Consensus and Deadlock in Opinion Dynamics

Sidney Redner, CNLS, LANL (on leave from Boston University) collaborators: E. Ben-Naim, P. Chen, P. Krapivsky, V. Sood, F. Vazquez

Basic questions: What is the final state in prototypical opinion dynamics models with primarily ferromagnetic interactions?

How long does it take the reach the final state?
Models:
Voter model on heterogeneous graphs
Majority rule
Bounded compromise models
Spiteful extremists \& accommodating centrists
Basic results: Voter model: fast consensus on heterogeneous graphs Majority rule: multiscale dynamics \& slow consensus Bounded compromise: rich political bifurcation sequence Spiteful extremists: consensus versus deadlock

Voter Model Ligeet (1985)

0 . Binary spin variable at each site
I. Pick a random spin
2.Assume state of randomly-selected neighbor each individual has zero self-confidence and adopts state of randomly-chosen neighbor
3. Repeat I \& 2 until consensus necessarily occurs

Example update step:

Voter model on regular lattices

I. Final state (exit) probabilities
follows from magnetization conservation

2. Dependence of consensus time on system size:

Liggett (I985), Krapivsky (I992)

dimension	consensus time
1	$\mathrm{~N}^{2}$
2	$\mathrm{~N} \ln \mathrm{~N}$
>2	N

illustrative example: complete bipartite graph

Subgraph densities: $\rho_{a}=N_{a} / a, \rho_{b}=N_{b} / b \quad d t=1 /(a+b)$

$$
\begin{array}{rlrl}
\rho_{a, b}(t) & =\frac{1}{2}\left[\rho_{a, b}(0)-\rho_{b, a}(0)\right] e^{-2 t}+\frac{1}{2}\left[\rho_{a}(0)+\rho_{b}(0)\right] \\
& \rightarrow \frac{1}{2}\left[\rho_{a}(0)+\rho_{b}(0)\right] \quad & \quad \text { N.B.: magnetization is } \\
& \text { not conserved }
\end{array}
$$

Exit probabilities:

$$
E_{+}=1-E_{-}=\frac{1}{2}\left[\rho_{a}(0)+\rho_{b}(0)\right]
$$

Exit probabilities

$$
E_{+}=1-E_{-}=\frac{1}{2}\left[\rho_{a}(0)+\rho_{b}(0)\right]
$$

extreme case: star graph

initial state: I plus, N minus
final state: all + with probability I/2!

Mean consensus time

$$
\begin{aligned}
& \begin{array}{c}
\text { pick site on the pick } \downarrow \\
\text { a sublattice }
\end{array} \\
& T\left(\rho_{a}, \rho_{b}\right)=\frac{a}{a+b}\left(1-\rho_{a}\right) \rho_{b}\left[T\left(\rho_{a}+\frac{1}{a}, \rho_{b}\right)+\delta t\right] \\
&+\frac{a}{a+b} \rho_{a}\left(1-\rho_{b}\right)\left[T\left(\rho_{a}-\frac{1}{a}, \rho_{b}\right)+\delta t\right] \\
&+\frac{b}{a+b}\left(1-\rho_{b}\right) \rho_{a}\left[T\left(\rho_{a}, \rho_{b}+\frac{1}{b}\right)+\delta t\right] \\
&+\frac{b}{a+b} \rho_{b}\left(1-\rho_{a}\right)\left[T\left(\rho_{a}, \rho_{b}-\frac{1}{b}\right)+\delta t\right] \\
&+\quad\left(1-\rho_{a}-\rho_{b}+2 \rho_{a} \rho_{b}\right)\left[T\left(\rho_{a}, \rho_{b}\right)+\delta t\right]
\end{aligned}
$$

continuum limit:

$$
\begin{aligned}
N \delta t= & \left(\rho_{a}-\rho_{b}\right)\left(\partial_{a}-\partial_{b}\right) T\left(\rho_{a}, \rho_{b}\right) \\
& -\frac{1}{2}\left(\rho_{a}+\rho_{b}-2 \rho_{a} \rho_{b}\right)\left(\frac{1}{a} \partial_{a}^{2}+\frac{1}{b} \partial_{b}^{2}\right) T\left(\rho_{a}, \rho_{b}\right)
\end{aligned}
$$

