Fate of the Kinetic Ising Model

Sid Redner, Physics Department, Boston University, physics.bu.edu/~redner collaborators: P. L. Krapivsky, V. Spirin, K. Barros, J. Olejarz

Fate of the Kinetic Ising Model

Sid Redner, Physics Department, Boston University, physics.bu.edu/~redner collaborators: P. L. Krapivsky, V. Spirin, K. Barros, J. Olejarz

Basic question: What is the final state of the Ising-Glauber model @ T=0 with symmetric initial conditions?

Fate of the Kinetic Ising Model

Sid Redner, Physics Department, Boston University, physics.bu.edu/~redner collaborators: P. L. Krapivsky, V. Spirin, K. Barros, J. Olejarz

Basic question: What is the final state of the Ising-Glauber model @ $\mathrm{T}=0$ with symmetric initial conditions?

Expectation:

- Ground state is approached as $\mathrm{t} \rightarrow \infty$
- Power-law coarsening

Fate of the Kinetic Ising Model

Sid Redner, Physics Department, Boston University, physics.bu.edu/~redner collaborators: P. L. Krapivsky, V. Spirin, K. Barros, J. Olejarz

Basic question: What is the final state of the Ising-Glauber model @ T=0 with symmetric initial conditions?

Expectation:

- Ground state is approached as $\mathrm{t} \rightarrow \infty$
- Power-law coarsening

The result:

dimension	expectation
I	absolutely correct

Fate of the Kinetic Ising Model

Sid Redner, Physics Department, Boston University, physics.bu.edu/~redner collaborators: P. L. Krapivsky, V. Spirin, K. Barros, J. Olejarz

Basic question: What is the final state of the Ising-Glauber model @ T=0 with symmetric initial conditions?

Expectation:

- Ground state is approached as $\mathrm{t} \rightarrow \infty$
- Power-law coarsening

The result:

dimension	expectation
I	absolutely correct
2	"sort of" correct

Fate of the Kinetic Ising Model

Sid Redner, Physics Department, Boston University, physics.bu.edu/~redner collaborators: P. L. Krapivsky, V. Spirin, K. Barros, J. Olejarz

Basic question: What is the final state of the Ising-Glauber model @ T=0 with symmetric initial conditions?

Expectation:

- Ground state is approached as $\mathrm{t} \rightarrow \infty$
- Power-law coarsening

The result:

dimension	expectation
I	absolutely correct
2	"sort of" correct
≥ 3	wrong

Central Dogma of Spin Dynamics

Start at $T \gg T_{c}$ and suddenly quench to T_{f}.

1. Supercritical dynamics $T_{f}>T_{c}$
2. Critical $T_{f}=T_{c}$
3. Subcritical $T_{f}<T_{c}$ universal, same as $T_{f}=0$.

Central Dogma of Spin Dynamics

Start at $T \gg T_{c}$ and suddenly quench to T_{f}.

1. Supercritical dynamics $T_{f}>T_{c}$
2. Critical $T_{f}=T_{c}$
3. Subcritical $T_{f}<T_{c}$ universal, same as $T_{f}=0$.

Dynamic scaling hypothesis:

1. Single length scale $L(t) \rightarrow$ coarsening
2. Algebraic scaling $L(t) \sim t^{z}$
3. Universality z independent of most details.

The System

Ising Hamiltonian $\mathcal{H}=-\sum_{\langle i, j\rangle} \sigma_{i} \sigma_{j} \quad \sigma_{i}= \pm 1$

The System

Ising Hamiltonian $\mathcal{H}=-\sum_{\langle i, j\rangle} \sigma_{i} \sigma_{j} \quad \sigma_{i}= \pm 1 \quad$ homogeneous

The System

Ising Hamiltonian $\mathcal{H}=-\sum_{\langle i, j\rangle} \sigma_{i} \sigma_{j} \quad \sigma_{i}= \pm 1 \quad$ homogeneous

Lattice:

- even co-ordination number
- periodic boundaries

The System

Ising Hamiltonian $\mathcal{H}=-\sum_{\langle i, j\rangle} \sigma_{i} \sigma_{j} \quad \sigma_{i}= \pm 1 \quad$ homogeneous

Lattice:

- even co-ordination number
- periodic boundaries

Initial state:

- antiferromagnetic
- \uparrow with prob. $1 / 2$, \downarrow with prob. $1 / 2$
- $1 / 2$ spins $\uparrow, 1 / 2$ spins \downarrow

Endowing Spins with a Dynamics

Endowing Spins with a Dynamics

detailed balance condition:

$$
\frac{w_{i}(\mathbf{s})}{w_{i}\left(\mathbf{s}^{i}\right)}=\frac{P_{\mathrm{eq}}\left(\mathbf{s}^{i}\right)}{P_{\mathrm{eq}}(\mathbf{s})}=\frac{e^{-\beta s_{i} \sum J_{i j} s_{j}}}{e^{\beta s_{i} \sum J_{i j} s_{j}}}=\frac{1-s_{i} \tanh \left(\beta \sum_{j \in\langle i\rangle} J_{i j} s_{j}\right)}{1+s_{i} \tanh \left(\beta \sum_{j \in\langle i\rangle} J_{i j} s_{j}\right)}
$$

detailed balance condition in state space:

