Coarsening & Freezing in the Kinetic Ising Model

collaborators: P. Krapivsky, V. Spirin

Basic question: What is the final state of the Ising-Glauber model @ T=0 with symmetric initial conditions?

We might expect: Ground state is approached as $t \rightarrow \infty$

Basi	ic	resu	lts:	

Ι.

dimension	expectation	
Ι	correct	
2	correct "sort of"	
>2	wrong	

2. Multiscale relaxation, freezing, & related strange features

The System

Ising Hamiltonian
$$\mathcal{H} = -\sum_{\langle i,j \rangle} \sigma_i \sigma_j$$
 $\sigma_i = \pm 1$ Initial state: \uparrow with probability p \downarrow with probability $1 - p$

Lattice: even co-ordination number, periodic boundaries

Dynamics: Glauber at T=0: Pick a random spin and consider outcome of a reversal

- if $\Delta E < 0$ do it
- if $\Delta E > 0$ don't do it
- if $\Delta E = 0$ do it with prob. 1/2

Results in d=1

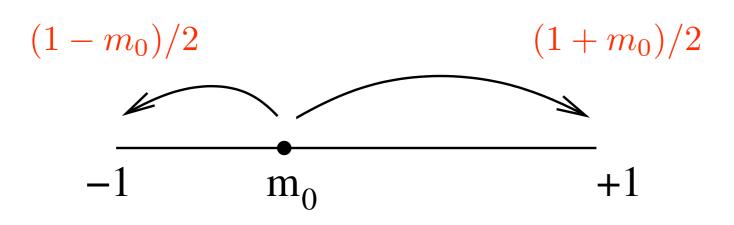
Equation of motion at T=0 (with Glauber kinetics):

$$\dot{s}_{j} = -s_{j} + \frac{1}{2}(s_{j-1} + s_{j+1}), \quad \text{where } s_{j} = \langle \sigma_{j} \rangle$$

Hence
$$\langle \dot{m} \rangle = \sum_{j} \dot{s}_{j} = 0 \quad \rightarrow \quad \langle m \rangle \text{ conserved}$$

 $m \text{ diffuses}$

Pictorial representation:



ultimate hitting probabilities

Summary of results in d=2

Final state:

 $\begin{cases} \text{ground state} & \text{prob.} \approx 2/3 \\ \text{stripe} & \text{prob.} \approx 1/3 \end{cases}$

Survival probability: 2 time scales!

$$M_k \equiv \langle t^k \rangle^{1/k} \\ \sim \begin{cases} L^{3.5} & k > 1 \\ L^{2^+} & k < 1 \end{cases}$$

Energy evolution:

