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Question: What is the shape of a manifold 
whose surface dynamically erodes?

Cutting Corners

Results: Chipping model  → not-quite round shape 
Corner interface ↔ ASEP ↔ integer partitions

Challenges: 3 dimensions
does a paramagnet reach the ground state?

13th C. Itzykson Conference:  Puzzles of Growth

Examples: Boulders → pebbles
Ising interface evolution



Doug Durian’s Erosion Machine

rock

Durian et al., PRL 97, 028001 (2006); 
                     PRE 75, 021301 (2007)



Evolution of a Square Rock
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Expectations
Aristotle (~350 BC):

Rounding due to faster erosion at 
exposed corners and extremities.

If vinterface ∝ local curvature,

& many differentrial geometry pubs                   Mullins (1956):

→ circular limiting shape for d = 2
non-circular limiting shape for d > 2
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Chipping Model

geometry of 
single event
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PLK & SR
PRE 75, 031119 (2007)



Numerical Realizations (100 corners)



Angle Evolution for Bisection

nk ≡ # corners with “angle” k k ≡ − ln2(2θ/π)

= number of halvings

dnk

dt
= −

nk

t
+

2

t
nk−1Continuum limit:

nk(t) =
12

t

(2 ln t)k

k!
Result:

Master equation: (start with square;  t+4 corners at time t)

nk(t + 1) − nk(t) = −

1

t + 4
nk(t) +

2

t + 4
nk−1(t)

lose a k-corner bisect a (k−1)-corner
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Angle Distribution for Bisection
104 chipping events
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Angle Evolution for General Angles
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∂c(x, t)

∂t
= −c(x, t) + 2

∫ 1

x

c(y, t)
dy

y

Angle Evolution for General Angles
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"/2
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"/2 ↔ segment fragmentation

c(x, t) = fraction of angles x = θ/2π

c(θ, t) =
8

π

√

2t

ln(π/2θ)
e−tI1

(

√

8t ln(π/2θ)
)

+
8

π
e−tδ

(

θ −

π

2

)

,

∼ e
√

−t ln θ Ziff & McGrady (1985); Ziff (1992)

→broad distribution of angles

dnk

dt
= −

nk

t
+

2

t
nk−1

compare with



X2(N) =
1

N

N∑

i=1

x2

i Y 2(N) =
1

N

N∑

i=1

y2

i

R2
+(N) = max(X2(N), Y 2(N))

R2
−

(N) = min(X2(N), Y 2(N))

ξ(N) ≡
√

〈R2
+(N)〉/

√

〈R2
−

(N)〉

Asymmetry

for each 
realization

average over 
all realizations



Simulation Results
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Zero-temperature Glauber dynamics:

Ferromagnetic Ising model

Even coordinated lattices

Pick a random spin and compute energy change ΔE if 
the spin were to flip:

if ∆E < 0 do it

if ∆E > 0 don′t do it

if ∆E = 0 do it with prob. 1/2

Periodic boundary conditions

V. Spirin, PLK, SR, PRE 63, 036118 (2001);  
                               PRE 65, 016119 (2002)

Dynamics of Ising Interfaces



Dynamics of Ising Interfaces

Start with each spin ↑ or ↓ with probability ½.
Impose T=0 Glauber dynamics.  

 What is the final state?

V. Spirin, PLK, SR, PRE 63, 036118 (2001);  
                               PRE 65, 016119 (2002)

d=1:  ground state is always reached

d=2:  ground state is sometimes reached

d>2:  ground state is never reached

Many interacting  interfaces are complicated 
→ study dynamics of a single interface



a straight interface is stable:  too simple

an evolving interface must have curvature:   
                 → single corner interface
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Simplest Ising Interface J. Tailleur, PLK, & SR
PRE 69, 026125 (2004)



a straight interface is stable:  too simple

an evolving interface must have curvature:   
                 → single corner interface
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Simplest Ising Interface J. Tailleur, PLK, & SR
PRE 69, 026125 (2004)
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Simplest Ising Interface

one more “outer” corner than “inner” corner

inner corners

outer corners
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Simplest Ising Interface

one more “outer” corner than “inner” corner

→ St = t x, t ∼
√

t interface recedes 
diffusively

St



Three Basic Models

1. all corners flip equiprobably
   evaporation = deposition
      → Ising interface