Endowing Spins with a Dynamics

detailed balance condition:

$$
\frac{w_{i}(\mathbf{s})}{w_{i}\left(\mathbf{s}^{i}\right)}=\frac{P_{\mathrm{eq}}\left(\mathbf{s}^{i}\right)}{P_{\mathrm{eq}}(\mathbf{s})}=\frac{e^{-\beta s_{i} \sum J_{i j} s_{j}}}{e^{\beta s_{i} \sum J_{i j} s_{j}}}=\frac{1-s_{i} \tanh \left(\beta \sum_{j \in\langle i\rangle} J_{i j} s_{j}\right)}{1+s_{i} \tanh \left(\beta \sum_{j \in\langle i\rangle} J_{i j} s_{j}\right)}
$$

Endowing Spins with a Dynamics

detailed balance condition:

$$
\frac{w_{i}(\mathbf{s})}{w_{i}\left(\mathbf{s}^{i}\right)}=\frac{P_{\mathrm{eq}}\left(\mathbf{s}^{i}\right)}{P_{\mathrm{eq}}(\mathbf{s})}=\frac{e^{-\beta s_{i} \sum J_{i j} s_{j}}}{e^{\beta s_{i} \sum J_{i j} s_{j}}}=\frac{1-s_{i} \tanh \left(\beta \sum_{j \in\langle i\rangle} J_{i j} s_{j}\right)}{1+s_{i} \tanh \left(\beta \sum_{j \in\langle i\rangle} J_{i j} s_{j}\right)}
$$

flip rate in one dimension:

$$
\begin{aligned}
w_{i} & =\frac{1}{2}\left\{1-s_{i} \tanh \left[\beta J\left(s_{i-1}+s_{i+1}\right)\right]\right\} \\
& \rightarrow \frac{1}{2}\left[1-s_{i} \frac{s_{i-1}+s_{i+1}}{2}\right] \quad T \rightarrow 0
\end{aligned}
$$

Endowing Spins with a Dynamics

detailed balance condition:

$$
\frac{w_{i}(\mathbf{s})}{w_{i}\left(\mathbf{s}^{i}\right)}=\frac{P_{\mathrm{eq}}\left(\mathbf{s}^{i}\right)}{P_{\mathrm{eq}}(\mathbf{s})}=\frac{e^{-\beta s_{i} \sum J_{i j} s_{j}}}{e^{\beta s_{i} \sum J_{i j} s_{j}}}=\frac{1-s_{i} \tanh \left(\beta \sum_{j \in\langle i\rangle} J_{i j} s_{j}\right)}{1+s_{i} \tanh \left(\beta \sum_{j \in\langle i\rangle} J_{i j} s_{j}\right)}
$$

flip rate in one dimension:

$$
\begin{aligned}
w_{i} & =\frac{1}{2}\left\{1-s_{i} \tanh \left[\beta J\left(s_{i-1}+s_{i+1}\right)\right]\right\} \\
& \rightarrow \frac{1}{2}\left[1-s_{i} \frac{s_{i-1}+s_{i+1}}{2}\right] \quad T \rightarrow 0
\end{aligned}
$$

Glauber dynamics at $\mathrm{T}=0$: Pick a random spin and consider outcome of reversing it

$$
\begin{array}{lll}
\text { if } & \Delta E<0 & \text { do it } \\
\text { if } & \Delta E>0 & \text { don't do it } \\
\text { if } & \Delta E=0 & \text { do it with prob. } 1 / 2
\end{array}
$$

Equations of Motion

Correlation functions: $S_{i}=\left\langle s_{i}\right\rangle, \quad S_{i, j}=\left\langle s_{i} s_{j}\right\rangle$

Equations of Motion

Correlation functions: $S_{i}=\left\langle s_{i}\right\rangle, S_{i, j}=\left\langle s_{i} s_{j}\right\rangle \ldots$

$$
\begin{aligned}
& \frac{d S_{j}}{d t}=-2\left\langle s_{j} w_{j}\right\rangle \\
& \frac{d S_{i, j}}{d t}=-2\left\langle s_{i} s_{j}\left[w_{i}+w_{j}\right]\right\rangle
\end{aligned}
$$

Equations of Motion

Correlation functions: $S_{i}=\left\langle s_{i}\right\rangle, \quad S_{i, j}=\left\langle s_{i} s_{j}\right\rangle \ldots \ldots$

$$
\begin{aligned}
& \frac{d S_{j}}{d t}=-2\left\langle s_{j} w_{j}\right\rangle \\
& \frac{d S_{i, j}}{d t}=-2\left\langle s_{i} s_{j}\left[w_{i}+w_{j}\right]\right\rangle
\end{aligned}
$$

mean spin:

$$
\begin{aligned}
\frac{d S_{j}}{d t} & =-2\left\langle s_{j}\left\{\frac{1}{2}\left[1-s_{j} \frac{s_{j-1}+s_{j+1}}{2}\right]\right\}\right\rangle \\
& =-S_{j}+\frac{1}{2}\left(S_{j-1}+S_{j+1}\right)
\end{aligned}
$$

mean spin:

$$
\frac{d S_{j}}{d t}=-S_{j}+\frac{1}{2}\left(S_{j-1}+S_{j+1}\right)
$$

mean spin:

