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Consensus and Deadlock in Opinion 
Dynamics

Basic questions: What is the final state in prototypical opinion dynamics 
models with primarily ferromagnetic interactions?

Basic results:
Majority rule: multiscale dynamics & slow consensus

Voter model: fast consensus on heterogeneous graphs

Spiteful extremists: consensus versus deadlock

How long does it take the reach the final state?

Voter model on heterogeneous graphs

Majority rule 

Spiteful extremists & accommodating centrists

Models:

Bounded compromise models

Bounded compromise: rich political bifurcation sequence



Voter Model

3. Repeat 1 & 2 until consensus necessarily occurs

1. Pick a random spin

2. Assume state of randomly-selected neighbor
each individual has zero self-confidence and adopts state of 
randomly-chosen neighbor

↑

↓ ↑ ↑

↑

3/4

↑

↓ ↓ ↑

↑

1/4

↑

↓ ↑ ↑

↑

Example update step:

0. Binary spin variable at each site

Liggett (1985)



Voter model on regular lattices

dimension consensus time

1 N
2

2 N ln N

>2 N

2. Dependence of consensus time on system size:
Liggett (1985), Krapivsky (1992)

1. Final state (exit) probabilities
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illustrative example: complete bipartite graph
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E+ = 1 − E
−

=
1

2
[ρa(0) + ρb(0)].

Exit probabilities:

Voter model on heterogeneous graphs
Catellano et al (2003),
Suchecki et al (2004),  
Sood & SR (2005)

N.B.: magnetization is 
not conserved

ρa,b(t) =
1

2
[ρa,b(0) − ρb,a(0)] e−2t +

1

2
[ρa(0) + ρb(0)]

→

1

2
[ρa(0) + ρb(0)]

Subgraph densities: ρa = Na/a, ρb = Nb/b dt = 1/(a + b)



Exit probabilities

extreme case: star graph
+

initial state:  1 plus, N minus

E+ = 1 − E
−

=
1

2
[ρa(0) + ρb(0)]

final state: all + with probability 1/2!



Mean consensus time
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continuum limit:
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Trajectories of single voter model realizations
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Tab(ρ) = −

4ab

a + b
[(1−ρ) ln(1−ρ) + ρ ln ρ)]

with solution:

implication: a = O(1), b = O(N) (star graph), T = O(1)

a = O(N), b = O(N) (symmetric graph), T = O(N)

1

4
ρ(1 − ρ)

(

1

a
+

1

b

)

∂2T = −1

equation of motion for T becomes:

Nδt = (ρa − ρb)(∂a − ∂b)T (ρa, ρb)

−
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2
(ρa + ρb − 2ρaρb)
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a
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b

)

T (ρa, ρb)

assuming ρa = ρb and ρ = (ρa + ρb)/2:



Arbitrary degree distribution network 

µm =
∑

j jm nj = mth moment of degree distribution

ω = 1

µ1

∑
j jnjρj = degree-weighted up spin density

nj = fraction of nodes with degree j

TN (ω) = −N
µ2

1

µ2

[(1 − ω) ln(1 − ω) + ω lnω]Basic result:

TN ∼



















N ν > 3,
N/ lnN ν = 3,
N (2ν−4)/(ν−1) 2 < ν < 3,
(lnN)2 ν = 2,
O(1) ν < 2.

For power-law network: (nj ∼ j−ν)
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Basic 
results: 

quick consensus!
universal scaling



1. Pick a random group of G spins (with G odd).

+

+ +

+ +

+ +

+ +

Basic questions: 1.  Which final state is reached?

2.  What is the time until consensus?

2.      spins in G adopt the majority state.All

3. Repeat until consensus necessarily occurs.

+

+ +

+ +

+ +

+ +

+

+

+ +

Majority rule Galam (1999), Krapivsky & SR (2003),
Slanina & Lavicka (2003), Chen & SR (2005)
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En ≡ exit probability to m = 1 starting from n plus spins
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Tn ≡ mean time to m = 1 starting from n plus spins
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Consensus time for finite spatial dimensions

Critical dimension appears to be >4!

10
2

10
3

10
4

10
5

N

10
0

10
1

10
2

10
3

10
4

10
5

T
m
p

d=1

d=2

d=3

d=4

slope 2

slope 1.23

slope 0.72

slope 0.56



t=0 t=5

t=20 t=80

Anomalous dynamics in 2d: stripes ~33% of the time!



Slab formation in 3d ~8% of the time



2d 3d

4d

Consensus time distribution

multiscale relaxation 
to final consensus

0 5000 10000 15000 20000

t

10
!8

10
!6

10
!4

10
!2

P
N
(t
)

0 750 1500 2250 3000

t

10
!7

10
!5

10
!3

10
!1

P
N
(t
)

0 400 800 1200 1600

t

10
!7

10
!5

10
!3

10
!1

P
N
(t
)



Bounded compromise model Deffuant et al (2000) 

↔↔

x1 x2

x1 + x2

2

x1 x2

x1 x2

11

If |x2 − x1| < 1 compromise If |x2 − x1| > 1 no interaction



Master equation

∂P (x, t)

∂t
=

∫ ∫

|x1−x2|<1

dx1 dx2 P (x1, t)P (x2, t)

×

[

δ

(

x −
x1 + x2

2

)

− δ(x − x1)

]

Basic observable: P(x,t) = probability that agent has opinion x

Fundamental parameter: ", the initial opinion range

"<1: eventual consensus

">1: disjoint “parties”
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Minor cluster bifurcations

major cluster: w ≈ e
−t/2

minor cluster: ṁ = −m

→ m(t) = m(0) e
−t = ε e

−t

separation:

w = ε = e
−tsep/2

1-1−(1 + ε) (1 + ε)

t = 0

→ m(tsep) ∝ ε
3

w

1 + ε

2
−

1 + ε

2
0
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3. Repeat until either consensus or frozen final state

1. Pick a random spin

2. Assume state of neighbor if compatible

0. 3-state variable at each site:  − 0 +

Spiteful extremist model
Vazquez & SR (2004) -- inspired by 
the bounded confidence model of 
Deffuant et al (2000) 
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Probability to reach frozen final state

F (x, y) = probability to reach frozen state from (x, y)

x
∂2F (x, y)

∂x2
+ y

∂2F (x, y)

∂y2
= 0,

continuum limit:
F (x, 0) = 0

F (0, y) = 0

F (x, 1 − x) = 1

F (x, y) =
∑

n odd

2(2n + 1)

n(n + 1)

√

xy (x + y)n P 1
n

(

x − y

x + y

)

solution:

recursion formula:

F (x, y) = px[F (x − δ, y) + F (x + δ, y)]

+ py[F (x, y − δ) + F (x, y + δ)]

+ [1 − 2(px + py)]F (x, y)

+
_
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In each region, the probability of 
reaching specified final state is >50%

moral: extremism promotes deadlock



Outlook & some open questions

4. Spiteful extremists: deadlock & multiple final states

Implications for real politics?

1. Heterogeneous voter model:  fast consensus

What is the route to consensus?

Role of fluctuations?

Behavior of the correlations?

2. Majority rule: complex relaxation to a simple final state

Why do stripes occur?

What is the critical dimension?

What happens for more than 2 states?

3. Bounded compromise: rich bifurcation sequence


