Cutting Corners

Sid Redner, Boston University, physics.bu.edu/~redner collaborators: P.L. Krapivsky, V. Spirin, J.Tailleur

13th C. Itzykson Conference: Puzzles of Growth
Question: What is the shape of a manifold whose surface dynamically erodes?

Examples: Boulders \rightarrow pebbles Ising interface evolution

Results:
Chipping model \rightarrow not-quite round shape Corner interface \leftrightarrow ASEP \leftrightarrow integer partitions

Challenges: 3 dimensions does a paramagnet reach the ground state?

Doug Durian's Erosion Machine

Durian et al., PRL 97, 028001 (2006);
PRE 75, 021301 (2007)

Evolution of a Square Rock

Expectations

Aristotle (~350 BC):
Rounding due to faster erosion at
exposed corners and extremities.
Mullins (I956): \& many differentrial geometry pubs
If $v_{\text {interface }} \propto$ local curvature,
\rightarrow circular limiting shape for $d=2$
non-circular limiting shape for $d>2$

Rock Chipping: Final Shape not Circular

Chipping Model

Numerical Realizations (100 corners)

Angle Evolution for Bisection

$\begin{aligned} n_{k} \equiv \# \text { corners with "angle" } k \quad k & \equiv-\ln _{2}(2 \theta / \pi) \\ & =\text { number of halvings }\end{aligned}$

Master equation: (start with square; $t+4$ corners at time t)

$$
n_{k}(t+1)-n_{k}(t)=-\frac{1}{t+4} n_{k}(t)+\frac{2^{\swarrow}}{t+4} n_{k-1}(t)
$$

Continuum limit:

$$
\frac{d n_{k}}{d t}=-\frac{n_{k}}{t}+\frac{2}{t} n_{k-1}
$$

Result:

$$
n_{k}(t)=\frac{12}{t} \frac{(2 \ln t)^{k}}{k!}
$$

Angle Distribution for Bisection
10^{4} chipping events

10^{7} chipping events

Angle Evolution for General Angles

Angle Evolution for General Angles

$$
\begin{gathered}
\frac{\partial c(x, t)}{\partial t}=-c(x, t)+2 \int_{x}^{1} c(y, t) \frac{d y}{y} \quad \begin{array}{l}
\text { compare with } \\
\frac{d n_{k}}{d t}=-\frac{n_{k}}{t}+\frac{2}{t} n_{k-1}
\end{array} \\
c(\theta, t)=\frac{8}{\pi} \sqrt{\frac{2 t}{\ln (\pi / 2 \theta)}} e^{-t} I_{1}(\sqrt{8 t \ln (\pi / 2 \theta)})+\frac{8}{\pi} e^{-t} \delta\left(\theta-\frac{\pi}{2}\right), \\
\sim e^{\sqrt{-t \ln \theta}} \quad \text { Ziff \& McGrady (1985); Ziff (1992) }
\end{gathered}
$$

\rightarrow broad distribution of angles

Asymmetry

$$
\begin{array}{ll}
X^{2}(N)=\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2} & Y^{2}(N)=\frac{1}{N} \sum_{i=1}^{N} y_{i}^{2} \\
R_{+}^{2}(N)=\max \left(X^{2}(N), Y^{2}(N)\right) & \text { for each } \\
R_{-}^{2}(N)=\min \left(X^{2}(N), Y^{2}(N)\right) & \text { realization }
\end{array}
$$

$$
\xi(N) \equiv \sqrt{\left\langle R_{+}^{2}(N)\right\rangle} / \sqrt{\left\langle R_{-}^{2}(N)\right\rangle}
$$

average over all realizations

Simulation Results

Dynamics of Ising Interfaces

V. Spirin, PLK, SR, PRE 63, 036118 (2001);

PRE 65, 016119 (2002)
Ferromagnetic Ising model
Even coordinated lattices
Periodic boundary conditions
Zero-temperature Glauber dynamics:
Pick a random spin and compute energy change ΔE if the spin were to flip:

$$
\begin{array}{lll}
\text { if } & \Delta E<0 & \text { do it } \\
\text { if } & \Delta E>0 & \text { don't do it }_{\text {if }} \\
\text { it } & \Delta E=0 & \text { do it with prob. } 1 / 2
\end{array}
$$

Dynamics of Ising Interfaces
 V. Spirin, PLK, SR, PRE 63, 036118 (2001);
 PRE 65, 016119 (2002)

Start with each spin \uparrow or \downarrow with probability $1 / 2$. Impose T=0 Glauber dynamics.

