Winning and Losing in Competitions and Tournaments

collaborators: Eli Ben-Naim (LANL), Federico Vazquez (BU \rightarrow IMEDEA) Sidney Redner, Boston University

Questions: What types of class structures emerge in a competitive society? What characterizes winners?

Models: Competition/Decline Sudden Death Tournaments

Results: well-defined class structures statistical properties of tournament winners sports statistics applications

Competition/Decline Model $\begin{aligned} & \text { reabed worked } \\ & \text { gonbeau etat ((1995) }\end{aligned}$

Each agent continuously competes with others to increase its fitness $\mathrm{k} \geq 0$.
rate I \& probability p:
$(j, k) \rightarrow(j, k+1)$ if $j \leq k$

stronger agent gains
by competition
rate $\mathrm{r}: \mathrm{k} \rightarrow \mathrm{k}+\mathrm{I}$

rate I \& probability q=I-p:

$$
(j, k) \rightarrow(j+1, k) \text { if } j<k
$$

weaker agent gains
by competition

decline in absence of stimulation

What social structures emerge from these interactions?

Master Equation Description

$f_{k}(t) \equiv$ fraction of agents with fitness \mathbf{k} at time \mathbf{t}

$$
\begin{gathered}
F_{k} \equiv \sum_{j=0}^{k} f_{j}=\text { fraction of agents with fitness } \leq \mathrm{k} \\
G_{k} \equiv \sum_{j=k+1}^{\infty} f_{j}=\text { fraction of agents with fitness }>\mathrm{k} \\
\frac{d f_{k}}{d t}=\underbrace{r\left(f_{k+1}-f_{k}\right)}_{\text {decline }}+\underbrace{p\left(f_{k-1} F_{k-1}^{k+1}-f_{k} F_{k}\right)}_{\text {normal competition }} \\
+\underbrace{q\left(f_{k-1}^{k+1} G_{k-1}^{k+2}-f_{k} G_{k}\right)}_{\text {upset competition }}+\underbrace{\frac{1}{2}\left(f_{k-1}^{2}-f_{k}^{2}\right)}_{\text {ties }}
\end{gathered}
$$

The Cumulative Distribution

$$
\begin{gathered}
\operatorname{sum} \quad \begin{aligned}
\frac{d f_{k}}{d t}= & r\left(f_{k+1}-f_{k}\right)+p\left(f_{k-1} F_{k-1}-f_{k} F_{k}\right) \\
& +q\left(f_{k-1} G_{k-1}-f_{k} G_{k}\right)+\frac{1}{2}\left(f_{k-1}^{2}-f_{k}^{2}\right)
\end{aligned} \\
\begin{aligned}
\frac{d F_{k}}{d t}= & r\left(F_{k+1}-F_{k}\right)+(1-p)\left(F_{k-1}-F_{k}\right) \quad \text { closed } \\
& +(p-1 / 2)\left(F_{k-1}^{2}-F_{k}^{2}\right) \quad \text { equatio }
\end{aligned} \\
\\
F_{0}=0, \quad F_{\infty}=1 ; \quad \text { boundary conditions } \\
\\
F_{k}(t=0)=1, \quad k \geq 1 \quad \text { initial condition }
\end{gathered}
$$

Partial information: mean fitness

$$
\frac{d\langle k\rangle}{d t}=\frac{1}{2}-r\left(1-f_{0}\right)
$$

Dynamical Behavior by Scaling Approach

master equation: $\frac{d F_{k}}{d t}=r\left(F_{k+1}-F_{k}\right)+(1-p)\left(F_{k-1}-F_{k}\right)$

$$
+(p-1 / 2)\left(F_{k-1}^{2}-F_{k}^{2}\right)
$$

continuum limit: $\quad \frac{\partial F}{\partial t}=[p+r-1-(2 p-1) F] \frac{\partial F}{\partial k}$
scaling ansatz: $\quad F_{k}(t) \sim \Phi(k / t) \quad x \equiv k / t$

$$
\longrightarrow[(p+r-1+x)-(2 p-1) \Phi(x)] \frac{d \Phi}{d x}=0
$$

constant
solutions: $\quad \Phi(x)=\left\{\begin{array}{l}\frac{p+r-1}{2 p-1}+\frac{x}{2 p-1}\end{array}\right.$

Sketch of Scaling Behavior

Diverse Society $\begin{aligned} & r-p<0 \\ & r+p>1\end{aligned}$

Egalitarian Society $p, r<1 / 2$

Upwardly-Mobile Society $\begin{gathered}p>1 / 2 \\ r+p<1\end{gathered}{ }^{\prime}$

