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Asymmetric Exclusion Process (ASEP)

• particles confined to a 1d lattice
• particles move to the right only (asymmetric)
• only one particle per site (exclusion)
• hopping only if target is vacant (process)

B. Schmittmann & R.K.P. Zia,  Phase Transitions and Critical Phenomena, Vol.17, eds. C. Domb and J. L. Lebowitz
G. Schütz,  Phase Transitions and Critical Phenomena, Vol. 19, eds. C. Domb and J. L. Lebowitz 
B. Derrida, Phys. Repts. 301, 65 (1998);



•simple: only one parameter, the density ρ
•no correlations: steady-state current j=ρ(1-ρ)

•inhomogeneity smoothing by Burgers eqn

Asymmetric Exclusion Process (ASEP)

∂ρ

∂t
+

∂J

∂x
=

∂ρ

∂t
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∂ρ(1− ρ)
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= 0

upslope → shock wave downstep → rarefaction wave



Why and  What is Facilitation?

particle motion in glasses:  higher mobility in  
                                       low-density regions



Why and  What is Facilitation?

particle motion in glasses:  higher mobility in  
                                       low-density regions

facilitated exclusion:  need stimulus to move                  



Why and  What is Facilitation?

particle motion in glasses:  higher mobility in  
                                       low-density regions

facilitated exclusion:  need stimulus to move                  

lazy: no stimuli



Why and  What is Facilitation?

particle motion in glasses:  higher mobility in  
                                       low-density regions

facilitated exclusion:  need stimulus to move                  

lazy: no stimuli mobile: kicked in the ass



Facilitated  Asymmetric Exclusion Process
 U. Basu and P. K. Mohanty,  Phys. Rev. E  79, 041143 (2009)
 L. B. Shaw, R. K. P. Zia, and K. H. Lee, Phys. Rev. E 68, 021910 (2003)

 M. Rossi, R. Pastor-Satorras, and A. Vespignani, Phys. Rev. Lett. 85, 1803 (2000)
 M. Sellitto, Phys. Rev. Lett. 101, 048301 (2008)

lazy active



Facilitated  Asymmetric Exclusion Process
 U. Basu and P. K. Mohanty,  Phys. Rev. E  79, 041143 (2009)
 L. B. Shaw, R. K. P. Zia, and K. H. Lee, Phys. Rev. E 68, 021910 (2003)

 M. Rossi, R. Pastor-Satorras, and A. Vespignani, Phys. Rev. Lett. 85, 1803 (2000)
 M. Sellitto, Phys. Rev. Lett. 101, 048301 (2008)

lazy active

only the triplet is active 
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Finite Ring  (density > 1/2)

isolated vacancies



Steady State on the Ring

claim:  all maximal-island states are equiprobable

P (C)
�

C�

R(C → C �) =
�

C�

P (C �) R(C � → C)

# of active 
leading triplets

# of active 
leading triplets

steady state for P(C)= constant
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Steady State Current
for flow between sites i and i+1:
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much more: Gaussian current distribution
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Evolution of Density Downstep

f =






ρ− z < z−
(2 + z)−1/2 z− < z < z+

ρ+ z > z+

(2 + z−)−1/2 = ρ−
left boundary of rarefaction 
wave by continuity:

−ρ−z− + ρ+z+ =
� z+

z−

dz√
2 + z

+ J− − J+

right boundary of rarefaction 
wave by mass conservation:

initial mass 
in [z₋,z₊]

mass at time t
 in [z₋,z₊]

net flux 
into [z₋,z₊]
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∂ρ = z → Jρρ ρz = 1

If Jρρ < 0 → ρ is a decreasing function of z
If Jρρ > 0 → ρ must have jump discontinuity
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single maximum in [0,1]
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Facilitated exclusion: 
steady state: current and island sizes
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Future:
more general mechanisms (distance facilitation)?
is exclusion even necessary?
diffusive corrections to hydrodynamic solutions?
higher dimensions?
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Aimed at graduate students, this book explores some of the core

phenomena in non-equilibrium statistical physics. It focuses on the

development and application of theoretical methods to help

students develop their problem-solving skills.

The book begins with microscopic transport processes: diffusion,

collision-driven phenomena, and exclusion. It then presents the

kinetics of aggregation, fragmentation, and adsorption, where basic

phenomenology and solution techniques are emphasized. The

following chapters cover kinetic spin systems, by developing both a

discrete and a continuum formulation, the role of disorder in 

non-equilibrium processes, and hysteresis from the non-equilibrium

perspective. The concluding chapters address population dynamics,

chemical reactions, and a kinetic perspective on complex networks.

The book contains more than 200 exercises to test students'

understanding of the subject. A link to a website hosted by the

authors, containing an up-to-date list of errata and solutions to

some of the exercises, can be found at

www.cambridge.org/9780521851039.
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Cover illustration: Snapshot of a collision cascade in a perfectly elastic, initially
stationary hard-sphere gas in two dimensions due to a single incident particle.
Shown are the cloud of moving particles (red) and the stationary particles (blue)
that have not yet experienced any collisions. Figure courtesy of Tibor Antal.
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