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Abstract. We study the voter model with a finite density of zealots—voters
that never change opinion. For equal numbers of zealots of each species, the
distribution of magnetization (opinions) is Gaussian in the mean-field limit, as
well as in one and two dimensions, with a width that is proportional to 1/

√
Z,

where Z is the number of zealots, independent of the total number of voters.
Thus just a few zealots can prevent consensus or even the formation of a robust
majority.
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1. Introduction

The voter model [1] is one of the simplest examples of cooperative behavior that has been
used as a paradigm for the dynamics of opinions in socially interacting populations. In
the voter model, each node of a graph is occupied by a voter that has two opinion states,
denoted as + and −. Opinions evolve by: (i) picking a random voter; (ii) the selected
voter adopts the state of a randomly chosen neighbor; (iii) repeat these steps ad infinitum
or until a finite system necessarily reaches consensus. Naively, one can view each voter
has having no self confidence and thus takes on the state of one of its neighbors. This
evolution resembles that of the Ising model with zero-temperature Glauber kinetics [2],
but with one important difference: in the Ising model, each spin obeys the state of the
local majority; in the voter model, a voter chooses a state with a probability that is
proportional to the number of neighbors in that state.

There are three basic properties of the voter model that characterize its evolution.
The first is the exit probability, namely, the probability that a finite system eventually
reaches consensus where all voters are in the + state, E+(ρ0), as a function of the initial
density ρ0 of + voters. Because the mean magnetization, defined as the difference in the
fraction of + and − voters (averaged over all realizations and histories), is conserved on
any degree-regular graph, and because the only possible final states of a finite system are
consensus, E+(ρ0) = ρ0 [1].

A second basic property is the mean time TN to reach consensus in a finite system of
N voters. For regular lattices in d dimensions, it is known that TN scales as N2 in d = 1,
as N lnN in d = 2, and as N in d > 2 [1, 3]. In contrast, TN generally scales sublinearly
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Figure 1. Time dependence of the magnetization for single realizations of 1000
voters on the complete graph for Z = 2 (black), 16 (red), and 128 zealots (blue).
Data were smoothed over a 1% range. Also shown are US presidential election
results (circles) from 1876 to 2004 (corresponding to t = 0 and 3000 respectively)
where the magnetization is defined as the difference in the vote fraction of the
top two candidates.

with N on heterogeneous graphs with broad degree distributions [4]. Defining μk as the
kth moment of the degree distribution, then TN ∼ Nμ2

1/μ2, which grows slower than
linearly in N for a sufficiently broad degree distribution. Finally, the 2-point correlation
function G2(r), defined as the probability that 2 voters a distance r apart are in the
same state, asymptotically decays as r2−d on a regular lattice when the spatial dimension
d > 2 [3, 5]. This decay is the same as that of the electrostatic potential of a point charge,
a correspondence that has proven useful in analyzing the voter model.

In this work, we investigate an extension of the voter model in which a small fraction
of the population are zealots—individuals that never change opinion. The effect of a
single zealot [6] or a small number of zealots [7] on primarily static properties of the voter
model has been studied previously, and considerable insight has been gained by exploiting
the previously mentioned electrostatic correspondence. The role of zealots has also been
investigated in a majority rule opinion dynamics model [8], where again equal densities of
zealots of each type prevent consensus from being achieved. One motivation for our work
is the obvious fact that consensus is not the asymptotic outcome of repeated elections in
democratic societies. One such example is the set of US presidential elections [9], where
the percentage of votes for the winner has ranged from highs of 61.05% (Johnson over
Goldwater 1964) and 60.80% (Roosevelt over Landon 1932) to lows of 47.80% (Harrison
minority winner over Cleveland 1888) and 47.92% (Hayes over Tilden 1876). In this
compilation, we exclude the votes of marginal candidates when there was substantial
voting to candidates outside the top two (figure 1).
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This example, as well as election results from many democratic countries, show in
an obvious way that consensus will never be achieved in large voting populations. This
fact motivates us to investigate an opinion dynamics model in which consensus is stymied
by the presence of zealots. Because of the competing influences of the zealots and the
tendency toward consensus by the voter dynamics, the magnetization fluctuates with time
in a manner that can be made to qualitatively mimic, for example, the US presidential
election results (figure 1). Upon averaging over a long time period, these time-dependent
fluctuations lead to a stationary magnetization distribution whose properties are the main
focus of this work.

