The Dynamics of Consensus and Clash

 Annual CNLS Conference 2006Question: How do generic opinion dynamics models with (quasi)-ferromagnetic interactions evolve?

Models: Voter model on heterogeneous graphs v. Sood Bounded compromise E. Ben-Naim \& P. Krapivsky Axelrod model of cultural diversity F. Vazquez

Results: Heterogeneous voter model: fast consensus Bounded compromise: self-similar fragmentation Axelrod model: non-monotonicity and long time scale

Voter Model Ligget (1985)

0 . Binary spin variable at each site $\mathrm{i}, \mathrm{o}_{\mathrm{i}}= \pm \mathrm{I}$
I. Pick a random spin
2.Assume state of randomly-selected neighbor each individual has zero self-confidence and adopts state of randomly-chosen neighbor
3. Repeat I \& 2 until consensus necessarily occurs

Example update step:

I. Final State (Exit) Probabilities $E_{ \pm}\left(\rho_{0}\right)=\rho_{0}$

Equation of Motion for single spin:
mean spin $s_{i}=\left\langle\sigma_{i}\right\rangle: \frac{d s_{i}}{d t}=-2\left\langle\sigma_{i} w_{i}\right\rangle=-s_{i}+\frac{1}{z} \sum_{k \operatorname{nn} i} s_{k}$

$$
\rightarrow \dot{m} \equiv \sum_{i} \dot{s}_{i}=0
$$

2. Spatial Dependence of 2-Spin Correlations

(infinite system)
Equation for 2 -spin correlation function:

$$
\frac{d\left(s_{i} s_{j}\right)}{d t}=-2\left\langle\sigma_{i} \sigma_{j}\left(w_{i}+w_{j}\right)\right\rangle \rightarrow \frac{\partial c_{2}(r, t)}{\partial t}=\nabla^{2} c_{2}(r, t)
$$

Asymptotic solution:

$$
c(r=0, t)=0 ; c(r, t=0)=\delta(r)
$$

$$
c(r, t) \sim \begin{cases}1-\frac{1-\left(\frac{a}{r}\right)^{d-2}}{11-\left(\frac{a}{\sqrt{D t}}\right)^{d-2}} & d \neq 2 \\ \frac{1-\frac{\ln r}{\ln a}}{1-\frac{\ln \sqrt{D t}}{\ln a}} & d=2\end{cases}
$$

3. System Size Dependence of Consensus Time

Liggett (1985), Krapivsky (I992)

$$
\int^{\sqrt{D t}} c(r, t) r^{d-1} d r=N
$$

dimension	consensus time
1	$\mathrm{~N}^{2}$
2	$\mathrm{~N} \ln \mathrm{~N}$
>2	N

Voter Model on Heterogeneous Graphs

illustrative example: complete bipartite graph

Subgraph densities: $\rho_{a}=N_{a} / a, \rho_{b}=N_{b} / b \quad d t=1 /(a+b)$

$$
\begin{aligned}
\rho_{a, b}(t) & =\frac{1}{2}\left[\rho_{a, b}(0)-\rho_{b, a}(0)\right] e^{-2 t}+\frac{1}{2}\left[\rho_{a}(0)+\rho_{b}(0)\right] \\
& \rightarrow \frac{1}{2}\left[\rho_{a}(0)+\rho_{b}(0)\right] \quad \begin{array}{l}
\text { N.B.: } \text { magnetization is } \\
\text { not conserved }
\end{array}
\end{aligned}
$$

Exit probabilities:

$$
E_{+}=1-E_{-}=\frac{1}{2}\left[\rho_{a}(0)+\rho_{b}(0)\right] .
$$

Exit probabilities

$$
E_{+}=1-E_{-}=\frac{1}{2}\left[\rho_{a}(0)+\rho_{b}(0)\right]
$$

Extreme case: star graph

Initial state: I plus, N minus
Final state: all + probability I/2!

Route to Consensus

 trajectory of a single realization
complete bipartite graph

two-clique graph
$\mathrm{K}_{10000 \overline{0}}-\mathrm{C}--\mathrm{K}_{10000}$

