
Results: Heterogeneous voter model: fast consensus 

Question: How do generic opinion dynamics models with 
(quasi)-ferromagnetic interactions evolve?
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Voter Model

3. Repeat 1 & 2 until consensus necessarily occurs

1. Pick a random spin

2. Assume state of randomly-selected neighbor
each individual has zero self-confidence and 
adopts state of randomly-chosen neighbor
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Example update step:

Liggett (1985)
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1. Final State (Exit) Probabilities E±(ρ0)



Equation for 2-spin correlation function:

Asymptotic solution:

c(r, t) ∼
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2.  Spatial Dependence of 2-Spin Correlations 
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= −2〈σiσj(wi + wj)〉 →

∂c2(r, t)
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c(r=0, t) = 0; c(r, t=0) = δ(r)



dimension consensus time
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3. System Size Dependence of Consensus Time
Liggett (1985),  Krapivsky (1992)
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pick site on 
a sublattice

pick "on b 
sublattice

pick ! 

on a

E+ = 1 − E
−

=
1

2
[ρa(0) + ρb(0)].

Exit probabilities:

Voter Model on Heterogeneous Graphs
Castellano et al (2003)
Suchecki et al (2004) 
Sood & SR (2005)

N.B.: magnetization is 
not conserved
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illustrative example: complete bipartite graph

degree a

a sites

degree b

b sites

Subgraph densities: ρa = Na/a, ρb = Nb/b dt = 1/(a + b)

ρa,b(t) =
1

2
[ρa,b(0) − ρb,a(0)] e−2t +

1
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[ρa(0) + ρb(0)]

→
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Exit probabilities

Extreme case: star graph
+

Initial state:  1 plus, N minus

E+ = 1 − E
−

=
1

2
[ρa(0) + ρb(0)]

Final state: all + probability 1/2!
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Route to Consensus



Mean Consensus Time
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a

a + b
(1 − ρa)ρb[T (ρa +

1

a
, ρb) + δt]

+
a

a + b
ρa(1 − ρb)[T (ρa −

1

a
, ρb) + δt]

+
b

a + b
(1 − ρb)ρa[T (ρa, ρb +

1

b
) + δt]

+
b

a + b
ρb(1 − ρa)[T (ρa, ρb −

1

b
) + δt]

+ (1−ρa−ρb+2ρaρb)[T (ρa, ρb) + δt],

consensus time 
from new state

pick site on the 
a sublattice

pick ! 

on a
pick "on b 
sublattice

continuum limit:
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Tab(ρ) = −

4ab

a + b
[(1−ρ) ln(1−ρ) + ρ ln ρ)]

with solution:

assuming ρa = ρb and ρ = (ρa + ρb)/2:

1

4
ρ(1 − ρ)
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a
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∂2T = −1

equation of motion for T becomes:

implications: 

a = O(N), b = O(N) (symmetric graph), T = O(N)

a = O(1), b = O(N) (star graph), T = O(1)



Power-Law Degree Distribution Network 

µm =
∑

j jm nj = mth moment of degree distribution

ω = 1

µ1

∑
j jnjρj = degree-weighted up spin density

nj = fraction of nodes with degree j

TN (ω) = −N
µ2

1

µ2

[(1 − ω) ln(1 − ω) + ω lnω]Basic result:

TN ∼



















N ν > 3,
N/ lnN ν = 3,
N (2ν−4)/(ν−1) 2 < ν < 3,
(lnN)2 ν = 2,
O(1) ν < 2.

For power-law network: (nj ∼ j−ν)

quick 
consensus!]



Bounded Compromise Model Deffuant et al (2000) 

↔

x1 x2

x1 + x2

2

1

If |x2 − x1| < 1 compromise

↔

x1 x2

x1 x2

1

If |x2 − x1| > 1 no interaction



The Opinion Distribution

∂P (x, t)

∂t
=

∫ ∫

|x1−x2|<1

dx1 dx2 P (x1, t)P (x2, t)

×

[

δ

(

x −
x1 + x2

2

)

− δ(x − x1)

]

Basic observable: P(x,t) = probability that agent has opinion x

Fundamental parameter: ", the initial opinion range

"<1: eventual consensus

">1: disjoint “parties”

Master equation:
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Axelrod Model 

culture = (car, food, politics, job,.....)

F features

[

SUV
economy
sports
luxury
  

q states

[

(SUV, steak, GOP, cop) (SUV, vegan, dem, lawyer)

Typical interaction:

(SUV, steak, GOP, cop) (SUV, steak, dem, lawyer)

Klemm et al (2003)

Axelrod (1997)
Castellano et al (2000)

Vazquez & SR (2006)

Basic question:  consensus or cultural fragmentation?



A Minimalist (ersatz Mean-Field) Description

Master equation:
direct interaction

indirect interaction

fraction of links with m shared featuresPm(t) ≡

total activity of 
indirect bonds

gain loss

gain -- gain +
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η + 1 = coordination number λ = prob. that i & k share 1 feature
not shared by j = (q − 1)−1
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Formal Solution:

Special Case:  F=2,  varying q
qualitatively similar to 
general (F,q)



Dynamical Analysis
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Outlook & Open Questions

1. Heterogeneous voter model:  fast consensus

What is the route to consensus?

Role of fluctuations?

Role of the correlations?

Application to real voting?
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Outlook & Open Questions

2. Bounded Compromise:  fragmentation a natural outcome 

Is threshold an appropriate mechanism 
for fragmentation?

1. Heterogeneous voter model:  fast consensus

What is the route to consensus?

Role of fluctuations?

Role of the correlations?

Application to real voting? permanence/impermanence



A Possible Realization
1993 Canadian Federal Election

year BQ NDP L PC SC R/CA

1979 26 114 136 6

1980 32 147 103

1984 30 40 211

1988 43 83 169

1993 54 9 177 2 52

1997 44 21 155 20 60



Outlook & Open Questions

2. Bounded Compromise:  fragmentation a natural outcome 

Is threshold the right mechanism for 
lack of consensus and fragmentation?

1. Heterogeneous voter model:  fast consensus

What is the route to consensus?

Role of fluctuations?

Role of the correlations?

Application to real voting? permanence/impermanence

3. Axelrod model:  slow non-monotonic dynamics

Spatially local interactions?

Why is the dynamics so slow?

Why is there non-monotonicity?

more complex than coarsening