What is the final state?
$\mathrm{d}=\mathrm{I}$: ground state is always reached
$\mathrm{d}=2$: ground state is sometimes reached
$d>2$: ground state is never reached
Many interacting interfaces are complicated
\rightarrow study dynamics of a single interface

 Simplest Ising Interface pitea,

a straight interface is stable: too simple
an evolving interface must have curvature:
\rightarrow single corner interface

 Simplest Ising Interface pitea,

 a straight interface is stable: too simple an evolving interface must have curvature:\rightarrow single corner interface

Simplest Ising Interface

\square inner corners

- outer corners

X
one more "outer" corner than "inner" corner

Simplest Ising Interface

X
one more "outer" corner than "inner" corner

$$
\longrightarrow S_{t}=t \quad x, t \sim \sqrt{t} \quad \begin{aligned}
& \text { interface recedes } \\
& \text { diffusively }
\end{aligned}
$$

Three Basic Models

I. all corners flip equiprobably evaporation = deposition
\rightarrow Ising interface

Three Basic Models

I. all corners flip equiprobably evaporation $=$ deposition
\rightarrow Ising interface
2. evaporation > deposition \rightarrow equilibrium integer partitions

Three Basic Models

I. all corners flip equiprobably evaporation $=$ deposition
\rightarrow Ising interface
2. evaporation > deposition
\rightarrow equilibrium integer partitions
3. deposition only $\left(\mathrm{H}>0^{+}\right)$
\rightarrow growing integer partitions

2. Equilibrium Integer Partitions

Equivalence of corner interface \& Young diagram

2. Equilibrium Integer Partitions

number of distinct partitions of t :

$$
p(t) \sim \frac{1}{4 \sqrt{3} t} e^{\sqrt{2 \pi^{2} t / 3}}
$$

Hardy \& Ramanujan (1918)
if each partition equiprobable, limiting interface shape is:

$$
e^{-\lambda x}+e^{-\lambda y}=1 \quad \lambda=\frac{\pi}{\sqrt{6 t}}
$$

3. Growing Integer Partitions

Ising interface with $\mathrm{H}>0^{+}$

Equivalent to Asymmetric Exclusion Process

downslope \rightarrow particle
upslope \rightarrow hole

Equivalent to Asymmetric Exclusion Process

downslope \rightarrow particle
upslope \rightarrow hole

Equivalent to Asymmetric Exclusion Process

Equivalent to Asymmetric Exclusion Process

$$
\begin{aligned}
& n_{t}+[n(1-n)]_{z}=0 \\
& n(z, t) \rightarrow\left\{\begin{array}{ll}
1 & z<-t \\
\frac{1}{2}\left(1-\frac{z}{t}\right) & |z|<t \\
0 & z>t
\end{array} \quad \begin{array}{l}
\text { zox-y }
\end{array}\right. \\
& \rightarrow \sqrt{x}+\sqrt{y}=\sqrt{t} \quad \operatorname{Rost}(|98|)
\end{aligned}
$$

I. Ising Interface

Macroscopic Allen-Cahn equation for limiting shape:

$$
v_{n}=-D \nabla \cdot \mathbf{n} \quad \text { interface velocity } \propto \text { local curvature }
$$

for the corner geometry: $y_{t}=D \frac{y_{x x}}{1+y_{x}^{2}}$
self-similar solution: $y(x, t)=\sqrt{D t} Y(X) \quad X=x / \sqrt{D t}$
AC equation: $\rightarrow \frac{Y-X Y^{\prime}}{2}=\frac{Y^{\prime \prime}}{1+\left(Y^{\prime}\right)^{2}} \quad \begin{gathered}\lim _{\substack{X \rightarrow \infty \\ X \rightarrow+0}} Y(X)=0 \\ \lim ^{2}(X)=\infty\end{gathered}$
asymptotic solution: $\quad Y \sim \frac{A}{X^{2}} e^{-X^{2} / 4} \quad A \approx 2.74404 \ldots$

Equivalent to Symmetric Exclusion Process
 PLK (2008)

$n_{t}=n_{z z}$
$n(z, t)=\frac{1}{2} \operatorname{erfc}(z / \sqrt{4 t})$
asymptotic solution: $Y \sim \frac{2}{\sqrt{\pi}} \frac{e^{-X^{2}}}{X^{2}}$

Outlook

chipping model:
not quite round shapes (in d=2)
large fluctuations between realizations
robust with respect to extensions preferentially chip prominent corners; chip more than I corner

Ising interfaces:
relation with partitions; single interface solved challenges: corner interface in $\mathrm{d}=3$

Single Corner in d=3

Outlook

chipping model:
not quite round shapes (in d=2)
large fluctuations between realizations
robust with respect to extensions preferentially chip prominent corners; chip more than I corner

Ising interfaces:
relation with partitions; single interface solved challenges: corner interface in d=3 ¿final fate with random IC?

What is the final state?
$\mathrm{d}=\mathrm{I}$: ground state is always reached
$\mathrm{d}=2$: ground state is sometimes reached $d>2$: ground state is never reached

Please prove for $d \geq 2$!

Outlook

chipping model:
not quite round shapes (in d=2)
large fluctuations between realizations
robust with respect to extensions preferentially chip prominent corners; chip more than I corner

Ising interfaces:
relation with partitions; single interface solved challenges: corner interface in d=3 ¿final fate with random IC?