The basic question that we wish to address in the voter model with a subpopulation
of zealots is: what is the nature of the global opinion as a function of the density of
zealots? One of our main results is that equal but very small numbers of zealots of both
types leads to a steady state with a narrow Gaussian magnetization distribution centered
at zero. Here the magnetization is simply the difference in the fraction of voters of each
species. Thus a small fraction of zealots is surprisingly effective in maintaining a steady
state with only small fluctuations about this state.

It should also be mentioned that there are a variety of simple and prototypical opinion
dynamics models, in which lack of consensus is a basic outcome, including the multiple-
state Axelrod model [10], the bounded compromise model of Weisbuch et al [11] and its
variants [12]. For these models, the consensus preventing feature typically is the absence
of interaction whenever two agents become sufficiently incompatible. As a function of
basic model parameters, the fraction of incompatible agents can grow, leading to cultural
fragmentation and an attendant steady or static opinion state.

In the next section, we define the model. Then in sections 3 and 4, we solve the model
in the mean-field limit and on a one-dimensional periodic ring. We then investigate the
behavior on the square lattice by numerical simulations in section 5 and find behavior that
is quantitatively close to that in the mean-field limit. Finally, we conclude and point out
some additional interesting features of the role of zealotry on the voter model in section 6.

2. The model

The population consists of N voters, with a fixed number of zealots that never change
opinion, while the remaining voters are susceptible to opinion change. Each voter can
be in one of two opinion states, +1 or −1 that we term ‘democrat’ and ‘republican’,
respectively. Thus the system consists of Z+ democrat and Z− republican zealots, as well
as N+ democrat and N− republican susceptibles. Each type of voter evolves as follows:

(1) susceptible democrats can become republicans;

(2) susceptible republicans can become democrats;

(3) zealot democrats are always democrats;

(4) zealot republicans are always republicans.

Each agent, whether a zealot or a susceptible, has the same persuasion strength that
we set to 1. That is, after a susceptible voter selects a neighbor, the voter is persuaded to
adopt the state of this neighbor with probability 1. Because the total population comprises
of agents in one of four possible states, we have N = N++N−+Z++Z−. Since the number
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of zealots is fixed, the total number of susceptible individuals S = N−Z+−Z− = N++N−
is also conserved. The dynamics is a direct generalization of voter model and consists of
the following steps:

(1) pick a random voter, if this voter is a zealot nothing happens;

(2) if the selected voter is a susceptible, then pick a random neighbor and adopt its state;
note that if the selected voter and the neighbor are in the same state, nothing happens
in the update;

(3) repeat steps 1 and 2 ad infinitum or until consensus is reached.

We will investigate this model on the two geometries of the complete graph, a natural
realization of the mean-field limit, and regular lattices. For the complete graph, all other
voters in the system are nearest neighbor to any voter. Thus the complete graph has no
spatial structure, a feature that allows for a simple solution. In contrast, when the voters
live on the sites of a regular lattice, a voter can be directly influenced only by its the
nearest neighbors.

3. Dynamics on the complete graph

On the complete graph, the state of the population may be characterized by the probability
P (N+, N−, t) of finding N± susceptible voters at time t. Since N− = S − N+, we merely
need to consider the master equation for P (N+, t), which reads

∂P (N+, t)

∂t
=

∑

δ=±1

P (N+ + δ, t)W (N+ + δ → N+) −
∑

δ=±1

P (N+, t)W (N+ → N+ + δ). (1)

The first term accounts for processes in which the number of susceptible democrats after
the event equals N+, while the second term accounts for the complementary loss processes
where N+ → N+ ± 1. Here W represents the rate at which transitions occur and is given
by

δt W (N+ → N+ + 1) =
N−(N+ + Z+)

N(N − 1)

δt W (N+ → N+ − 1) =
N+(N− + Z−)

N(N − 1)
.

(2)

The first line is the probability of choosing first a republican susceptible and then
a democrat (susceptible or zealot), for which a susceptible republican converts to a
susceptible democrat in the voter model interaction. We choose δt = N−1, so that,
on average, each agent is selected once at each time step.