$$E(t) \sim t^{-1/2}$$

$$n_E(t) \sim t^{-\mu(E)}$$

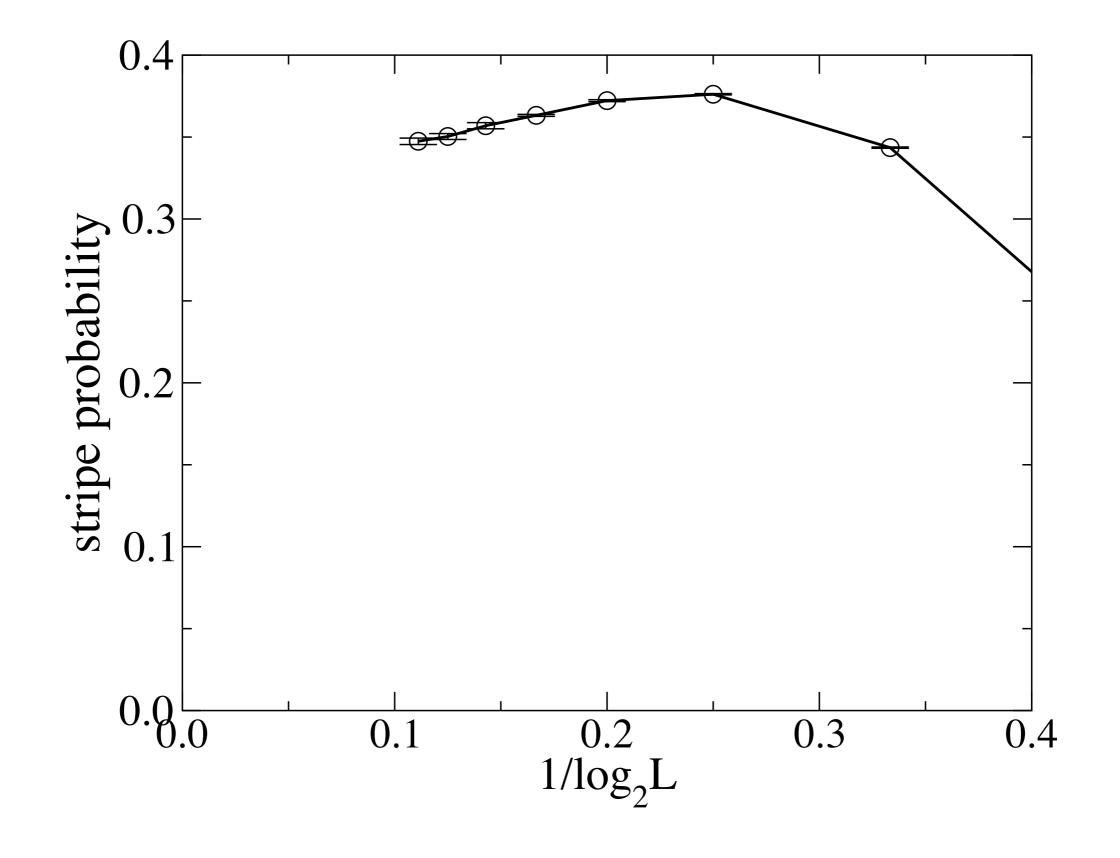
$$\mu(+4) \approx 2.1$$

$$\mu(+2) \approx 1.4$$

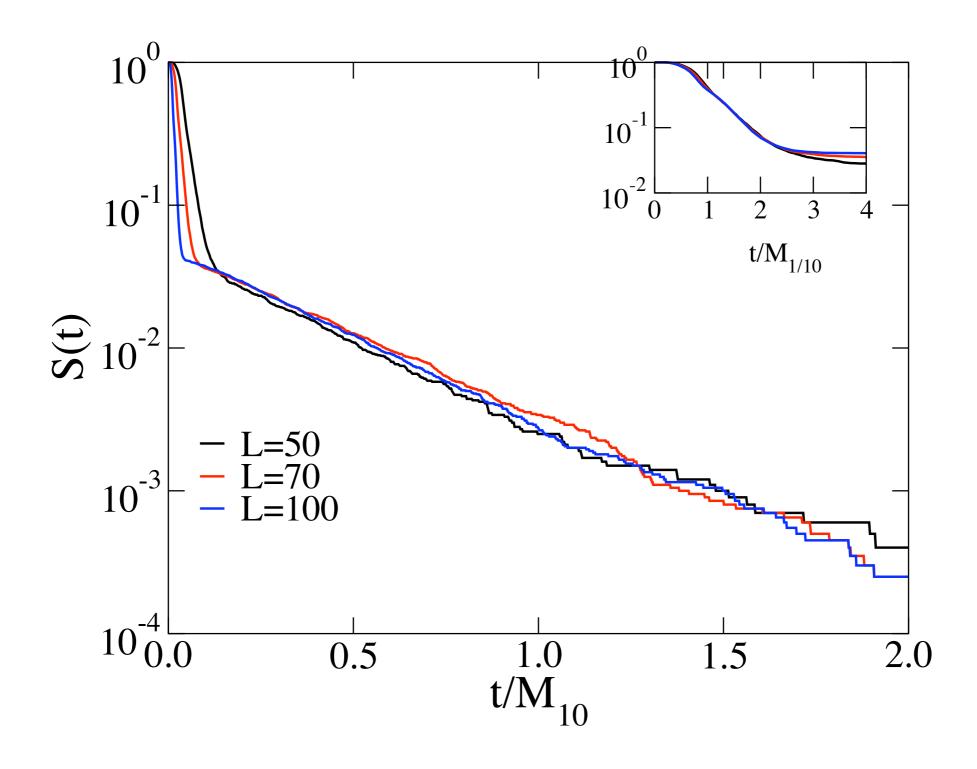
$$\mu(0) \approx 0.5$$

$$\mu(-2) \approx 0.45$$

Final state in 2d: stripes



