## **Cutting Corners**

Sid Redner, Boston University, physics.bu.edu/~redner collaborators: P. L. Krapivsky, V. Spirin, J. Tailleur

13th C. Itzykson Conference: Puzzles of Growth

- Question: What is the shape of a manifold whose surface dynamically erodes?
- Examples: Boulders → pebbles Ising interface evolution
- Results:Chipping model  $\rightarrow$  not-quite round shapeCorner interface  $\leftrightarrow$  ASEP  $\leftrightarrow$  integer partitions
- Challenges: 3 dimensions does a paramagnet reach the ground state?

#### Doug Durian's Erosion Machine

Durian et al., PRL **97**, 028001 (2006); PRE **75**, 021301 (2007)



#### **Evolution of a Square Rock**



#### Expectations

Aristotle (~350 BC):

Rounding due to faster erosion at exposed corners and extremities.

Mullins (1956): & many differentrial geometry pubs

If  $v_{\text{interface}} \propto \text{local curvature}$ ,

 $\rightarrow$  circular limiting shape for d = 2non-circular limiting shape for d > 2

### Rock Chipping: Final Shape not Circular



#### Chipping Model PLK & SR PRE 75, 031119 (2007)





#### Angle Evolution for Bisection

 $n_k \equiv \# \text{ corners with "angle" } k \equiv -\ln_2(2\theta/\pi)$ = number of halvings

Master equation: (start with square; t+4 corners at time t) lose a k-corner  $n_k(t+1) - n_k(t) = -\frac{1}{t+4}n_k(t) + \frac{2}{t+4}n_{k-1}(t)$ bisect a (k-1)-corner  $\frac{dn_k}{dt} = -\frac{n_k}{t} + \frac{2}{t}n_{k-1}$ **Continuum limit:**  $n_k(t) = \frac{12}{t} \frac{(2\ln t)^{\kappa}}{k!}$ **Result:** 

#### Angle Distribution for Bisection

 $10^4$  chipping events



#### $10^7$ chipping events



#### Angle Evolution for General Angles





c(x,t) =fraction of angles  $x = \theta/2\pi$ 

$$\begin{split} \frac{\partial c(x,t)}{\partial t} &= -c(x,t) + 2 \int_{x}^{1} c(y,t) \frac{dy}{y} & \frac{dn_{k}}{dt} = -\frac{n_{k}}{t} + \frac{2}{t} n_{k-1} \\ c(\theta,t) &= \frac{8}{\pi} \sqrt{\frac{2t}{\ln(\pi/2\theta)}} e^{-t} I_{1} \left(\sqrt{8t \ln(\pi/2\theta)}\right) + \frac{8}{\pi} e^{-t} \delta\left(\theta - \frac{\pi}{2}\right), \\ &\sim e^{\sqrt{-t \ln \theta}} & \text{Ziff \& McGrady (1985); Ziff (1992)} \end{split}$$

→ broad distribution of angles

### Asymmetry

$$X^{2}(N) = \frac{1}{N} \sum_{i=1}^{N} x_{i}^{2} \qquad Y^{2}(N) = \frac{1}{N} \sum_{i=1}^{N} y_{i}^{2}$$

$$\begin{array}{ll} R^2_+(N) &= \max(X^2(N),Y^2(N)) & \mbox{for each} \\ R^2_-(N) &= \min(X^2(N),Y^2(N)) & \mbox{realization} \end{array}$$

$$\xi(N) \equiv \sqrt{\langle R_{+}^{2}(N) \rangle} / \sqrt{\langle R_{-}^{2}(N) \rangle} \quad \begin{array}{l} \text{average over} \\ \text{all realizations} \end{array}$$

#### Simulation Results



#### **Dynamics of Ising Interfaces**

V. Spirin, PLK, SR, PRE **63**, 036118 (2001); PRE **65**, 016119 (2002)

Ferromagnetic Ising model

- **Even coordinated lattices**
- Periodic boundary conditions
- Zero-temperature Glauber dynamics:

Pick a random spin and compute energy change  $\Delta E$  if the spin were to flip:

- if  $\Delta E < 0$  do it
- if  $\Delta E > 0$  don't do it
- if  $\Delta E = 0$  do it with prob. 1/2

#### **Dynamics of Ising Interfaces**

V. Spirin, PLK, SR, PRE **63**, 036118 (2001); PRE **65**, 016119 (2002)

Start with each spin  $\uparrow$  or  $\downarrow$  with probability  $\frac{1}{2}$ . Impose T=0 Glauber dynamics.