While it is usually not possible to solve an equation of the form (1), analytical progress
can be achieved by considering a continuum N → ∞ limit of the master equation and
performing a Taylor expansion [13]. For this purpose, we introduce the rescaled variables
n ≡ N+/N , z± = Z±/N , and also s ≡ 1−z+−z− so that s−n ≡ N−/N . In the continuum
limit, the reaction rates now become

W (n → n + N−1) = N (s − n)(n + z+)

W (n → n − N−1) = N n(s − n + z−).
(3)
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Expanding (1) to the second order in the variable n, we find the following Fokker–Planck
equation [12], [14]–[17]:

∂P (n, t)

∂t
= − ∂

∂n
[α(n)P (n, t)] +

1

2

∂2

∂n2
[β(n)P (n, t)] , (4)

where (see e.g., chapter VII of [13])

α(n) =
∑

δn=±1/N

δn W (n → n + δn) = [z+s − n(1 − s)] ;

β(n) =
∑

δn=±1/N

(δn)2 W (n → n + δn) = [(n + z+)(s − n) + n(s + z− − n)]/N.

The first term on the right-hand side of equation (4) leads to the deterministic mean-
field rate equation ṅ(t) = α, with solution

n(t) =
z+s

1 − s
+

[
n(0) − z+s

1 − s

]
e−(1−s)t. (5)

Thus an initial density of susceptible democrats in an infinite system exponentially
relaxes to the steady-state value n∗ = z+s/(1 − s). Correspondingly, the magnetization
m = (N++Z+−N−−Z−)/N attains the steady-state value (z+−z−)/(z++z−). When the
number of agents is finite, however, finite-size fluctuations arise from the diffusive second
term on the right-hand side of equation (4). This term leads to a steady-state probability
distribution with a finite width that is centered at n∗. In what follows, we examine these
fluctuations around the mean-field steady state when N and Z± are both finite.

3.1. Stationary magnetization distribution

According to the Fokker–Planck equation (4), the stationary distribution P (n) obeys

α(n)P (n) − 1

2

∂

∂n
[β(n)P (n, t)] = 0, (6)

whose formal solution is

P (n) = Z
exp

(
2
∫ n

0
dn′ (α(n′)/β(n′))

)

β(n)
. (7)

Since the density n of agents in the state +1 ranges from 0 to s, the normalization constant
Z is obtained by requiring

∫ s

0
dn P (n) = 1. This condition gives

Z =

[∫ s

0

exp
(
2
∫ n

0
dn′ (α(n′)/β(n′))

)

β(n)
dn

]−1

.

We are particularly interested in the distribution of the magnetization P (m) in the
continuum limit, which directly follows from (7) through a simple change of variables.
We first consider the system with the same number of zealots of each type, and then the
asymmetric system with unequal numbers of zealots of each type.

doi:10.1088/1742-5468/2007/08/P08029 6
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3.2. Symmetric case: Z+ = Z− = Z

When the number of zealots of each species is equal, we write Z+ = Z− ≡ Z. The
rate equation (5) then gives an equal steady-state density of democrats and republicans,
n∗ = n+ = n− = s/2, corresponding to zero average magnetization, m∗ = 0. We
now compute the stationary distribution of magnetization by accounting for finite-size
fluctuations. When Z+ = Z− = Z, P (n) obeys equation (7) with

α(n) = z(1 − 2z − 2n),

β(n) = [(2n + z)(1 − 2z) − 2n2]/N.

Notice that α = (Nz/2)(dβ/dn), a feature that allows us to solve for the steady-state
magnetization distribution easily.

To perform the integral in equation (7), it is helpful to transform from n
to the magnetization m = (2n − s)/s which lies in [−1, 1]. We therefore find
exp(2

∫ n

0
dn′(α(n′)/β(n′))) = (1 + (2n(s − n)/zs))Nz. According to equation (7), this

leads to the following stationary distribution of susceptible democrats:

P (n) =
(zs + 2n(s − n))Nz−1

∫ s

0
dn (zs + 2n(s − n))Nz−1

. (8)

Using the fact that 2n(s − n) = s2(1 − m2)/2, we readily obtain the stationary
magnetization distribution:

P (m) =
(s−1 − m2)

Z−1

∫ 1

−1
dm (s−1 − m2)Z−1

. (9)

In the limit of large Z, we may then approximate the distribution by the Gaussian
P (m) ∝ e−m2/2σ2

, with σ2 = 1/[2s(Z − 1)].
When zealots are present in equal numbers, the magnetization distribution quickly

approaches a symmetric Gaussian, with a width that is inversely proportional to the
square root of the number of zealots and not the density. Thus as the system size is
increased, the density of zealots needed to keep the magnetization within a fixed range
goes to zero. In the limiting case where there is one zealot of each type, the magnetization
is uniformly distributed in [−1, 1] (figure 2). Finally notice that the distribution quickly
approaches the asymptotic scaling form when Z � 8 (inset to figure 2).