$$
\begin{array}{r}
\frac{d S_{j}}{d t}=-S_{j}+\frac{1}{2}\left(S_{j-1}+S_{j+1}\right) \\
S_{j}(t)=I_{j}(t) e^{-t}
\end{array}
$$

mean spin:

$$
\begin{array}{r}
\frac{d S_{j}}{d t}=-S_{j}+\frac{1}{2}\left(S_{j-1}+S_{j+1}\right) \\
S_{j}(t)=I_{j}(t) e^{-t}
\end{array}
$$

kth-neighbor correlation function: $G_{k} \equiv S_{i, i+k}$

$$
\frac{d G_{k}}{d t}=-2 G_{k}+\left(G_{k-1}+G_{k+1}\right) \quad G_{0}(t)=\left\langle s_{i}^{2}\right\rangle=1
$$

mean spin:

$$
\begin{array}{r}
\frac{d S_{j}}{d t}=-S_{j}+\frac{1}{2}\left(S_{j-1}+S_{j+1}\right) \\
S_{j}(t)=I_{j}(t) e^{-t}
\end{array}
$$

kth-neighbor correlation function: $G_{k} \equiv S_{i, i+k}$

$$
\begin{aligned}
\frac{d G_{k}}{d t} & =-2 G_{k}+\left(G_{k-1}+G_{k+1}\right) \quad G_{0}(t)=\left\langle s_{i}^{2}\right\rangle=1 \\
G_{k}(t) & =1-e^{-2 t}\left[I_{0}(2 t)+I_{k}(2 t)+2 \sum_{j=1}^{k-1} I_{j}(2 t)\right]
\end{aligned}
$$

mean spin:

$$
\begin{array}{r}
\frac{d S_{j}}{d t}=-S_{j}+\frac{1}{2}\left(S_{j-1}+S_{j+1}\right) \\
S_{j}(t)=I_{j}(t) e^{-t}
\end{array}
$$

kth-neighbor correlation function: $G_{k} \equiv S_{i, i+k}$

$$
\begin{aligned}
\frac{d G_{k}}{d t} & =-2 G_{k}+\left(G_{k-1}+G_{k+1}\right) \quad G_{0}(t)=\left\langle s_{i}^{2}\right\rangle=1 \\
G_{k}(t) & =1-e^{-2 t}\left[I_{0}(2 t)+I_{k}(2 t)+2 \sum_{j=1}^{k-1} I_{j}(2 t)\right] \\
\rho(t) & =\frac{1}{2}\left(1-G_{1}\right)=\frac{1}{2} e^{-2 t}\left[I_{0}(2 t)+I_{1}(2 t)\right] \\
& \simeq(4 \pi t)^{-1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
G_{1} & =\left\langle s_{i} s_{i+1}\right\rangle \\
& =\operatorname{Prob}(\text { aligned })-\operatorname{Prob}(\text { anti-aligned }) \\
& =1-2 \operatorname{Prob}(\text { anti-aligned }) \\
& =1-2 \operatorname{Prob}(\text { domain wall particle exists) } \\
& =1-2 \rho
\end{aligned}
$$

$$
G_{1}=\left\langle s_{i} s_{i+1}\right\rangle
$$

$$
=\operatorname{Prob}(\text { aligned })-\operatorname{Prob}(\text { anti-aligned })
$$

$$
=1-2 \operatorname{Prob}(\text { anti-aligned })
$$

$$
=1-2 \text { Prob(domain wall particle exists) }
$$

$$
=1-2 \rho
$$

$\rho=$ density of domain-wall "particles"
mean spin:

$$
\begin{array}{r}
\frac{d S_{j}}{d t}=-S_{j}+\frac{1}{2}\left(S_{j-1}+S_{j+1}\right) \\
S_{j}(t)=I_{j}(t) e^{-t}
\end{array}
$$

kth-neighbor correlation function: $\quad G_{k} \equiv S_{i, i+k}$

$$
\begin{aligned}
\frac{d G_{k}}{d t} & =-2 G_{k}+\left(G_{k-1}+G_{k+1}\right) \quad G_{0}(t)=\left\langle s_{i}^{2}\right\rangle=1 \\
G_{k}(t) & =1-e^{-2 t}\left[I_{0}(2 t)+I_{k}(2 t)+2 \sum_{j=1}^{k-1} I_{j}(2 t)\right] \\
\rho(t) & =\frac{1}{2}\left(1-G_{1}\right)=\frac{1}{2} e^{-2 t}\left[I_{0}(2 t)+I_{1}(2 t)\right] \\
& \simeq(4 \pi t)^{-1 / 2} \quad \rightarrow \text { domain wall picture }
\end{aligned}
$$

Domain Wall Picture

Domain Wall Picture

\checkmark time

Domain Wall Picture

Domain Wall Picture

Domain Wall Picture

time

- no. interfaces: $\propto t^{-1 / 2} \quad$ (Glauber, 1963)
- domain length dist: $\frac{x}{t^{3 / 2}} e^{-x^{2} / t} \quad$ (Ben-Naim, Krapivsky, 1997)

Domain Wall Picture

time

- no. interfaces: $\propto t^{-1 / 2} \quad$ (Glauber, 1963)
- domain length dist: $\frac{x}{t^{3 / 2}} e^{-x^{2} / t} \quad$ (Ben-Naim, Krapivsky, 1997)
- time to ground state: $T \propto L^{2}$