### What is the final state?

- d=1: ground state is *always* reached
- d=2: ground state is sometimes reached
- d>2: ground state is *never* reached

Many interacting interfaces are complicated → study dynamics of a single interface

#### Simplest lsing Interface J. Tailleur, PLK, & SR PRE 69, 026125 (2004)

a straight interface is stable: too simple

an evolving interface must have curvature: → single corner interface



#### Simplest lsing Interface J. Tailleur, PLK, & SR PRE 69, 026125 (2004)

a straight interface is stable: too simple

an evolving interface must have curvature: → single corner interface



# Simplest Ising Interface





#### Three Basic Models

 I. all corners flip equiprobably evaporation = deposition
 → lsing interface



#### Three Basic Models

 I. all corners flip equiprobably evaporation = deposition
 → lsing interface

2. evaporation > deposition → equilibrium integer partitions



#### Three Basic Models

 I. all corners flip equiprobably evaporation = deposition
 → lsing interface

2. evaporation > deposition → equilibrium integer partitions

3. deposition only (H>0<sup>+</sup>) → growing integer partitions



#### 2. Equilibrium Integer Partitions

Equivalence of corner interface & Young diagram



 $22 = \{7, 6, 4, 2, 1, 1, 1\}$ 

#### 2. Equilibrium Integer Partitions

number of distinct  $p(t) \sim \frac{1}{4\sqrt{3}t} e^{\sqrt{2\pi^2 t/3}}$ 

Hardy & Ramanujan (1918)

if each partition equiprobable, limiting interface shape is:

$$e^{-\lambda x} + e^{-\lambda y} = 1$$
  $\lambda = rac{\pi}{\sqrt{6t}}$ 
Temperley (1952)

### 3. Growing Integer Partitions Ising interface with H>0<sup>+</sup>



#### Equivalent to Asymmetric Exclusion Process



#### Equivalent to Asymmetric Exclusion Process







#### I. Ising Interface

#### Macroscopic Allen-Cahn equation for limiting shape:

 $v_n = -D \nabla \cdot \mathbf{n}$  interface velocity  $\propto$  local curvature

for the corner geometry:  $y_t = D \frac{y_{xx}}{1 + u_x^2}$ 

self-similar solution:  $y(x,t) = \sqrt{Dt} Y(X)$   $X = x/\sqrt{Dt}$ 

AC equation: 
$$\rightarrow \frac{Y - XY'}{2} = \frac{Y''}{1 + (Y')^2}$$
  $\lim_{X \to \infty} Y(X) = 0$   
 $\lim_{X \to +0} Y(X) = \infty$ 

asymptotic solution:  $Y \sim \frac{A}{X^2} e^{-X^2/4}$   $A \approx 2.74404...$ 









#### Outlook

chipping model:

not quite round shapes (in d=2) large fluctuations between realizations robust with respect to extensions preferentially chip prominent corners; chip more than 1 corner

lsing interfaces:
 relation with partitions; single interface solved
 challenges: corner interface in d=3



#### Outlook

chipping model:

not quite round shapes (in d=2) large fluctuations between realizations robust with respect to extensions preferentially chip prominent corners; chip more than 1 corner

lsing interfaces:
 relation with partitions; single interface solved
 challenges: corner interface in d=3
 jfinal fate with random IC?

# What is the final state? d=1: ground state is always reached d=2: ground state is sometimes reached d>2: ground state is never reached

### Please prove for $d \ge 2!$

#### Outlook

chipping model:

not quite round shapes (in d=2) large fluctuations between realizations robust with respect to extensions preferentially chip prominent corners; chip more than 1 corner

lsing interfaces:
 relation with partitions; single interface solved
 challenges: corner interface in d=3
 jfinal fate with random IC?