Mean Consensus Time

$$
\begin{aligned}
& \begin{array}{l}
\text { pick site on the } \\
\text { a sublattice }
\end{array} \\
& T\left(\rho_{a}, \rho_{b}\right)=\frac{a}{a+b}\left(1-\rho_{a}\right) \rho_{b}\left[T\left(\rho_{a}+\frac{1}{a}, \rho_{b}\right)+\delta t\right] \\
&+\frac{a}{a+b} \rho_{a}\left(1-\rho_{b}\right)\left[T\left(\rho_{a}-\frac{1}{a}, \rho_{b}\right)+\delta t\right] \\
&+\frac{b}{a+b}\left(1-\rho_{b}\right) \rho_{a}\left[T\left(\rho_{a}, \rho_{b}+\frac{1}{b}\right)+\delta t\right] \\
&+\frac{b}{a+b} \rho_{b}\left(1-\rho_{a}\right)\left[T\left(\rho_{a}, \rho_{b}-\frac{1}{b}\right)+\delta t\right] \\
&+\left(1-\rho_{a}-\rho_{b}+2 \rho_{a} \rho_{b}\right)\left[T\left(\rho_{a}, \rho_{b}\right)+\delta t\right]
\end{aligned}
$$

continuum limit:

$$
\begin{aligned}
N \delta t= & \left(\rho_{a}-\rho_{b}\right)\left(\partial_{a}-\partial_{b}\right) T_{N}\left(\rho_{a}, \rho_{b}\right) \\
& -\frac{1}{2}\left(\rho_{a}+\rho_{b}-2 \rho_{a} \rho_{b}\right)\left(\frac{1}{a} \partial_{a}^{2}+\frac{1}{b} \partial_{b}^{2}\right) T_{N}\left(\rho_{a}, \rho_{b}\right)
\end{aligned}
$$

assuming $\rho_{a}=\rho_{b}$ and $\rho=\left(\rho_{a}+\rho_{b}\right) / 2$:
equation of motion for T becomes:

$$
\frac{1}{4} \rho(1-\rho)\left(\frac{1}{a}+\frac{1}{b}\right) \partial^{2} T=-1
$$

with solution:

$$
\left.T_{a b}(\rho)=-\frac{4 a b}{a+b}[(1-\rho) \ln (1-\rho)+\rho \ln \rho)\right]
$$

implications:

$$
\begin{aligned}
& a=\mathcal{O}(1), b=\mathcal{O}(N)(\text { star graph }), T=\mathcal{O}(1) \\
& a=\mathcal{O}(N), b=\mathcal{O}(N)(\text { symmetric graph }), T=\mathcal{O}(N)
\end{aligned}
$$

Power-Law Degree Distribution Network

$n_{j}=$ fraction of nodes with degree j

$$
\begin{aligned}
\mu_{m} & =\sum_{j} j^{m} n_{j}=m^{\text {th }} \text { moment of degree distribution } \\
\omega & =\frac{1}{\mu_{1}} \sum_{j} j n_{j} \rho_{j}=\text { degree-weighted up spin density }
\end{aligned}
$$

Basic result: $\quad T_{N}(\omega)=-N \frac{\mu_{1}^{2}}{\mu_{2}}[(1-\omega) \ln (1-\omega)+\omega \ln \omega]$
For power-law network: $\left(n_{j} \sim j^{-\nu}\right)$

$$
T_{N} \sim\left\{\begin{array}{ll}
N & \nu>3 \\
N / \ln N & \nu=3 \\
N^{(2 \nu-4) /(\nu-1)} \\
(\ln N)^{2} & 2<\nu<3, \\
\mathcal{O}(1) & \nu=2, \\
& \nu<2 .
\end{array}\right] \text { quick }
$$

Bounded Compromise Model Deftuant etal (2000)

$\sqrt{\square}$

$$
\frac{x_{1}+x_{2}}{2}
$$

If $\left|x_{2}-x_{1}\right|>1$ no interaction

The Opinion Distribution

Basic observable: $P(x, t)=$ probability that agent has opinion x
Fundamental parameter: Δ, the initial opinion range
Master equation:

$$
\begin{aligned}
\frac{\partial P(x, t)}{\partial t}=\int & \int_{\left|x_{1}-x_{2}\right|<1} d x_{1} d x_{2} P\left(x_{1}, t\right) P\left(x_{2}, t\right) \\
& \times\left[\delta\left(x-\frac{x_{1}+x_{2}}{2}\right)-\delta\left(x-x_{1}\right)\right]
\end{aligned}
$$

$\Delta<1$: eventual consensus
$\Delta>1$: disjoint "parties"

Early time evolution (for $\Delta=4$)

Time Evolution (for $\Delta=10$)

Bifurcation Sequence

Axelrod Model

Axelrod (1997)
culture $=($ car, food, politics, job,..... $)$

Typical interaction:

(SU) Steak. GOP, cop)
(SUV, steak, GOP, cop)

Basic question: consensus or cultural fragmentation?