Domain Length Distribution

Domain Length Distribution (Ben-Naim \& Krapivsky 97)

scaling ansatz: $\quad P_{k}(t) \simeq C t^{-1} \Phi\left(k t^{-1 / 2}\right) \quad \int_{0}^{\infty} x \Phi(x) d x=1$

Domain Length Distribution

scaling ansatz: $\quad P_{k}(t) \simeq C t^{-1} \Phi\left(k t^{-1 / 2}\right) \quad \int_{0}^{\infty} x \Phi(x) d x=1$

$$
\begin{aligned}
& \rho=\sum_{k \geq 1} P_{k} \simeq(4 \pi t)^{-1 / 2} \rightarrow \int_{0}^{\infty} \Phi(x) d x=(4 \pi)^{-1 / 2} \equiv C \\
& \frac{d \rho}{d t}=-2 P_{1} \rightarrow P_{1} \simeq \frac{1}{4} C t^{-3 / 2}
\end{aligned}
$$

Domain Length Distribution (Ben-Naim $\&$ Krapiskg 97)

scaling ansatz: $\quad P_{k}(t) \simeq C t^{-1} \Phi\left(k t^{-1 / 2}\right) \quad \int_{0}^{\infty} x \Phi(x) d x=1$

$$
\begin{aligned}
& \rho=\sum_{k \geq 1} P_{k} \simeq(4 \pi t)^{-1 / 2} \rightarrow \int_{0}^{\infty} \Phi(x) d x=(4 \pi)^{-1 / 2} \equiv C \\
& \frac{d \rho}{d t}=-2 P_{1} \rightarrow P_{1} \simeq \frac{1}{4} C t^{-3 / 2}
\end{aligned}
$$

master equation:

$$
\begin{aligned}
& \frac{d P_{k}}{d t}=-2 P_{k}+P_{k+1}+P_{k-1}\left(1-\frac{P_{1}}{\rho}\right)+\frac{P_{1}}{\rho^{2}} \sum_{i+j=k-1} P_{i} P_{j}-\frac{P_{1}}{\rho} P_{k} \\
& \frac{d^{2} \Phi}{d x^{2}}+\frac{1}{2} \frac{d(x \Phi)}{d x}+\frac{1}{4 C} \int_{0}^{x} \Phi(y) \Phi(x-y) d y=0
\end{aligned}
$$

Domain Length Distribution (Ben-Naim $\&$ Krapiskg 97)

scaling ansatz: $\quad P_{k}(t) \simeq C t^{-1} \Phi\left(k t^{-1 / 2}\right) \quad \int_{0}^{\infty} x \Phi(x) d x=1$

$$
\begin{aligned}
& \rho=\sum_{k \geq 1} P_{k} \simeq(4 \pi t)^{-1 / 2} \rightarrow \int_{0}^{\infty} \Phi(x) d x=(4 \pi)^{-1 / 2} \equiv C \\
& \frac{d \rho}{d t}=-2 P_{1} \rightarrow P_{1} \simeq \frac{1}{4} C t^{-3 / 2}
\end{aligned}
$$

master equation:

$$
\begin{aligned}
& \frac{d P_{k}}{d t}=-2 P_{k}+P_{k+1}+P_{k-1}\left(1-\frac{P_{1}}{\rho}\right)+\frac{P_{1}}{\rho^{2}} \sum_{i+j=k-1} P_{i} P_{j}-\frac{P_{1}}{\rho} P_{k} \\
& \frac{d^{2} \Phi}{d x^{2}}+\frac{1}{2} \frac{d(x \Phi)}{d x}+\frac{1}{4 C} \int_{0}^{x} \Phi(y) \Phi(x-y) d y=0
\end{aligned}
$$

Laplace transform: $\Phi(s)=\frac{1}{C} \int_{0}^{\infty} \Phi(x) e^{-s x} d x$

$$
\begin{aligned}
& \frac{d \Phi}{d s}=\frac{\Phi^{2}}{2 s}+2 s \Phi-\frac{1}{2 s} \\
& \quad \Phi=1-2 s^{2}-2 s \frac{d}{d s} \ln D_{1 / 2}(\sqrt{2} s) \simeq A e^{-\lambda x} \quad x \rightarrow \infty
\end{aligned}
$$

Two Dimensions

Two Dimensions

Two Dimensions: Evolution to Ground State

Two Dimensions: Evolution to Ground State

Two Dimensions: Evolution to Stripe State

Two Dimensions: Evolution to Stripe State

Two Dimensions: Evolution to Diagonal Stripe State

Two Dimensions

Question: what is the final state?

Two Dimensions

Question: what is the final state?
Answer from simulations: (Spirin, Krapiskk, \& SR 01, 02)
ground state with probability $\approx 2 / 3$
stripe state with probability $\approx 1 / 3$

Two Dimensions

Question: what is the final state?
Answer from simulations: (Spirin, Krapiskk, \& SR 01, 02)
ground state with probability $\approx 2 / 3$
stripe state with probability $\approx 1 / 3$

Two Dimensions

Question: what is the final state?
Answer from simulations: (Spirin, Krapiskk, \& SR 01, 02)
ground state with probability $\approx 2 / 3$
stripe state with probability $\approx 1 / 3$

Two Dimensions

How long to reach the final state?

Two Dimensions

How long to reach the final state?

