Smoothing Rocks by Chipping

P. L. Krapivsky and SR

PRE 75, xxxx (2007), cond-mat/06|l4I5
NSF grants CHE0532969 (PLK) and DMR0535503 (SR).
2007 APS March Meeting

Basic question: inspired by Durian et al., PRL 97, 028001 (2006);
What is the shape of rocks as they erode?
Aristotle:
Rounding by faster erosion at exposed corners.
Main result:
Final shape not round as found by Durian et al.

Doug Durian's Erosion Machine

Evolution of a Square Rock

What should we expect?

If $v_{\text {interface }} \propto$ local curvature,

$$
\begin{array}{r}
\rightarrow \text { circular final shape for } d=2 \\
\text { (not true for } d>2 \text {). }
\end{array}
$$

Mullins (1956);
many differential geometry publications

But... Final Shape is not Circular

Durian et al., Phys. Rev. Lett. 97, 028001 (2006);

Phys. Rev. E 75, 021301 (2007)

Chipping Model

Numerical Realizations (100 corners)

Angle Evolution for Bisection

$\begin{aligned} n_{k} \equiv \# \text { corners with "angle" } k \quad k & \equiv-\ln _{2}(2 \theta / \pi) \\ & =\text { number of halvings }\end{aligned}$

Master equation: (start with square; $t+4$ corners at time t)

$$
n_{k}(t+1)-n_{k}(t)=-\frac{1}{t+4} n_{k}(t)+\frac{2^{\swarrow}}{t+4} n_{k-1}(t)
$$

Continuum limit:

$$
\frac{d n_{k}}{d t}=-\frac{n_{k}}{t}+\frac{2}{t} n_{k-1}
$$

Result:

$$
n_{k}(t)=\frac{12}{t} \frac{(2 \ln t)^{k}}{k!}
$$

Angle Distribution for Bisection
10^{4} chipping events

10^{7} chipping events

Angle Evolution for General Angles

correspondence with

 fragmenting a segment$c(x, t)=$ fraction of angles $x=\theta / 2 \pi$

$$
\begin{aligned}
& \frac{\partial c(x, t)}{\partial t}=-c(x, t)+2 \int_{x}^{1} c(y, t) \frac{d y}{y} \quad \frac{d n_{k}}{d t}=-\frac{n_{k}}{t}+\frac{2}{t} n_{k-1} \\
& c(\theta, t)=\frac{8}{\pi} \sqrt{\frac{2 t}{\ln (\pi / 2 \theta)}} e^{-t} I_{1}(\sqrt{8 t \ln (\pi / 2 \theta)})+\frac{8}{\pi} e^{-t} \delta\left(\theta-\frac{\pi}{2}\right), \\
& \sim e^{\sqrt{-t \ln \theta}} \quad \text { Ziff \& McGrady (1985); Ziff (1992) } \\
& \text { broad distribution of angles }
\end{aligned}
$$

Asymmetry

$$
\begin{array}{ll}
X^{2}(N)=\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2} & Y^{2}(N)=\frac{1}{N} \sum_{i=1}^{N} y_{i}^{2} \\
R_{+}^{2}(N)=\max \left(X^{2}(N), Y^{2}(N)\right) & \text { for each } \\
R_{-}^{2}(N)=\min \left(X^{2}(N), Y^{2}(N)\right) & \text { realization }
\end{array}
$$

$$
\xi(N) \equiv \sqrt{\left\langle R_{+}^{2}(N)\right\rangle} / \sqrt{\left\langle R_{-}^{2}(N)\right\rangle}
$$

average over all realizations

Simulation Results

Summary

Eroding rocks are not round (in d=2)

Large fluctuations between realizations
Robust with respect to extensions
preferentially chip more prominent corners chip away more than one corner