Survival probability: two time scales

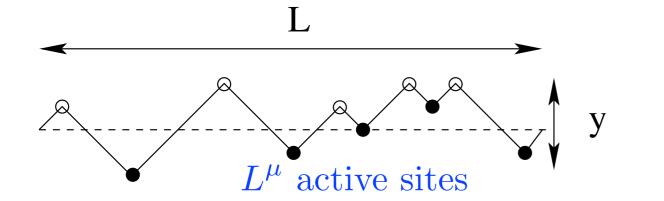


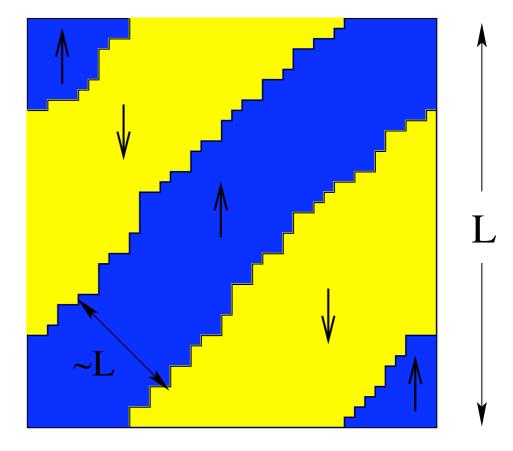
Understanding the two time-scale relaxation

We observe: 95% short-lived, 5% long lived!

Why? Diagonal stripe!

Diagonal stripe dynamics: (Plischke et al 87)