Two Dimensions

How long to reach the final state?

Two time-scale relaxation

95% short-lived, but 5\% long lived because of diagonal stripes!

Two time-scale relaxation

95% short-lived, but 5\% long lived because of diagonal stripes!

Diagonal stripe dynamics: (Plischke et al 87)

Two time-scale relaxation

95% short-lived, but 5\% long lived because of diagonal stripes!

Diagonal stripe dynamics: (Plischke et al 87)

$\Delta t=1, \quad L^{\mu}$ events $\quad \rightarrow \quad \Delta y_{\mathrm{cm}} \sim L^{\mu / 2} / L$

$$
\rightarrow \quad D(L) \sim L^{\mu-2}
$$

Two time-scale relaxation

95% short-lived, but 5\% long lived because of diagonal stripes!

Diagonal stripe dynamics: (Plischke et al 87)

$\Delta t=1, \quad L^{\mu}$ events $\quad \rightarrow \quad \Delta y_{\mathrm{cm}} \sim L^{\mu / 2} / L$

$$
\rightarrow \quad D(L) \sim L^{\mu-2}
$$

survival time $\tau \sim L^{2} / D \quad \sim L^{4-\mu}$

Two time-scale relaxation

95% short-lived, but 5\% long lived because of diagonal stripes!

Diagonal stripe dynamics: (Plischke et al 87)

$\Delta t=1, \quad L^{\mu}$ events $\quad \rightarrow \quad \Delta y_{\mathrm{cm}} \sim L^{\mu / 2} / L$

$$
\rightarrow \quad D(L) \sim L^{\mu-2}
$$

survival time $\tau \sim L^{2} / D \quad \sim L^{4-\mu}$ but $\mu=1 / 2$

Two timescale relaxation

95% short-lived, but 5\% long lived because of diagonal stripes!

Diagonal stripe dynamics: (Plischke et al 87)

$\Delta t=1, \quad L^{\mu}$ events $\quad \rightarrow \quad \Delta y_{\mathrm{cm}} \sim L^{\mu / 2} / L$

$$
\rightarrow \quad D(L) \sim L^{\mu-2}
$$

survival time $\tau \sim L^{2} / D \quad \sim L^{4-\mu}$ but $\mu=1 / 2$

$$
\sim L^{3.5}
$$

Multiscaling in moments of the stopping time

Two Dimensions

Answer from percolation mapping: (Barros, Krapvisky, \& SR 09)

Two Dimensions

Answer from percolation mapping: (Barros, Krapvisky, \& SR 09) coarsening of 1024×1024 system

Two Dimensions

Answer from percolation mapping: (Barros, Krapvisky, \& SR 09) coarsening of 1024×1024 system
critical pt of continuum percolation $a \ll \ell(t) \ll L$

Two Dimensions

Answer from percolation mapping: (Barros, Krapvisky, \& SR 09) coarsening of 1024×1024 system

critical pt of continuum
percolation $a \ll \ell(t) \ll L$

Two Dimensions

Answer from percolation mapping: (Barros, Krapvisky, \& SR 09) coarsening of 1024×1024 system

critical pt of continuum
percolation $a \ll \ell(t) \ll L$

Two Dimensions

Answer from percolation mapping: (Barros, Krapvisky, \& SR 09) coarsening of 1024×1024 system

critical pt of continuum
percolation $a \ll \ell(t) \ll L$

Two Dimensions

Answer from percolation mapping: (Barros, Krapvisky, \& SR 09) coarsening of 1024×1024 system

Two Dimensions

Answer from percolation mapping: (Barros, Krapvisky, \& SR 09) coarsening of 1024×1024 system

critical pt of continuum
percolation $a \ll \ell(t) \ll L$
FBC: $\quad P_{\text {stripe }}=\frac{\sqrt{3}}{2 \pi} \lambda(r){ }_{3} F_{2}\left(1,1, \frac{4}{3} ; \frac{5}{3}, 2 ; \lambda\right)$

$$
\lambda(r)=\left(\frac{1-k}{1+k}\right)^{2}
$$

$$
=\frac{1}{2}-\frac{\sqrt{3}}{2 \pi} \ln \frac{27}{16}=0.3558 \ldots \quad r=\text { aspect ratio }=\frac{2 K\left(k^{2}\right)}{K\left(1-k^{2}\right)}
$$

PBC: $\quad P_{\text {stripe }} \approx 0.3388$
(Cardy 1992, Watts 1996, Simmons et al. 2007)

Two Dimensions

Question: what is the final state?
Answer from simulations: (Spirin, Krapiskly, \& SR 01, 02)
ground state with probability $\approx 2 / 3$
stripe state with probability $\approx 1 / 3$

Three Dimensions (Olearr, Krppisky, \& SR)

Three Dimensions (Olearr, Krppisky, \& SR)

Basic result: ground state is never reached!

