 8) and ρ10(t) (degree
greater than µ1) versus ω. The initial transient lasts ≈ 2 time
steps (dotted), while consensus occurs after 1742 time steps.

To determine the consensus time T (ρa, ρb), we exploit
the feature that ρa → ρb in the long-time limit. Then
following exactly the same steps as those for the complete
graph, the consensus time satisfies

ω(1− ω)
∂2T

∂ω2
= − 4ab

a+ b
, (9)

with solution, for T (0) = T (1) = 0,

T (ω) =
4ab

a+ b
[(1− ω) ln(1− ω) + ω lnω] . (10)

The consensus time has the same form as in the com-
plete graph [Eq. (8)], but with an effective population
Neff = 4ab/(a + b). If both the a and b subgraphs have
similar sizes, a, b ≈ N/2, then Neff ≈ N . However, if,

for example, a ∼ O(1) and b ≈ N then T ∼ O(1) ! One
highly-connected node can promote consensus.

C. Complex Networks

Now we turn to VM and IP dynamics on complex net-
works. While the bookkeeping becomes a bit tedious,
the approach is morally the same as that for the com-
plete bipartite graph: separate the dynamics according
to the degree of each node. From Eq. (1), the transition
probabilities for increasing and decreasing the density of
voters of type 1 on nodes of fixed degree k are:

Rk[{ρk}]≡P[ρk → ρ+
k ] =

1

N

∑′

x,y

1

kx
Axy Φ(y, x)

Lk[{ρk}]≡P[ρk → ρ−k ] =
1

N

∑′

x,y

1

kx
Axy Φ(x, y),

(11)

where ρ±k = ρk ± N−1
k , and the prime restricts the sum

to nodes of fixed degree k. In this equation, the densities
associated with nodes of degrees k′ 6= k are unaltered.

We now make the simplification of considering the
mean-field configuration model (see, e.g., [6]). This is
a network that is constructed by starting with a set of
nodes that have “stubs” of specified degrees, and then
connecting the ends of stubs at random until no free ends
remain. By this construction, the degrees of neighboring
nodes are uncorrelated. Thus we may replace Axy by
〈Axy〉 = kxky/µ1N in (11). Following the same steps
as in the complete bipartite network, the backward Kol-
mogorov equation for the consensus time is∑

k

vk
∂T

∂ρk
+
∑
k

Dk
∂2T

∂ρ2
k

= −1, (12)

with degree-dependent velocity and diffusivity (vk, Dk).

102
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102 103 104
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FIG. 4: Consensus time TN versus N for the configuration
model with degree distribution nk = k−ν for ν = 2.1 (+),
2.3 (×), 2.5 (∗), 2.7 (◦) and 2.9 (•). Data are based on 100
graph realizations and 10 realizations of VM dynamics on each
graph. Lines represent the prediction (15). The inset shows
the same data plotted in the scaled form µ2TN/µ

2
1 versus N .

To simplify (12), it is helpful to first study the time
dependence of the density of voters in state 1 on nodes
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of fixed degree k. As seen in Fig. 3(b) (and can be shown
analytically) the average densities 〈ρk〉 all converge to the
common value ω in a time of the order of 1. Thus at long
times, vk in (12) vanishes. We also convert derivatives
with respect to ρk to derivatives with respect to ω by
∂T
∂ρk

= ∂T
∂ω

∂ω
∂ρk

= knk

µ1

∂T
∂ω , to reduce (12) to

µ2

Nµ2
1

ω(1− ω)
∂2T

∂ω2
= −1. (13)

Defining an effective population size by Neff = N µ2
1/µ2,

and comparing with (9), the consensus time is

TN (ω) = −Neff [(1− ω) ln(1− ω) + ω lnω] . (14)

This is the same form as on the complete graph and the
complete bipartite network, expect for the value of Neff .
To compute Neff for a network with a power-law degree
distribution, nk ∼ k−ν , is a standard exercise in extreme-
value statistics [7], and the final result is

TN ∝ Neff ∼


N ν > 3,

N2(ν−2)/(ν−1) 2 < ν < 3,

O(1) ν < 2,

(15)

with logarithmic corrections in the marginal cases of
ν = 2, 3. For ν < 3, consensus arises quickly because
Neff is much less than N when the degree distribution is
sufficiently broad. Here, a few of high-degree nodes “con-
trol” many neighboring low-degree nodes, so the effective
number of independent voters is less than N .

Applying this same formalism to the IP, the consensus
time is

TN (ω−1) = −Neff [(1−ω−1) ln(1−ω−1)+ω−1 lnω−1] .
(16)

with Neff = Nµ1µ−1. For power-law degree networks, µ1

and µ−1 can be straightforwardly obtained to give

TN ∝ Neff ∼

{
N ν > 2,

N3−ν ν < 2,
(17)

with again a logarithmic correction for the marginal case
ν = 2. Thus the consensus time in the IP is linear in
N for ν > 2 and superlinear in N for µ < 2. Consen-
sus arises slowly because of the difficulty in changing the
opinions of agents on the very many low-degree nodes.

IV. BIASED DYNAMICS

What happens when the two states are inequivalent?
We may view state 1 as a mutant with fitness f > 1 that
invades a population of “residents” in state 0, each of
which has fitness f = 1. What is the fixation probability,
namely, the probability that a single fitter mutant over-
spreads the population? Such fixation underlies many
social and epidemiological phenomena (see e.g., [8–14]).