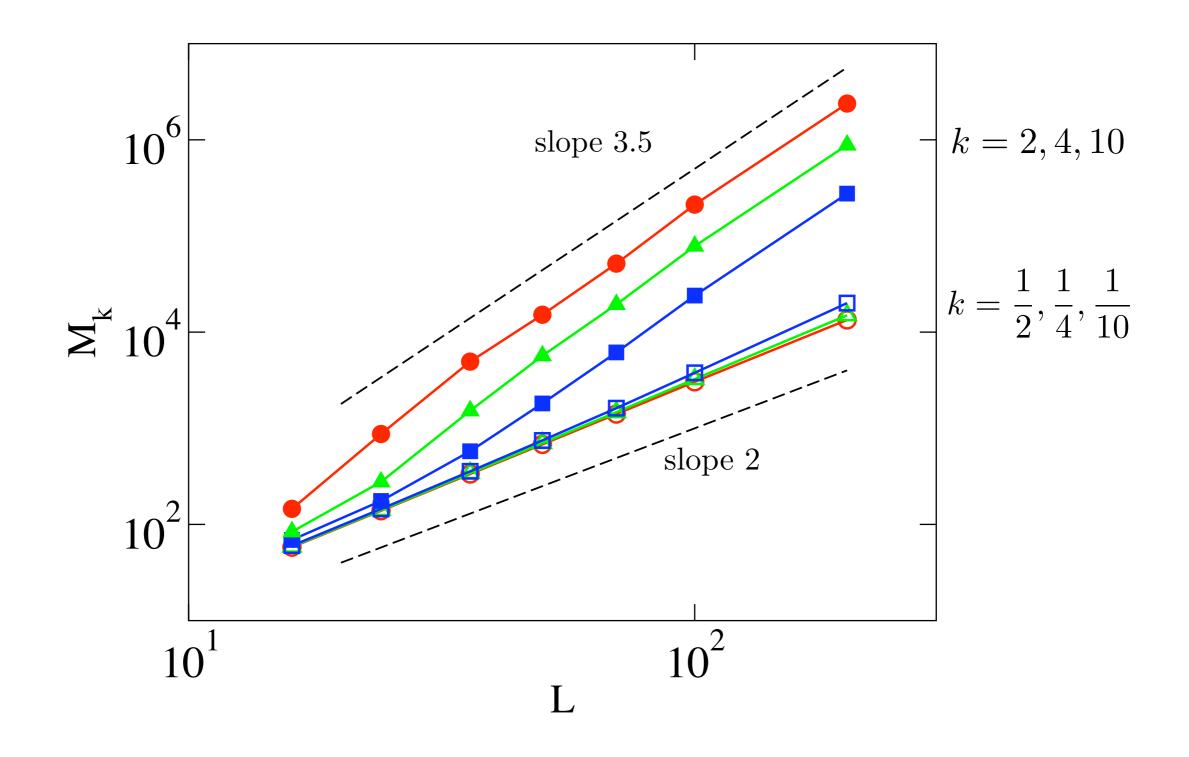




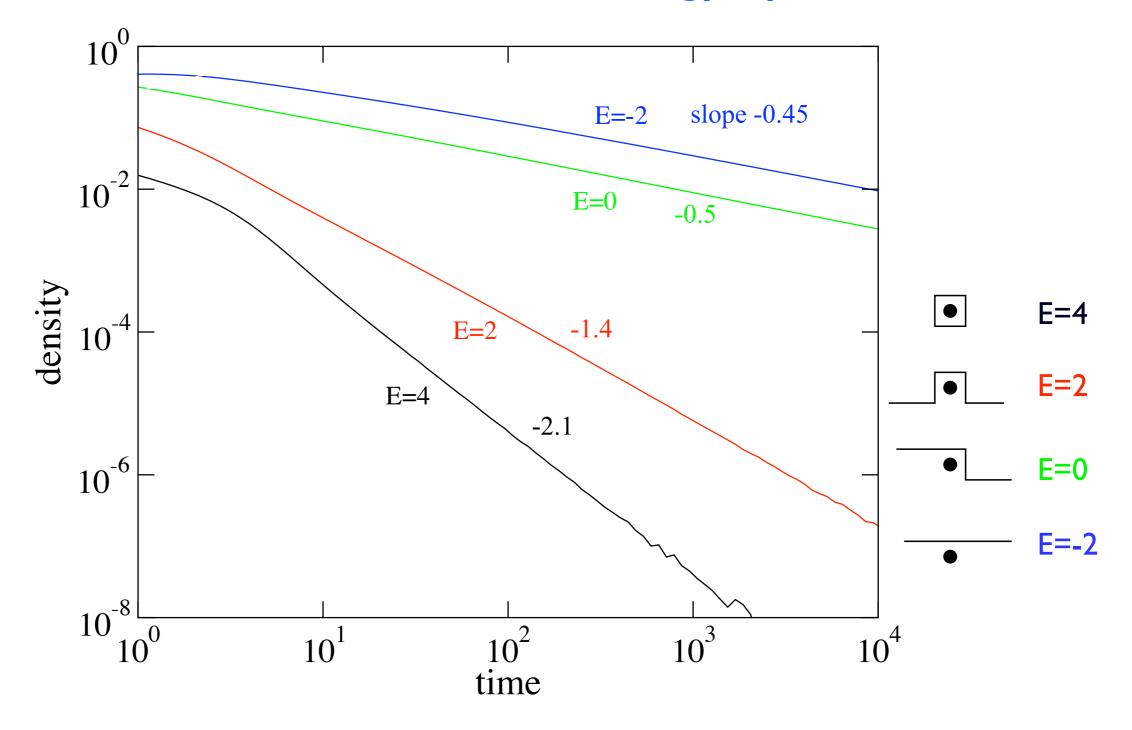
 $\Delta t = 1, \quad L^{\mu} \text{ events} \quad \rightarrow \quad \Delta y_{\rm cm} \sim L^{\mu/2}/L$ $\rightarrow \quad D(L) \sim L^{\mu-2}$