Three Dimensions (Oleiarr, Krppisky, \& SR)

Basic result: ground state is never reached! typical $20 \times 20 \times 20$ system

Three Dimensions (Oleiarr, Krapusky, \& SR)

Basic result: ground state is never reached! typical $20 \times 20 \times 20$ system

Features:

Three Dimensions (Olejarz, Krapvisky, \& SR)

Basic result: ground state is never reached! typical $20 \times 20 \times 20$ system

Features:
I. Swiss cheesy

Three Dimensions (Olejarz, Krapvisky, \& SR)

Basic result: ground state is never reached! typical $20 \times 20 \times 20$ system

Features:
 I. Swiss cheesy
 2. Zero average curvature

Three Dimensions (Olejarz, Krapvisky, \& SR)

Basic result: ground state is never reached! typical $20 \times 20 \times 20$ system

Features:

I. Swiss cheesy
2. Zero average curvature

(courtesy of K. Brakke)

Fate of the Kinetic Ising Model

Sid Redner, Physics Department, Boston University, physics.bu.edu/~redner collaborators: P. L. Krapivsky, V. Spirin, K. Barros, J. Olejarz

Basic question: What is the final state of the Ising-Glauber model @ T=0 with symmetric initial conditions?

Expectation:

- Ground state is approached as $\mathrm{t} \rightarrow \infty$
- Power-law coarsening

The result:

dimension	expectation
I	absolutely correct
2	"sort of" correct
≥ 3	wrong

Evolution from Antiferromagnetic State energy/spin $=6.0000$, time $=0.0$

Evolution from Antiferromagnetic State energy/spin $=6.0000$, time $=0.0$

Evolution from Random* State energy/spin $=3.0010$, time $=0.0$

Evolution from Random* State

 energy/spin $=3.0010$, time $=0.0$

Three Dimensions (Olejarz, Krapvisky, \& SR)

Basic result: ground state is never reached! typical $20 \times 20 \times 20$ system

Features:
 I. Swiss cheesy
 2. Zero average curvature

Three Dimensions (Olejarz, Krapvisky, \& SR)

Basic result: ground state is never reached! typical $20 \times 20 \times 20$ system

Features:

I. Swiss cheesy
2. Zero average curvature
3. Non-static

Three Dimensions (Olejarz, Krapvisky, \& SR)

Basic result: ground state is never reached! typical $20 \times 20 \times 20$ system

Features:
I. Swiss cheesy
2. Zero average curvature
3. Non-static

Blinker Evolution in Three Dimensions

 energy/spin $=0.5335$, time $=942.0$

Blinker Evolution in Three Dimensions

 energy/spin $=0.5335$, time $=942.0$

Genus Distribution

Genus Distribution

Energy Distribution

Energy Distribution

Relate Genus and Energy by Topology

$$
\underset{\substack{\text { Euler } \\ \text { characteristic }}}{\chi=2(1-g)=\mathcal{V}-\mathcal{E}+\mathcal{F} \underset{\text { venus }}{\mathcal{E} \text { vertices }} \underset{\text { edges }}{ }=2 \text { faces }}
$$

Relate Genus and Energy by Topology

$$
\begin{aligned}
& \chi=2(1-g)=\mathcal{V}-\mathcal{E}+\mathcal{F} \\
& \text { Euler genus vertices edges faces } \\
& \text { characteristic }
\end{aligned}
$$

constraints between $\mathcal{V}, \mathcal{E}, \mathcal{F}: \quad \mathcal{E}=2 \mathcal{F}$

$$
\frac{\mathcal{E}}{3} \leq \mathcal{V} \leq \frac{2 \mathcal{E}}{3}
$$

$$
\mathcal{E}=2 \mathcal{F} \quad \frac{\mathcal{E}}{3} \leq \mathcal{V} \leq \frac{2 \mathcal{E}}{3}
$$

Relate Genus and Energy by Topology

$$
\text { constraints between } \mathcal{V}, \mathcal{E}, \mathcal{F}: \quad \mathcal{E}=2 \mathcal{F} \quad \frac{\mathcal{E}}{3} \leq \mathcal{V} \leq \frac{2 \mathcal{E}}{3}
$$

$$
\longrightarrow 0 \leq g \leq 1+\frac{\mathcal{F}}{6}
$$

$$
\begin{aligned}
& \chi=2(1-g)=\mathcal{V}-\mathcal{E}+\mathcal{F} \\
& \text { Euler genus vertices edges faces } \\
& \text { characteristic }
\end{aligned}
$$

Relate Genus and Energy by Topology

$$
\underset{\substack{\text { Euler } \\ \text { characteristic }}}{\chi=2(1-g)=\mathcal{E}-\mathcal{E}+\mathcal{F})}
$$

$$
\text { constraints between } \mathcal{V}, \mathcal{E}, \mathcal{F}: \quad \mathcal{E}=2 \mathcal{F} \quad \frac{\mathcal{E}}{3} \leq \mathcal{V} \leq \frac{2 \mathcal{E}}{3}
$$

$$
\longrightarrow 0 \leq g \leq 1+\frac{\mathcal{F}}{6}
$$

$$
\text { if } E_{L}=\mathcal{F} / L^{3} \sim L^{-\epsilon} \quad \rightarrow \epsilon+\gamma \leq 3
$$

$$
\text { and }\langle g\rangle \sim L^{\gamma}
$$

Relate Genus and Energy by Topology

$$
\underset{\begin{array}{l}
\text { Euler } \\
\text { characteristic }
\end{array}}{\chi=2(1-g)=\mathcal{g}-\mathcal{E}+\mathcal{F})}
$$

constraints between $\mathcal{V}, \mathcal{E}, \mathcal{F}:$
$\longrightarrow 0 \leq g \leq 1+\frac{\mathcal{F}}{6}$

$$
\begin{array}{lc}
\text { if } E_{L}=\mathcal{F} / L^{3} \sim L^{-\epsilon} & \rightarrow \epsilon+\gamma \leq 3 \\
\text { and }\langle g\rangle \sim L^{\gamma} & \text { । } 1.7
\end{array}
$$