A Minimalist (ersatz Mean-Field) Description

$P_{m}(t) \equiv$ fraction of links with m shared features
Master equation:

$$
\begin{aligned}
& \frac{d P_{m}(t)}{d t}=\frac{2}{\eta+1}\left[\frac{m-1}{F} P_{m-1}-\frac{m}{F} P_{m}\right] \\
& \left.+\frac{2 \eta}{\eta+-} \sum_{k=1}^{\text {gain }} \frac{k}{F} P_{k}\right)\left[\frac{m+1}{F} P_{m+1}^{\text {loss }}+\lambda\left(1-\frac{m-1}{F}\right) P_{m-1}\right. \\
& \begin{array}{l}
\text { total activity of } \\
\text { indirect bonds }
\end{array} \\
& \left.-\left[\lambda\left(1-\frac{m}{F}\right)+\frac{m}{F}\right] P_{m}\right]
\end{aligned}
$$

$\eta+1=$ coordination number $\quad \lambda=$ prob. that $i \& k$ share 1 feature not shared by $j=(q-1)^{-1}$

Special Case: $\mathrm{F}=2$, varying q
qualitatively similar to general (F, q)

$$
\begin{aligned}
\frac{d P_{0}}{d t} & =\frac{\eta}{\eta+1} P_{1}\left[-\lambda P_{0}+\frac{1}{2} P_{1}\right] \\
\frac{d P_{1}}{d t} & =-\frac{P_{1}}{\eta+1}+\frac{\eta}{\eta+1} P_{1}\left[\lambda P_{0}-\frac{1+\lambda}{2} P_{1}+P_{2}\right] \\
\frac{d P_{2}}{d t} & =\frac{P_{1}}{\eta+1}+\frac{\eta}{\eta+1} P_{1}\left[\frac{\lambda}{2} P_{1}-P_{2}\right]
\end{aligned}
$$

Formal Solution:

$$
\begin{array}{r}
\tau=\frac{1}{4 \lambda(\eta-1)}\left[\ln \left(\frac{S+\Delta}{\eta \lambda(1-\lambda)^{2}}\right)-2 \ln \left(1 \pm \frac{\sqrt{\Delta}}{1-\lambda}\right)\right. \\
\left.+\frac{1-\lambda}{\sqrt{-S}} \ln \left(\frac{(\sqrt{-S}-1-\lambda)(\sqrt{-S} \pm \sqrt{\Delta})}{(\sqrt{-S}+1+\lambda)(\sqrt{-S} \mp \sqrt{\Delta})}\right)\right] \\
S=4 \eta \lambda-(1+\lambda)^{2} \\
\Delta=2 \eta(1+\lambda)^{2} P_{1}-S \\
\tau=t /[2(1+\eta)(1+\lambda)]
\end{array}
$$

Dynamical Analysis

$$
\begin{array}{ll}
\frac{d P_{0}}{d x}=-\lambda P_{0}+\frac{1}{2} P_{1} & d x=\frac{\eta}{\eta+1} P_{1} d t \\
\frac{d P_{1}}{d x}=\left(1-\frac{1}{\eta}\right)+(\lambda-1) P_{0}-\left(\frac{3+\lambda}{2}\right) P_{1} & P_{2}=1-P_{0}-P_{1}
\end{array}
$$

Simulation Results

$$
q=q_{c}-\frac{1}{4} \quad q_{c}=10.898 \ldots
$$

Outlook \& Open Questions

I. Heterogeneous voter model: fast consensus

What is the route to consensus?
Role of fluctuations?
Role of the correlations?
Application to real voting?

History of US Presidential Elections

Outlook \& Open Questions

I. Heterogeneous voter model: fast consensus

What is the route to consensus?
Role of fluctuations?
Role of the correlations?
Application to real voting? permanence/impermanence
2. Bounded Compromise: fragmentation a natural outcome

Is threshold an appropriate mechanism
for fragmentation?

A Possible Realization

1993 Canadian Federal Election

year	BQ	NDP	L	PC	SC	R/CA
1979		26	114	136	6	
1980		32	147	103		
1984		30	40	211		
1988		43	83	169		
1993	54	9	177	2		52
1997	44	21	155	20		60

Outlook \& Open Questions

I. Heterogeneous voter model: fast consensus

What is the route to consensus?
Role of fluctuations?
Role of the correlations?
Application to real voting? permanence/impermanence
2. Bounded Compromise: fragmentation a natural outcome

Is threshold the right mechanism for lack of consensus and fragmentation?
3.Axelrod model: slow non-monotonic dynamics

Spatially local interactions? more complex than coarsening
Why is the dynamics so slow?
Why is there non-monotonicity?