Trajectories of single voter model realizations

complete bipartite graph

two-clique graph
$\mathrm{K}_{10000}-\mathrm{C}--\mathrm{K}_{10000}$
assuming $\rho_{a}=\rho_{b}$ and $\rho=\left(\rho_{a}+\rho_{b}\right) / 2$:
equation of motion for T becomes:

$$
\begin{aligned}
& N \delta t=\left(\rho_{a}-\rho_{b}\right)\left(\partial_{a}-\partial_{b}\right) T\left(\rho_{a}, \rho_{b}\right) \\
&-\frac{1}{2}\left(\rho_{a}+\rho_{b}-2 \rho_{a} \rho_{b}\right)\left(\frac{1}{a} \partial_{a}^{2}+\frac{1}{b} \partial_{b}^{2}\right) T\left(\rho_{a}, \rho_{b}\right) \\
& \frac{1}{4} \rho(1-\rho)\left(\frac{1}{a}+\frac{1}{b}\right) \partial^{2} T=-1
\end{aligned}
$$

with solution:

$$
\left.T_{a b}(\rho)=-\frac{4 a b}{a+b}[(1-\rho) \ln (1-\rho)+\rho \ln \rho)\right]
$$

implication: $\quad a=\mathcal{O}(1), b=\mathcal{O}(N)$ (star graph), $T=\mathcal{O}(1)$

$$
a=\mathcal{O}(N), b=\mathcal{O}(N) \text { (symmetric graph), } T=\mathcal{O}(N)
$$

Arbitrary degree distribution network

 $n_{j}=$ fraction of nodes with degree $j$$$
\mu_{m}=\sum_{j} j^{m} n_{j}=m^{\mathrm{th}} \text { moment of degree distribution }
$$

$$
\omega=\frac{1}{\mu_{1}} \sum_{j} j n_{j} \rho_{j}=\text { degree-weighted up spin density }
$$

Basic result: $\quad T_{N}(\omega)=-N \frac{\mu_{1}^{2}}{\mu_{2}}[(1-\omega) \ln (1-\omega)+\omega \ln \omega]$
For power-law network: $\left(n_{j} \sim j^{-\nu}\right)$

$$
T_{N} \sim \begin{cases}N & \nu>3 \\ N / \ln N & \nu=3 \\ N^{(2 \nu-4) /(\nu-1)} & 2<\nu<3 \\ (\ln N)^{2} & \nu=2 \\ \mathcal{O}(1) & \nu<2\end{cases}
$$

Consensus times for power-law degree distributions $n_{j} \sim j^{-\nu}$

MaiOrity rule Galam (I999), Krapivsky \& SR (2003), Slanina \& Lavicka (2003), Chen \& SR (2005)

I. Pick a random group of G spins (with G odd).
2. All spins in G adopt the majority state.
3. Repeat until consensus necessarily occurs.

$$
\begin{aligned}
& \Rightarrow \\
& \begin{array}{lll|l}
+ & + & + & - \\
+ & + & + & - \\
+ & + & + & + \\
+ & - & + & +
\end{array}
\end{aligned}
$$

Basic questions: I. Which final state is reached?
2. What is the time until consensus?

Mean-field theory (for $G=3$)

$E_{n} \equiv$ exit probability to $m=1$ starting from n plus spins

$$
=p_{n} E_{n+1}+q_{n} E_{n-1}+r_{n} E_{n}
$$

$T_{n} \equiv$ mean time to $m=1$ starting from n plus spins

$$
=p_{n}\left(T_{n+1}+\delta t\right)+q_{n}\left(T_{n-1}+\delta t\right)+r_{n}\left(T_{n}+\delta t\right)
$$

Exit probability
(schematic)

Consensus time (data)

Consensus time for finite spatial dimensions

Critical dimension appears to be >4 !