survival time $\tau \sim L^2/D \sim L^{4-\mu}$ but $\mu = 1/2$ $\sim L^{3.5}$

Multiscaling in moments of the stopping time

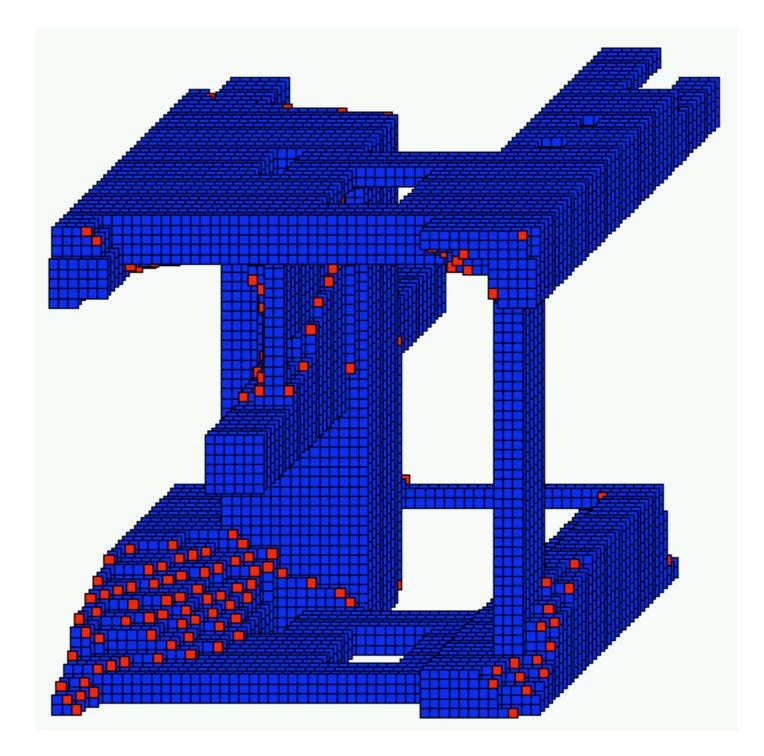


Densities of fixed-energy spins

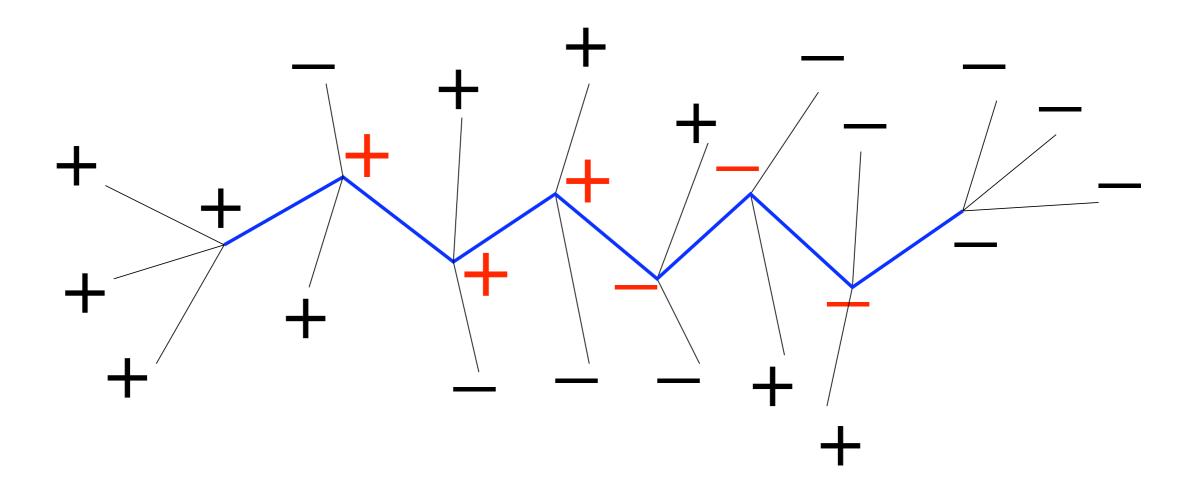


Higher dimensions: Ground state (almost) never reached!