Slow Relaxation of Blinkers

Slow Relaxation of Blinkers

synthetic blinker configuration

intermediate

inflated

2d analog:

deflated

intermediate
N_{+}outer corners
N_{-}inner corners

inflated

$$
N_{+}-N_{-}=1
$$

2d analog:

deflated

intermediate
N_{+}outer corners
N_{-}inner corners

inflated

$$
N_{+}-N_{-}=1
$$

2d analog:

deflated

intermediate
N_{+}outer corners
N_{-}inner corners

inflated

$$
N_{+}-N_{-}=1
$$

2d analog:

deflated

intermediate
N_{+}outer corners
N_{-}inner corners

inflated

$$
N_{+}-N_{-}=1
$$

$u=\frac{\Delta A}{\Delta t}=-1$
$D=\frac{(\Delta A)^{2}}{\Delta t} \sim N_{ \pm} \sim \ell$

2d analog:

deflated

intermediate
N_{+}outer corners
N_{-}inner corners

inflated
$u=\frac{\Delta A}{\Delta t}=-1$
$D=\frac{(\Delta A)^{2}}{\Delta t} \sim N_{ \pm} \sim \ell$

Slow Blinker Relaxation in 3d

intermediate

$$
\begin{aligned}
& N_{ \pm} \sim \ell^{2} \\
& N_{+}-N_{-} \sim \ell
\end{aligned}
$$

inflated

Slow Blinker Relaxation in 3d

intermediate

$$
\begin{aligned}
& u=\frac{\Delta A}{\Delta t}=-\ell \\
& D=\frac{(\Delta A)^{2}}{\Delta t} \sim N_{ \pm} \sim \ell^{2}
\end{aligned}
$$

Slow Blinker Relaxation in 3d

intermediate

$$
\begin{aligned}
& u=\frac{\Delta A}{\Delta t}=-\ell \\
& D=\frac{(\Delta A)^{2}}{\Delta t} \sim N_{ \pm} \sim \ell^{2}
\end{aligned}
$$

$$
\tau \sim e^{|u| \ell^{3} / D} \sim e^{\ell^{2}}
$$

Merging of 2 Inflated Blinkers

controls the long-time relaxation

Slow Relaxation in 3d

Slow Relaxation in 3d

Summary \& Open Problems

Summary \& Open Problems

$\mathrm{d}=\mathrm{I}$: almost, but not quite, completely soluble final state: the ground state completion time: L^{2} domain length distribution still unsolved

Summary \& Open Problems

$\mathrm{d}=\mathrm{I}$: almost, but not quite, completely soluble
final state: the ground state
completion time: L^{2}
domain length distribution still unsolved
$\mathrm{d}=2$: ground \& stripe metastable minima
final state: usually the ground state
connection to percolation crossing probabilities completion time: usually L^{2}, sometimes $L^{3.5}$ finite temperature
corner geometry

Finite Temperature

lifetime of stripe state:

Finite Temperature

lifetime of stripe state:
I. defect nucleation

Finite Temperature

lifetime of stripe state:
I. defect nucleation
2. defect propagation, stripe translates by I

Finite Temperature

lifetime of stripe state:
I. defect nucleation
2. defect propagation, stripe translates by I
3. annihilation of two stripes after time L^{2}

Finite Temperature

lifetime of stripe state:
I. defect nucleation
2. defect propagation, stripe translates by I
3. annihilation of two stripes after time L^{2}
stripe state lifetime: $\quad \tau \simeq L^{4} e^{4 J / T}$

Finite Temperature

lifetime of stripe state:
I. defect nucleation
2. defect propagation, stripe translates by I
3. annihilation of two stripes after time L^{2}

stripe state lifetime: $\tau \simeq L^{4} e^{4 J / T}$

Open: what is the optimal cooling schedule to ensure that ground state is reached?

Corner Geometry (driven interface)

(a)

(b)

ASEP Correspondence

ASEP Correspondence

particle equation of motion:

$$
\frac{\partial n}{\partial t}+\frac{\partial[n(1-n)]}{\partial z}=\frac{\partial^{2} n}{\partial z^{2}}=0
$$

ASEP Correspondence

particle equation of motion:

$$
\frac{\partial n}{\partial t}+\frac{\partial[n(1-n)]}{\partial z}=\frac{\partial^{2} n}{\partial z^{2}}=0
$$

solution for step IC:

$$
n(z, t)= \begin{cases}1 & z<-t \\ \frac{1}{2}\left(1-\frac{z}{t}\right) & |z|<t \\ 0 & z>t\end{cases}
$$

Mapping to Driven Ising Interface

$$
n(z)=-y^{\prime}(x) \quad z=x-y
$$

Mapping to Driven Ising Interface

$$
\begin{aligned}
& n(z)=-y^{\prime}(x) \quad z=x-y \\
& y(x, t)=\int_{x-y}^{\infty} n(z, t) d z=\int_{\max (x-y,-t)}^{t} n(z, t) d z
\end{aligned}
$$