Anomalous dynamics in 2d: stripes $\sim 33 \%$ of the time!

Slab formation in 3d $\sim 8 \%$ of the time

Consensus time distribution

multiscale relaxation to final consensus

Bounded compromise model Deffinareala(2000)

$\sqrt{\square}$

$$
\frac{x_{1}+x_{2}}{2}
$$

If $\left|x_{2}-x_{1}\right|<1$ compromise

If $\left|x_{2}-x_{1}\right|>1$ no interaction

Master equation

Fundamental parameter: Δ, the initial opinion range

Basic observable: $\mathrm{P}(\mathrm{x}, \mathrm{t})=$ probability that agent has opinion x

$$
\begin{aligned}
& \frac{\partial P(x, t)}{\partial t}=\iint_{\left|x_{1}-x_{2}\right|<1} d x_{1} d x_{2} P\left(x_{1}, t\right) P\left(x_{2}, t\right) \\
& \times\left[\delta\left(x-\frac{x_{1}+x_{2}}{2}\right)-\delta\left(x-x_{1}\right)\right]
\end{aligned}
$$

$\Delta<1$: eventual consensus
$\Delta>1$: disjoint "parties"

Early time evolution (for $\Delta=4$)

Early time evolution (for $\Delta=10$)

Bifurcation sequence

Cluster masses versus Δ

Minor cluster bifurcations

$-(1+\epsilon)-1$

$1(1+\epsilon)$
major cluster: $w \approx e^{-t / 2}$ minor cluster: $\dot{m}=-m$

$$
\rightarrow m(t)=m(0) e^{-t}=\epsilon e^{-t}
$$

separation:
$w=\epsilon=e^{-t_{\mathrm{sep}} / 2}$
$\rightarrow m\left(t_{\mathrm{sep}}\right) \propto \epsilon^{3}$

Cluster masses near bifurcations

Spiteful extremist model
 Vazquez \& SR (2004) -- inspired by the bounded confidence model of Deffuant et al (2000)

0. 3-state variable at each site: $-0+$
I. Pick a random spin
1. Assume state of neighbor if compatible
2. Repeat until either consensus or frozen final state

$+-\longrightarrow+-$ incompatible

Evolution in composition space

Probability to reach frozen final state

$F(x, y)=$ probability to reach frozen state from (x, y)
recursion formula:

$$
\begin{aligned}
F(x, y) & =p_{x}[F(x-\delta, y)+F(x+\delta, y)] \\
& +p_{y}[F(x, y-\delta)+F(x, y+\delta)] \\
& +\left[1-2\left(p_{x}+p_{y}\right)\right] F(x, y)
\end{aligned}
$$

continuum limit:

$$
x \frac{\partial^{2} F(x, y)}{\partial x^{2}}+y \frac{\partial^{2} F(x, y)}{\partial y^{2}}=0, \quad \begin{aligned}
F(x, 0) & =0 \\
F(0, y) & =0 \\
F(x, 1-x) & =1
\end{aligned}
$$

solution:

$$
F(x, y)=\sum_{n \text { odd }} \frac{2(2 n+1)}{n(n+1)} \sqrt{x y}(x+y)^{n} P_{n}^{1}\left(\frac{x-y}{x+y}\right)
$$

Final state probabilities

Phase diagram

moral: extremism promotes deadlock

Outlook \& some open questions

I. Heterogeneous voter model: fast consensus

What is the route to consensus?
Role of fluctuations?
Behavior of the correlations?
2. Majority rule: complex relaxation to a simple final state Why do stripes occur?
What is the critical dimension?
What happens for more than 2 states?
3. Bounded compromise: rich bifurcation sequence
4. Spiteful extremists: deadlock \& multiple final states Implications for real politics?