Final "sponge" state in 3d:

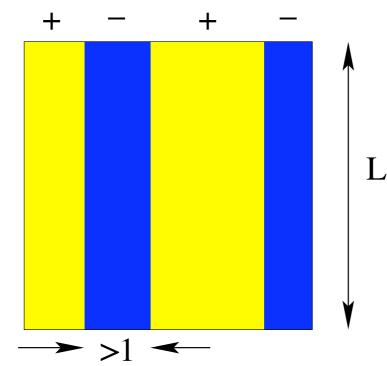


Schematic of blinker states



Why does the system get stuck?

d=2: stripe packing

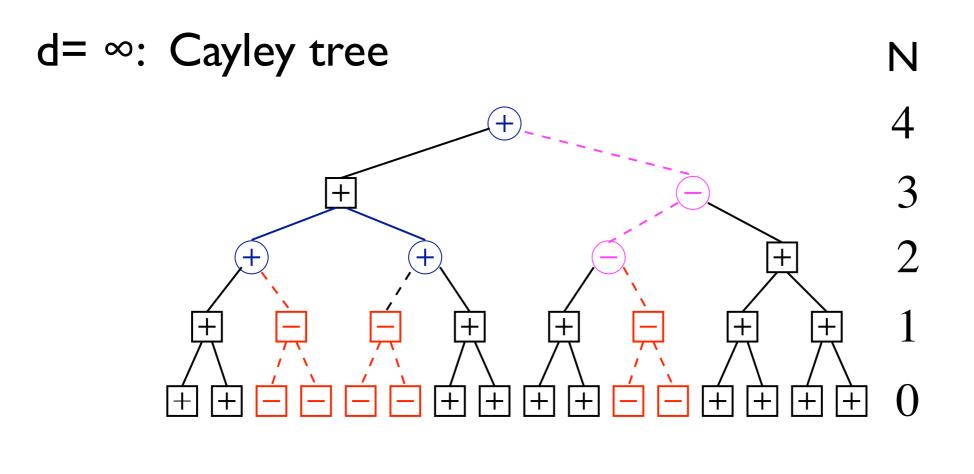


Proliferation of metastable states as d increases.

$$M_L \sim e^{aL} \sim e^{aV^{1/2}}$$

d=3: filament packing

$$M_L \sim e^{bL^2} \sim e^{bV^{2/3}}$$



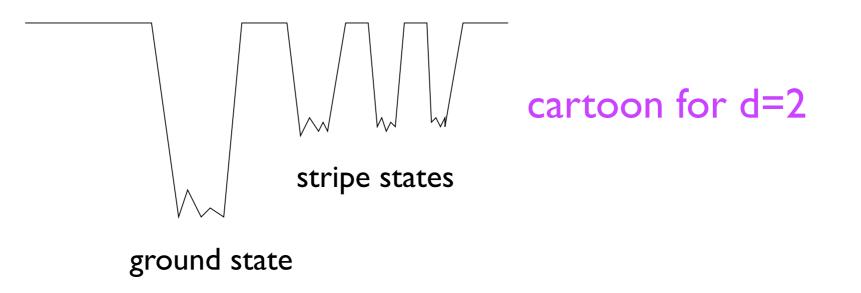
Recursion formulae for degeneracy

$$\bigcirc \qquad U_{N+1} = 2D_N \times \frac{1}{2}D_N = D_N^2 \qquad \text{undetermined}$$
$$\square \qquad D_{N+1} = \frac{1}{2}D_N^2 + \frac{1}{2}U_N^2 + 2D_N U_N \quad \text{determined}$$

 $\rightarrow \ln M_{\mathcal{N}} \sim \ln(U_N + D_N) = \text{const.} \times \mathcal{N}$

Conclusions & Outlook

I. Even the simplest Ising model has a complex evolution landscape



2. How to characterize & quantify frozen states in d=2 & d>2?

3. What happens for non-symmetric initial conditions?