+



Three Basic Models

2. evaporation > deposition 
      → equilibrium integer partitions

1. all corners flip equiprobably
   evaporation = deposition
      → Ising interface



Three Basic Models

3. deposition only (H>0⁺)
      → growing integer partitions

1. all corners flip equiprobably
   evaporation = deposition
      → Ising interface

2. evaporation > deposition 
      → equilibrium integer partitions
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Equivalence of corner interface & Young diagram

22 = {7, 6, 4, 2, 1, 1, 1}

2. Equilibrium Integer Partitions



p(t) ∼
1

4
√

3 t
e
√

2π2t/3number of distinct  
partitions of t: Hardy & Ramanujan (1918)

if each partition 
equiprobable, limiting 
interface shape is:

e
−λx

+ e
−λy

= 1 λ =
π

√

6t
Temperley (1952)

2. Equilibrium Integer Partitions



3. Growing Integer Partitions
Ising interface with H>0⁺



Equivalent to Asymmetric Exclusion Process

downslope → particle
upslope      → hole



Equivalent to Asymmetric Exclusion Process

downslope → particle
upslope      → hole



Equivalent to Asymmetric Exclusion Process

y
′(x) = −n(z)



Equivalent to Asymmetric Exclusion Process

y
′(x) = −n(z)

→
√

x +
√

y =
√

t Rost (1981)

n(z, t) →
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Macroscopic Allen-Cahn equation for limiting shape:

vn = −D∇ · n interface velocity ∝ local curvature

for the corner geometry: yt = D
yxx

1 + y2
x

self-similar solution: y(x, t) =
√

Dt Y (X) X = x/
√

Dt

→

Y − XY ′

2
=

Y ′′

1 + (Y ′)2

Y ∼

A

X2
e
−X2/4

A ≈ 2.74404 . . .

AC equation:

asymptotic solution:

lim
X→∞

Y (X) = 0

lim
X→+0

Y (X) = ∞

1. Ising Interface



Equivalent to Symmetric Exclusion Process

y
′(x) = −n(z)

asymptotic solution: Y ∼
2
√

π

e−X
2

X2

nt = nzz

n(z, t) =
1

2
erfc(z/

√

4t)

PLK (2008)



0 1 2 3 4
λx

0

1

2

3

4
λy

Ising
partitions
irreversible



0 0.2 0.4 0.6 0.8 1
e−λx

0

0.2

0.4

0.6

0.8

1
e−

λy
Ising
partitions
irreversible

e
−λx

+ e
−λy

= 1



√

x +
√

y =
√

t

0.0 0.2 0.4 0.6 0.8 1.0

(x/t)1/2
0

0.2

0.4

0.6

0.8

1
(y
/t)

1/
2

Ising
partitions
irreversible



Outlook

chipping model:

robust with respect to extensions 
preferentially chip prominent corners; chip more than 1 corner

large fluctuations between realizations 
not quite round shapes (in d=2)

Ising interfaces:
relation with partitions; single interface solved
challenges: corner interface in d=3



Stolen from Richard 
Kenyon’s website

Single Corner in d=3



Outlook

chipping model:

robust with respect to extensions 
preferentially chip prominent corners; chip more than 1 corner

large fluctuations between realizations 
not quite round shapes (in d=2)

Ising interfaces:
relation with partitions; single interface solved
challenges:

¿final fate with random IC?
corner interface in d=3



 What is the final state?
d=1:  ground state is always reached

d=2:  ground state is sometimes reached

d>2:  ground state is never reached

Please prove for d ≥ 2!



Outlook

chipping model:

robust with respect to extensions 
preferentially chip prominent corners; chip more than 1 corner

large fluctuations between realizations 
not quite round shapes (in d=2)

Ising interfaces:
relation with partitions; single interface solved
challenges:

¿final fate with random IC?
corner interface in d=3