3.3. Asymmetric case: Z+ �= Z−

When the density of zealots of each type are unequal, we now have

α(n) = (z+ + n)s − n, (10)

β(n) = [(2n + z+)(s − n) + nz−]/N (11)

in equation (6). To compute P (n) (and equivalently P (m)), it is now convenient to
introduce the quantities δ ≡ z+ − z− and r ≡

√
δ2 + 4s. Noticing that one can

write α/β = [N(s − 1)(dβ/dn) + δ(1 + s)/4]/β, one can easily compute the integral in
equation (7) and thereby obtain P (n). Transforming from the density to the magnetization

doi:10.1088/1742-5468/2007/08/P08029 7
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Figure 2. Steady-state magnetization distributions for 1000 voters on the
complete graph for Z = 2, 8, 32, 128, and 512 zealots (progressively steepening
curves). The inset shows the scaled form of these distributions for Z ≥ 8; the
case Z = 8 slightly deviates from the rest of the distributions that become visually
coincident.

by n = (m + 1)s/2, we obtain the following expression for the stationary magnetization
distribution (figure 3):

ZP (m) = [1 − m(δ + ms)](Z++Z−−2)/2

[
1 +

r

ms − (r − δ)/2

](δ/2r) (2N−Z+−Z−)

. (12)

As in the symmetric case, Z is a normalization constant obtained by requiring that∫ 1

−1
dm P (m) = 1. Notice that P (m) is comprised of two terms. The first term gives

a Gaussian contribution (in the limit of large N) and is the analogue of equation (9).
The second term is a non-trivial contribution due to the asymmetry that is responsible
for the skewness of P (m) which remains peaked around m∗ = (z+ − z−)/(z+ + z−).
Close to this peak value, there is little asymmetry (i.e., δ 
 1). Additionally, for
a large number of zealots we may approximate the distribution (12) by the Gaussian
P (m) ≈ e−(m−m∗)2/2σ2

[1 + O((m − m∗)δ))], with σ2 = [s(Z+ + Z− − 2)]−1.

4. One dimension

We now turn to the one-dimensional system, where the behavior of the classical voter
model is quite different from that in the mean-field limit. When zealots are present,
however, we generically obtain a Gaussian magnetization distribution, as in the mean-
field case. We now derive the magnetization distribution—first for two zealots—and then
for an arbitrary number of zealots.
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Figure 3. Steady-state magnetization distributions on a complete graph of
1000 sites with unequal numbers of zealots. Shown left to right are the cases
of (Z+, Z−) = (90, 90), (120, 60), (135, 45), (144, 36), (162, 18). The results of
voter model simulations and the solution to the master equations are coincident.
The mean magnetization of the system equals the magnetization of the zealots:
m = (z+ − z−)/(z+ + z−).

Figure 4. A ring divided into two independent segments by oppositely oriented
zealots (thick lines). Also shown is the state of each voter and the domain wall
in each segment at long times (dotted lines).

4.1. Two zealots

Suppose that two zealots of opposite opinion are randomly placed on a periodic ring of
length L. The ring is thus split into two independent segments of lengths L1 and L2, with
L = L1 +L2 +2 (figure 4). We take the ring to be large so that we may write L ≈ L1 +L2.
As shown in figure 4, the voters in each segment coarsen and eventually there remains one
domain of + voters that is separated from one domain of − voters by a single domain wall.
Each domain wall performs a free random walk and the walk is reflected upon reaching
the end of its segment. A basic fact from the theory of random walks [18] is that each
domain wall is equiprobably located within the interval in the long-time limit. We now
exploit this property to determine the magnetization distribution.

doi:10.1088/1742-5468/2007/08/P08029 9
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Figure 5. (Top) Rays of fixed magnetization (dashed) for the case L1 < L2.
The probability for a given value of m is proportional to the length of the ray
corresponding to this m value within the unit square (solid). (Bottom) The
resulting magnetization distribution P<(m|L1, L2) for a given L1 and L1 < L2.