We implement biased dynamics for the VM as follows:

• Pick a voter with probability proportional to its
inverse fitness.
• The voter adopts the state of a random neighbor.

Thus a “weaker” voter is more likely to be picked and
be influenced by a neighbor. We may equivalently view
the inverse fitness as the death rate for a given voter.
Similarly, the evolution steps in the biased IP are:

• Pick an invader with probability proportional to its
fitness.
• The invader exports its state to a random neighbor.

A fitter mutant is thus more likely to spread its progeny.
In unbiased dynamics, we saw that high-degree nodes

strongly influence the fixation probability in the VM,
while low-degree nodes are more influential in the IP.
This trend is confirmed by Fig. 5, where the fixation
probability is proportional to the degree of the mutant
node in the VM and proportional to the inverse of this
degree in the IP.
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FIG. 5: Fixation probability of a single mutant on a node
of degree k in the configuration model with nk ∼ k−ν and
ν = 2.5, with N = 103 and µ1 = 8. Filled symbols correspond
to the VM with s = 0.01, (�), s = 0.02 (•) and s = 0.08 (N).
Open symbols correspond to IP dynamics with s = 0.004 (�),
s = 0.008 (◦) and s = 0.016 (4). The solid lines correspond
to the second of Eqs. (21) and (22).

To understand the fixation probability, let’s again con-
sider the simple example of the complete graph. The
raising and lowering operators in Eq. (5) now are

R(ρ) ≡ P[ρ→ ρ+ δρ] = ρ(1− ρ)

L(ρ) ≡ P[ρ→ ρ− δρ] =
1

f
ρ(1− ρ),

We now write the backward Kolmogorov equation for
E(ρ), the fixation probability to reach consensus when
the initial density of agents in state 1 equals ρ:

E(ρ) = R(ρ)E(ρ+δρ) + L(ρ)E(ρ−δρ)

+[1−R(ρ)−L(ρ)]E(ρ) , (18)

subject to the boundary conditions E(ρ = 0) = 0 and
E(ρ = 1) = 1. In analogy with Eq. (6), this equation
expresses the fixation probability as the appropriately
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weighted average of the fixation probabilities after a sin-
gle update step. In the following, we focus on the weak
selection limit, in which f = 1 + s, with s� 1. Expand-
ing (18) to second order in δρ gives

ρ(1− ρ)

[
s
∂E
∂ρ

+
1

N

∂2E
∂ρ2

]
= 0 . (19)

This coincides with the equation for the fixation proba-
bility to ρ = 1 for biased diffusion on the finite interval
[0, 1], with solution [5, 11]

E(ρ; sN) ' 1− e−sNρ

1− e−sN
. (20)

Here, we explicitly write the dependence of the fixation
probability on ρ as well as on a second natural variable
combination sN .

To obtain the fixation probability on a complex net-
work, we extend the two time-scale dynamics of the un-
biased VM to biased dynamics. Here the population
is again quickly driven to a homogeneous state where
ρk → ω for all k on a time scale of the order of 1. Once
this homogeneous state is reached, the new feature is that
consensus is driven by the bias, rather than by diffusive
fluctuations. Thus we are led to study the evolution of
〈ω〉, which, for s > 0, evolves as 〈ω̇〉 = s〈ω〉(1−〈ω〉). This
gives 〈ω〉 → 1 on a time scale of the order of s−1 � 1.

We now determine the fixation probability by applying
the same computational approach as that for the unbi-
ased VM: replace ρk by ω in all transition probabilities
and the derivative ∂

∂ρk
by knk

µ1

∂
∂ω . With these replace-

ments, the backward Kolmogorov equation for the fixa-
tion probability has the same form as Eq. (19), but with
N replaced by Neff = Nµ2

1/µ2 and ρ by ω. The fixation
probability for biased dynamics on a complex network is
then given by Eq. (20) with these replacements.

For a single mutant initially at a node of degree k,
ω = k/Nµ1. Substituting this into (20), we fine generally
that the fixation probability is proportional to k for all

s� 1 and has the limiting behaviors (Fig. 5):

E '

{
k/Nµ1 s� 1/Neff ;

k (sµ1/µ2) 1/Neff � s� 1.
(21)

In the complementary biased IP, the fixation probabil-
ity for a mutant initially on a node of degree k is inversely
proportional to the node degree:

E '

{
k−1/Nµ−1 s� 1/N ;

k−1(s/µ−1) 1/N � s� 1 .
(22)

V. SUMMARY

The venerable voter model played a central role in
probability theory and statistical physics because it is
one of the few exactly soluble many-particle interacting
systems in all spatial dimensions and because of the di-
versity of its applications. Putting the voter model on
a complex network—in which there is broad distribution
of node degrees—changes its dynamics in crucial ways.

A new dynamical conservation law—the degree-
weighted magnetization—gives the fixation probability
for the voter model and the invasion process on finite
networks. Another new feature is a two time-scale ap-
proach to consensus—first an initial quick approach to a
homogeneous state in which the density of 1s is the same
for nodes of any degree, after which diffusive fluctuations
drive the consensus. Consensus is achieved quickly in the
voter model when the degree distribution is sufficiently
broad, as high-degree nodes effectively “control” many
neighboring low-degree nodes. When one state is more
fit, there is again a two time-scale approach to consensus,
but with fitness selection driving ultimate consensus. As
a message for evolutionary dynamics, for a mutant to in-
filtrate a network most effectively, it is advantageous for
it to be on a high-degree node in the voter model and on
a low-degree node in the invasion process.
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