Social Balance on Networks:
 The Dynamics of Friendship and Hatred
 T.Antal, P. L. Krapivsky, and S. Redner (Boston University)
 PRE 72, 036I2I (2005)
 Dyonet06, Dresden, February I7, 2006

Basic question:

How do social networks evolve when both friendly and unfriendly relationships exist?
Partial answer: (Heider 1944, Wasserman \& Faust 1994)
Social balanced defined; balanced states on a complete graph must be either paradise or bipolar.
This work:
Endow a network with the simplest dynamics and related work: investigate evolution of relationships. Kulakowsi et al.
Main result:
Dynamical phase transition between bipolarity and paradise.

Socially Balanced States

Social Balance

a friend of my friend is my friend; an enemy of my enemy is my friend; a friend of my enemy is my enemy; an enemy of my friend is my enemy.

Local Triad Dynamics on Arbitrary Networks

 (social graces of the clueless)I. Pick a random imbalanced (frustrated) triad
2. Reverse a single link so that the triad becomes balanced probability p: unfriendly \rightarrow friendly; probabilityl-p: friendly \rightarrow unfriendly

Fundamental parameter p :
$p=1 / 3$: flip a random link in the triad equiprobably
$\mathrm{p}>1 / 3$: predisposition toward tranquility
$\mathrm{p}<1 / 3$: predisposition toward hostility

Triad Evolution on the Complete Graph

Basic graph characteristics:
N nodes
$\frac{N(N-1)}{2}$ links
$\frac{N(N-1)(N-2)}{6}$ triads
$\rho=$ friendly link density
$n_{k}=$ density of triads of type k
$n_{k}^{ \pm}=$density of triads of type k attached to a \pm link

positive link

Triad Evolution on the Complete Graph

$n_{k}=$ density of triads of type k
$n_{k}^{ \pm}=$density of triads of type k attached to a \pm link

$$
\begin{aligned}
& \pi^{+}=(1-p) n_{1} \quad \text { flip rate }+\rightarrow- \\
& \therefore \stackrel{1-p}{\rightarrow}
\end{aligned}
$$

Master equations:

$$
\begin{aligned}
& \Delta_{1} \rightarrow \Delta_{0} \quad \Delta_{0} \rightarrow \Delta_{1} \\
\frac{d n_{0}}{d t} & =\pi^{-} n_{1}^{-}-\pi^{+} n_{0}^{+} \\
\frac{d n_{1}}{d t} & =\pi^{+} n_{0}^{+}+\pi^{-} n_{2}^{-}-\pi^{-} n_{1}^{-}-\pi^{+} n_{1}^{+} \\
\frac{d n_{2}}{d t} & =\pi^{+} n_{1}^{+}+\pi^{-} n_{3}^{-}-\pi^{-} n_{2}^{-}-\pi^{+} n_{2}^{+} \\
\frac{d n_{3}}{d t} & =\pi^{+} n_{2}^{+}-\pi^{-} n_{3}^{-}
\end{aligned}
$$

Steady State Solution

$$
\begin{array}{ll}
\frac{d n_{0}}{d t}=\pi^{-} n_{1}^{-}-\pi^{+} n_{0}^{+}, & \text {impose } \dot{n}_{i} \text { and } \pi^{+}=\pi^{-} \\
\frac{d n_{1}}{d t}=\pi^{+} n_{0}^{+}+\pi^{-} n_{2}^{-}-\pi^{-} n_{1}^{-}-\pi^{+} n_{1}^{+}, & \text {gives } n_{k}^{+}=n_{k+1}^{-} \\
\frac{d n_{2}}{d t}=\pi^{+} n_{1}^{+}+\pi^{-} n_{3}^{-}-\pi^{-} n_{2}^{-}-\pi^{+} n_{2}^{+}, & \text {finally, use } n_{k}^{ \pm}=\left\{\begin{array}{l}
\frac{(3-k) n_{k}}{3 n_{0}+2 n_{1}+n_{2}} \\
\frac{d n_{3}}{d t}=\pi^{+} n_{2}^{+}-\pi^{-} n_{3}^{-} .
\end{array}\right.
\end{array}
$$

$$
\begin{aligned}
& n_{j}=\binom{3}{j} \rho_{\infty}^{3-j}\left(1-\rho_{\infty}\right)^{j}, \\
& \rho_{\infty}= \begin{cases}1 /[\sqrt{3(1-2 p)}+1] & p \leq 1 / 2 \\
1 & p \geq 1 / 2\end{cases}
\end{aligned}
$$

Steady State Triad Densities

steady state only for $p \leq 1 / 2$

The Evolving State

rate equation for the friendly link density:

$$
\begin{aligned}
& -\rightarrow+\text { in } \Delta_{1} \\
\frac{d \rho}{d t} & =3 \rho^{2}(1-\rho)[p-(1-p)]+(1-\rho)^{3} \\
& =3(2 p-1) \rho^{2}(1-\rho)+(1-\rho)^{3} \\
\rho(t) & \sim\left\{\begin{array}{lll}
\rho_{\infty}+A e^{-C t} & p<1 / 2 ; & \begin{array}{l}
\text { in } \Delta_{1} \Delta_{3} \\
\text { frustid onset of }
\end{array} \\
1-\frac{1-\rho_{0}}{\sqrt{1+2\left(1-\rho_{0}\right)^{2} t}} & p=1 / 2 ; & \begin{array}{l}
\text { slow relaxation } \\
\text { to paradise }
\end{array} \\
1-e^{-3(2 p-1) t} & p>1 / 2 . & \begin{array}{l}
\text { rapid attainment } \\
\text { of paradise }
\end{array}
\end{array}\right.
\end{aligned}
$$