For interval lengths L1 and L2 and respective magnetizations m1 and m2, the
magnetization m of the entire ring is given by mL = m1L1 + m2L2. Thus a given value
of m is achieved if m1 and m2 are related by (figure 5)

m2 =
mL

L2
− m1L1

L2
. (13)

Then the probability P (m|L1, L2) for a system of two segments with lengths L1 and
L2 to have magnetization equal to m is proportional to the length of the ray defined by
equation (13) that lies within the unit square in the m1–m2 plane. As illustrated in figure 5,
the distribution P<(m|L1, L2), where the subscript < now signifies the range L1 < L2,
increases linearly with m for −1 < m < (L1 − L2)/L, is constant for (L1 − L2)/L < m <
(L2 − L1)/L, and then decreases linearly with m for (L2 − L1)/L < m < 1.

doi:10.1088/1742-5468/2007/08/P08029 10
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Figure 6. Comparison the analytic magnetization distribution for two zealots on
the ring (equation (15)) and simulation results (points).

Using this m dependence of P<(m|L1, L2) and also imposing normalization, we thus
find the magnetization distribution for fixed L1, L2 with L1 < L2 to be:

P<(m|L1, L2) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L2(1 + m)

4L1L2
−1 < m < L1−L2

L

L

2L2
|m| < L2−L1

L

L2(1 − m)

4L1L2

L2−L1

L
< m < 1.

(14)

The complementary distribution P>(m|L1, L2) for L1 > L2 is obtained from equation (14)
by interchanging the roles of L1 and L2.

Now we integrate over all values of L1 to find the configuration-averaged
magnetization distribution P (m). The details of this calculation are a bit tedious and
are given in appendix A. The final result is

P (m) =
1

L

[∫ L/2

0

P<(m|L1, L2) dL1 +

∫ L

L/2

P>(m|L1, L2) dL1

]

=

(
1 − |m|

2

)
ln

(
1 + |m|
1 − |m|

)
− ln

(
1 + |m|

2

)
. (15)

As shown in figure 6, the agreement between equation (15) and simulations is excellent.

4.2. Many zealots

We now study the magnetization distribution when many zealots are randomly distributed
on the ring, with the restriction of equal numbers of each type of zealot (Z+ = Z− = Z).
Two distinct possibilities can arise:

doi:10.1088/1742-5468/2007/08/P08029 11

http://dx.doi.org/10.1088/1742-5468/2007/08/P08029


J.S
tat.M

ech.
(2007)

P
08029

On the role of zealotry in the voter model

(1) A segment of consecutive susceptible voters is surrounded by two zealots of the same
sign. With voter model dynamics, these segments eventually align with the state of
the confining zealots so that the segment freezes.

(2) A segment of consecutive susceptible voters is surrounded by two zealots of opposite
opinion. Eventually a single domain wall remains that diffuses freely within the
segment.

We first consider the simpler case where equal numbers of + and − zealots are
randomly but alternately placed around the ring so that no frozen segments arise. The
segment lengths {Li} with i = 1, 2, . . . , Z, obey the constraint

∑
i Li = L (ignoring the

space occupied by the zealots themselves).
To find the magnetization distribution, we map the state of the voters onto an

equivalent random walk as follows. In a segment of length Li, the difference in the
number of + and − voters at long times is uniformly distributed in [−Li, Li]. We
define this difference as the unnormalized magnetization Mi. We now make the following
approximations that apply when L, Z → ∞ such that each Li is also large. In this limit,
we may assume that each Li is independent and identically distributed. As a result, the
sum of the unnormalized magnetizations over all intervals is equivalent to the displacement
of a random walk of Z steps with each step uniformly distributed in [−Li, Li].

To solve this random walk problem, we use the basic fact that the Fourier transform
for the probability distribution of the entire walk P(k) is simply the product of the Fourier
transforms of the single-step distributions [5, 18]. Since the Fourier transform of a uniform
single-step distribution over the range [−Li, Li] is (sin kLi)/kLi, we then have

P(k) =

Z∏

i=1

sin kLi

kLi
. (16)

Since we are interested in the asymptotic limit where the unnormalized magnetization
becomes large, we study the limit of P(k) for small k. Thus we expand each factor in
P(k) in a Taylor series to first order, and then re-exponentiate to yield

P(k) ≈
Z∏

i=1

(1 − k2L2
i /6)

∼ 1 −
Z∑

i

k2L2
i /6 ∼ e−k2

∑
i L2

i /6.