Season-End Winning Fraction Distributions from Major Sports Leagues

Upwardly-Mobile Society $\begin{gathered}p>1 / 2 \\ r+p<1\end{gathered}{ }^{\prime}$

All-Time Team Winning Fraction Distributions

Upwardly-Mobile Society $\begin{gathered}p>1 / 2 \\ r+p<1\end{gathered}{ }^{\prime}$

Connection between Parity and Unpredictability

\uparrow increasing unpredictability

Dynamics of Sudden-Death Tournaments

fundamental variable: rank x_{k}
lower number \rightarrow better team
evolution rule for 2 teams ranks $x_{1}, x_{2}\left(x_{1}<x_{2}\right)$:

$$
\left(x_{1}, x_{2}\right) \rightarrow\left\{\begin{array}{l}
x_{1} \quad \begin{array}{l}
\text { with probability } 1-q \\
\text { stronger team wins; } \\
\text { loser eliminated }
\end{array} \\
x_{2} \quad \begin{array}{l}
\text { with probability } q \\
\text { weaker team wins (upset); } \\
\text { loser eliminated }
\end{array}
\end{array}\right.
$$

Master Equation for Evolution of Rank Distribution

$f(x, t) d x \equiv$ fraction of teams with rank $\in(x, x+d x)$ (smaller $x \rightarrow$ better team)

$$
\frac{\partial f(x)}{\partial t}=-2 p f(x) \int_{0}^{x} d y f(y)-2 q f(x) \int_{x}^{\infty} d y f(y)
$$

The cumulative distribution $F(x)=\int_{0}^{x} f(y) d y$ satisfies:

$$
\begin{aligned}
\frac{\partial F}{\partial t}=(2 q-1) F^{2}-2 q c F \quad c(t) & =\int_{0}^{\infty} f(x, t) d x=F(\infty) \\
& =\text { fraction remaining teams }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solve } \frac{\partial F}{\partial t}=(2 q-1) F^{2}-2 q c F \\
F(x, t)= & \frac{F_{0}(x)}{\left[1-F_{0}(x)\right](1+t)^{2 q}+F_{0}(x)(1+t)} \\
= & \frac{x}{(1-x)(1+t)^{2 q}+x(1+t)} \quad \begin{array}{l}
\text { for uniform initial } \\
\text { rank distribution }
\end{array} \\
\rightarrow & t^{-1} \Phi\left(x t^{1-2 q)} \quad t \rightarrow \infty, x \rightarrow 0\right. \\
\text { with } \Phi(z)=\frac{z}{1+z} & \text { scaling } \\
&
\end{aligned}
$$

typical rank vs. time rank of ultimate winner

$$
x \sim t^{-(1-2 q)} \quad \longrightarrow x^{*} \sim N^{-(1-2 q)}
$$

Parallel Dynamics ($=$ Serial Dynamics!)

$g_{N}(x) \equiv$ rank distribution of winner in $N^{\text {th }}$ round
$G_{N}(x)=\int_{0}^{x} d y g_{N}(y)$ cumulative distribution in $N^{\text {th }}$ round
recursion for rank distribution:

$$
g_{2}(x)=2 p g_{1}(x) \underbrace{\left[1-G_{1}(x)\right]}_{\text {prob. weaker team }}+2 q g_{1}(x) \underbrace{G_{1}(x)}_{\text {stronger team }}
$$

integrating gives:

$$
\begin{aligned}
& G_{2}(x)=2 p G_{1}(x)+(1-2 p)\left[G_{1}(x)\right]^{2} \\
& G_{2 N}(x)=2 p G_{N}(x)+(1-2 p)\left[G_{N}(x)\right]^{2}
\end{aligned}
$$

Asymptotic Solution

$$
G_{2 N}(x)=2 p G_{N}(x)+(1-2 p)\left[G_{N}(x)\right]^{2} \rightarrow G_{2^{k}}(x) \simeq(2 p)^{k} x
$$

Use $k=\frac{\ln N}{\ln 2} \quad$ to give $G_{N}(x) \simeq N^{\beta_{\|}} x \rightarrow \beta_{\|}=1+\frac{\ln (1-q)}{\ln 2}$

$$
x \sim t^{-(1-2 q)}
$$

weak teams less likely to survive parallel play

NCAA March Madness Results 1680 games 1979-2006

Some Open Questions

What are the relative roles of intrinsic fitness versus luck?

What is the fate of a single agent? Can a rich person become poor?

What are the effects of symbiosis, deleterious competition, exogenous effects?

Is it possible to develop good betting strategies to exploit modeling \& long-term sports statistics?