Fate of a Finite Society

$\mathrm{p}<1 / 2$: effective random walk picture

balance

$$
\rightarrow T_{N} \sim e^{v \mathcal{L}_{N} / D} \sim e^{N^{2}}
$$

$\mathrm{p}>\mathrm{I} / 2$: inversion of the rate equation

$$
\begin{aligned}
& u \sim e^{-3(2 p-1) t} \approx N^{-2} \rightarrow T_{N} \sim \frac{\ln N}{2 p-1} \\
& u=I-\rho \text { is the density of unfriendly links }
\end{aligned}
$$

$\mathrm{p}=1 / 2$
naive rate equation estimate:

$$
u \equiv 1-\rho \propto t^{-1 / 2} \approx N^{-2} \quad \rightarrow T_{N} \sim N^{4}
$$

incorporating fluctuations as balance is approached:

$$
\begin{aligned}
U & =L u+\sqrt{L} \eta \\
& \sim \frac{L}{\sqrt{t}}+\sqrt{L} t^{1 / 4}
\end{aligned}
$$

equating the 2 terms in U :

$$
T_{N} \sim L^{2 / 3} \sim N^{4 / 3}
$$

Simulations for a Finite Society

$$
p<\frac{1}{2}, \quad T_{N} \sim e^{N^{2}}
$$

$$
p=\frac{1}{2}, \quad T_{N} \sim N^{4 / 3}
$$

z

$$
p>\frac{1}{2}, \quad T_{N} \sim \frac{\ln N}{2 p-1}
$$

Constrained (Socially Aware) Triad Dynamics

I. Pick a random imbalanced (frustrated) triad
2. Reverse a random link $(p=1 / 3)$ to eliminate a frustrated triad only if the total number of frustrated triads does not increase

Outcome: Quick approach to a final static state Typically: $T_{N} \sim \ln N$

Final state is almost always balanced even though jammed states are much more numerous.

Jammed state: Imbalanced triads exist, but any update only increases the number of imbalanced triads.

Final Clique Sizes

Origin of the Balance/ParadiseTransition

First consider evolution of an uncorrelated network: for $+\rightarrow-$

we need:

$$
\underbrace{n_{1}^{+}+n_{3}^{+}}_{\text {frustrated }}>\underbrace{n_{0}^{+}+n_{2}^{+}}_{\text {unfrustrated }}, \text { with } \vec{n}_{+}=\left[\rho^{2}, 2 \rho(1-\rho),(1-\rho)^{2}, 0\right]
$$

$\rightarrow 1-4 \rho(1-\rho)<0$, impossible, so + links never flip
for $\rightarrow+$

we need:

$$
\underbrace{n_{1}^{-}+n_{3}^{-}}_{\text {frustrated }}>\underbrace{n_{0}^{-}+n_{2}^{-}}_{\text {unfrustrated }}, \text { with } \vec{n}_{-}=\left[0, \rho^{2}, 2 \rho(1-\rho),(1-\rho)^{2}\right]
$$

$$
\rightarrow 1-4 \rho(1-\rho)>0, \text { valid when } \rho \neq 1 / 2
$$

Conclusion: only negative links flip, except when $\rho \rightarrow 1 / 2$
flow diagram for ρ :

Instability near $\rho=1 / 2$

intraclique relationship evolution

for $\rightarrow \rightarrow+$, we need:

$$
\underbrace{n_{1}^{-}+n_{3}^{-}}_{\text {frustrated }}>\underbrace{n_{0}^{-}+n_{2}^{-}}_{\text {unfrustrated }}, \text { with } \vec{n}_{-}= \begin{cases}{\left[0, \rho_{i}^{2}, 2 \rho_{i}\left(1-\rho_{i}\right),\left(1-\rho_{i}\right)^{2}\right]} & \text { intraclique } \\ {\left[0, \beta^{2}, 2 \beta(1-\beta),(1-\beta)^{2}\right]} & \text { interclique }\end{cases}
$$

$\rightarrow C_{1}\left[1-4 \rho_{i}\left(1-\rho_{i}\right)\right]+C_{2}[1-4 \beta(1-\beta)]>0$, always true negative intraclique links disappear increased cohesiveness within cliques

interclique relationship evolution

for $+\rightarrow-$, we need:
$\underbrace{n_{1}^{+}+n_{3}^{+}}_{\text {frustrated }}>\underbrace{n_{0}^{+}+n_{2}^{+}}_{\text {unfrustrated }}$, with $\vec{n}_{+}=\left[\beta \rho_{i}, \beta\left(1-\rho_{i}\right)+\rho_{i}(1-\beta),(1-\beta)\left(1-\rho_{i}\right), 0\right]$
$\rightarrow\left[C_{1}\left(2 \rho_{1}-1\right)+C_{2}\left(2 \rho_{2}-1\right)\right](1-2 \beta)>0$, true if $\rho_{1}, \rho_{2}>1 / 2, \beta<1 / 2$
positive interclique links disappear increased emnity between cliques

A Historical Lesson

3 Emperor's League I872-8।

Triple Alliance I882

German-Russian Lapse I890
French-Russian Alliance I89I-94

Entente Cordiale I904

British-Russian Alliance I907

Summary \& Outlook

If we can't all love each other \rightarrow social balance
Local triad dynamics:
finite network: social balance, with the time until balance strongly dependent on P
infinite network: phase transition between paradise and social balance at $\mathrm{p}=1 / 2$
Global triad dynamics ($p=1 / 3$):
jammed states possible but never occur
infinite network: two cliques always emerge, with paradise when $\rho_{0} \cong 0.65$ (rough argument gives $\rho_{0}=1 / 2$)
Open questions:
incomplete graphs, indifference, continuous interactions asymmetric relations
allow \therefore