We now invert this Fourier transform to give the distribution of the unnormalized
magnetization

P (M) =
1

2π

∫
e−k2

∑
i L2

i /6 e−ikM dk

=
1√

2πσ2
M

e−M2/2σ2
M , (17)

with σ2
M =

∑
i L

2
i /3.
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What we want, however, is the magnetization distribution; this is related to P (M)
by P (m) dm = P (M) dM . We thus find

P (m) =
1√

2πσ2
m

e−m2/2σ2
m , (18)

where σ2
m =

∑
i L

2
i /3L2. If the number of intervals is large, then each Li is approximately

L/Z, from which we obtain σ2
m ≈ 1/3Z. (The result σ2

m = 1/3Z is exact if all interval
lengths are equal.) As in the mean-field limit, the width of the magnetization distribution
is controlled by the number of zealots and not their concentration, so that a small number
of zealots is effective in maintaining the magnetization close to zero.

A similar approach applies in the case where the spatial ordering of the zealots is
uncorrelated. In this case, approximately half of all segments will be terminated by
oppositely oriented zealots and half by zealots of the same species. For the latter type
of segments, the unnormalized magnetization will equal ±Li equiprobably. Under the
assumption that exactly half of the segments are frozen and half contain a single freely
diffusing domain wall, the analogue of equation (16) is

P(k) =

Z/2∏

i=1

sin kLi

kLi

Z/2∏

i=1

cos kLi. (19)

The second product accounts for frozen segments in which the unnormalized magnetization
equals ±Li equiprobably. For these segments the Fourier transform of the single-step
probability for a random walk whose steps length are ±Li equals cos kLi. Following
the same steps that led to equation (18), we again obtain a Gaussian magnetization
distribution, but with σ2

m given by σ2
m =

∑
i 2L

2
i /3L2 → 2/3Z.

5. Two dimensions

In the classical voter model, the two-dimensional system is at the critical dimension so
that its behavior deviates from that of the mean-field system by logarithmic corrections.
In the presence of zealots, however, the behaviors in two dimensions and in mean field are
quite close, as illustrated in figure 7.

Our results for two dimensions are based on numerical simulations. In our simulations,
we pick a random voter and apply the update rules of section 2. The unit of time is defined
so that a time increment dt = 1 corresponds to N update events, so that each voter is
updated once on average. The system is initialized with each voter equally likely to be in
the + or the − states. From the N+ voters in the + state, Z+ of them are designated as
zealots, and similarly for voters in the − state. After the system reaches the steady state,
we measure steady-state properties at time intervals ΔT . The delay time T to reach the
steady state depends on the lattice dimension and the zealot density, while ΔT is the
correlation time for the system in the steady state. By making measurements every ΔT
steps, we obtain data for effectively uncorrelated systems. Typically, for a given initial
condition, we made 100 measurements and then averaged over many configurations of
zealots.

The resulting data for the magnetization distribution is typically noisy, and we
employ a Gaussian averaging of nearby points to smooth the data. If mi denotes the
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Figure 7. Comparison of simulations for the magnetization distribution in two
dimensions (dashed) with the mean-field results (solid curves). The simulations
are for 1000 voters with 2, 8, 32, 128 and 512 total zealots, with equal numbers of
each type.

ith magnetization value, then the smoothed magnetization distribution at mi is defined
as

P (mi) =
1√
πd2

d∑

k=−d

P (mi+k) e−(k/d)2 ,

where the sum includes the initial point, as well as the d points to the left and to the right
of the initial point, with d typically in the range 20–40. Such a smoothed distribution
is the quantity that is actually plotted in figures 2, 3, 7, and in the spatially averaged
distribution in figure 8.

6. Discussion

We have shown that a small number of zealots in a population of voters is quite effective
in maintaining a steady state in which consensus is never achieved. When there are equal
numbers of zealots of each type, the steady-state fraction of democrats and republicans
equals 1/2; equivalently, the magnetization equals zero. For unequal densities of the two
types of zealots, the steady-state magnetization is simply m∗ = (Z+ − Z−)/(Z+ + Z−),
where Z+ and Z− are the number of zealots of each type. The magnetization distribution
is generically Gaussian, P (m) ∝ e−(m−m∗)2/2σ2

, with σ ∝ 1/
√

Z, and Z = Z+ + Z− is the
total number of zealots. A Gaussian magnetization distribution arises universally in one
dimension, on the square lattice (two dimensions), and on the complete graph (mean-field
limit). One basic consequence of this distribution is that as the total number of voters N
increases, the fraction of zealots needed to keep the magnetization less than a specified
level vanishes as 1/

√
N .
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Figure 8. Comparison of simulations for the magnetization distribution in
two dimensions when the two zealots are adjacent (curve with peaks near
±1), maximally separated (dots), and averaged over many different zealot
configurations (dashed).

There are several additional aspects of the influence that zealots have on the voter
model that are worth pointing out. Although the time to reach consensus is infinite
because this state can never be achieved, one can ask for the time until a specified plurality
is first achieved. Equivalently, we can ask for the probability that the magnetization first
reaches a value m, when the system is initialized with m = m0. From the above generic
Gaussian form of the magnetization distribution, we expect that the mean time for a
symmetric system to first reach a magnetization m will thus scale as eam2Z , where a is
a constant of order one. Thus one must wait an extremely long time before the system
achieves even a modest deviation away from the zero-magnetization state when the number
of zealots becomes appreciable. Perhaps this trivial fact is the underlying reason why so
many democratic countries are characterized by small majorities in governance.

Another interesting feature is the role of the zealots’ spatial positions on the steady
state. For example, if there are only two zealots that are adjacent, one might expect that
the effect of this ‘dipole’ would be weaker than that of two separated monopoles. This
is precisely the effect that is observed in figure 8. When the two zealots are adjacent,
their effects are substantially screened and the magnetization distribution is peaked near
m = ±1. That is, the voters show a preference for consensus in spite of the zealots. On
the other hand, when the zealots are maximally separated, the magnetization distribution
is close to the distribution that arises when averaging over possible positions of the two
zealots.

Zealots are also quite effective in reducing the total number of opinion changes in the
system. If the population is close to zero magnetization, each voter typically has equal
numbers of neighbors of each type. If the voters are not strongly correlated, each voter
would change its state at a rate that is approximately equal to 1/2. However, simulations
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on the square lattice show that the flip rate of each susceptible voter is considerably
smaller. For example, for 1000 voters with 10 zealots (5 of each type), the rate of opinion
changes of the susceptibles is around 1/5 and this rate decreases as the density of zealots
decreases.

Finally, a slight embellishment of our model could apply to real voting patterns in a
democracy with strong regional differences. Here it is natural to partition a population
into enclaves, with an imbalance of one type of zealot over the other in each enclave. Such
a spatial distribution would correspond to red (republican) and blue (democrat) states in
the parlance of US electoral politics. It would be interesting to study if such an extension
can actually account for election results.
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Appendix. Magnetization distribution for two zealots

We want to compute the integral

P (m) =
1

L

[∫ L/2

0

P<(m|L1, L2) dL1 +

∫ L

L/2

P>(m|L1, L2) dL1

]
. (A.1)

Since P<(m|L1, L2) and P>(m|L1, L2) have different forms in different parts of the interval
[−1, 1], each of the above integrals needs to be split into two parts. For P<(m|L1, L2)
and assuming that m > 0, the linear ramp part of the probability distribution needs
to be used for (L2 − L1)/L < m, which translates for L1 > L(1 − m)/2. Similarly, for
P>(m|L1, L2) and again for m > 0, the linear ramp must be used when (L1 −L2)/L < m,
or L1 < L(1 + m)/2. Thus the above integral becomes

P (m) =
1

L

[∫ (L/2)(1−m)

0

L dL1

2(L − L1)
+

∫ L/2

(L/2)(1−m)

(1 − m)L2 dL1

4L1(L − L1)

+

∫ (L/2)(1+m)

L/2

(1 − m)L2 dL1

4L1(L − L1)
+

∫ L

(L/2)(1+m)

L dL1

2L1

]
. (A.2)

Each of these integrals is then elementary. We also obtain the result for m < 0 by reflecting
the result of the above integral about m = 0 to give equation (15).

Note added. As this manuscript was being written, we became aware of a very recent eprint by Chinellato et al
[19]; they study essentially the same model as in this work, but with a somewhat different focus than ours.
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