Mapping to Driven Ising Interface

$$
\begin{aligned}
& n(z)=-y^{\prime}(x) \quad z=x-y \\
& y(x, t)=\int_{x-y}^{\infty} n(z, t) d z=\int_{\max (x-y,-t)}^{t} \begin{array}{ll}
n(z, t) d z
\end{array} \\
& y= \begin{cases}\frac{1}{2}\left[\frac{t}{2}-(x-y)+\frac{1}{2 t}(x-y)^{2}\right] & |x-y|<t \\
0 & x-y>t\end{cases}
\end{aligned}
$$

Mapping to Driven Ising Interface

$$
\begin{align*}
& n(z)=-y^{\prime}(x) \quad z=x-y \\
& y(x, t)=\int_{x-y}^{\infty} n(z, t) d z=\int_{\max (x-y,-t)}^{t} \begin{array}{l}
n(z, t) d z \\
y= \begin{cases}\frac{1}{2}\left[\frac{t}{2}-(x-y)+\frac{1}{2 t}(x-y)^{2}\right] & |x-y|<t \\
0 & x-y>t\end{cases} \\
\sqrt{x}+\sqrt{y}=\sqrt{t} \quad 0<x, y<t
\end{array}
\end{align*}
$$

Undriven Ising Interface

Undriven Ising Interface

particle eqn

$$
\frac{\partial n}{\partial t}=\frac{\partial^{2} n}{\partial z^{2}}
$$

Undriven Ising Interface

particle eqn

$$
\frac{\partial n}{\partial t}=\frac{\partial^{2} n}{\partial z^{2}}
$$

solution for step IC:

$$
n(z, t)=\frac{1}{\sqrt{\pi}} \int_{z / \sqrt{4 t}}^{\infty} e^{-w^{2}} d w=\frac{1}{2} \operatorname{erfc}\left(\frac{z}{\sqrt{4 t}}\right)
$$

Undriven Ising Interface

particle eqn

$$
\frac{\partial n}{\partial t}=\frac{\partial^{2} n}{\partial z^{2}}
$$

solution for step IC:

$$
n(z, t)=\frac{1}{\sqrt{\pi}} \int_{z / \sqrt{4 t}}^{\infty} e^{-w^{2}} d w=\frac{1}{2} \operatorname{erfc}\left(\frac{z}{\sqrt{4 t}}\right)
$$

\rightarrow implicit form for interface in x, y, t

Undriven Ising Interface

particle eqn

$$
\frac{\partial n}{\partial t}=\frac{\partial^{2} n}{\partial z^{2}}
$$

solution for step IC:

$$
n(z, t)=\frac{1}{\sqrt{\pi}} \int_{z / \sqrt{4 t}}^{\infty} e^{-w^{2}} d w=\frac{1}{2} \operatorname{erfc}\left(\frac{z}{\sqrt{4 t}}\right)
$$

\rightarrow implicit form for interface in x, y, t

Note: equilibrium Ising interface related to partitions of the integers

Summary \& Open Problems

$\mathrm{d}=\mathrm{I}$: almost, but not quite, completely soluble
final state: the ground state
completion time: L^{2}
domain length distribution still unsolved
$\mathrm{d}=2$: ground \& stripe metastable minima
final state: usually the ground state
connection to percolation crossing probabilities completion time: usually L^{2}, sometimes $L^{3.5}$ finite temperature
corner geometry

Summary \& Open Problems

$\mathrm{d}=\mathrm{I}$: almost, but not quite, completely soluble
final state: the ground state
completion time: L 2
domain length distribution still unsolved
$\mathrm{d}=2$: ground \& stripe metastable minima
final state: usually the ground state
connection to percolation crossing probabilities completion time: usually L^{2}, sometimes $L^{3.5}$
finite temperature
corner geometry
$d \geq 3$: rich state space structure
topologically complex final state
topological connection between energy \& genus
perpetually blinking spins
ultra-slow relaxation whose functional form is unknown
finite temperature
corner geometry

Crass Commercialism

Aimed at graduate students, this book explores some of the core phenomena in non-equilibrium statistical physics. It focuses on the development and application of theoretical methods to help students develop their problem-solving skills.
The book begins with microscopic transport processes: diffusion, collision-driven phenomena, and exclusion. It then presents the kinetics of aggregation, fragmentation, and adsorption, where basic kinetics of aggregation, fragmentation, and adsorption, where
phenomenology and solution techniques are emphasized. The following chapters cover kinetic spin systems, by developing both a following chapters cover kinetic spin systems, by developing bo
discrete and a continuum formulation, the role of disorder in discrete and a continuum formulation, the role of disorder in
non-equilibrium processes, and hysteresis from the non-equilibrium perspective. The concluding chapters address population dynamics, chemical reactions, and a kinetic perspective on complex networks. The book contains more than 200 exercises to test students' understanding of the subject. A link to a website hosted by the authors, containing an up-to-date list of errata and solutions to some of the exercises, can be found at www.cambridge.org/9780521851039.

Pavel L. Krapivsky is Research Associate Professor of Physics at PaveI L. Krapivsky is Research Associate Professor of Physics at
Boston University. His current research interests are in strongly Boston University. His current research interests are in strongly
interacting many-particle systems and their applications to kinetic interacting many-particle systems and their applicati
spin systems, networks, and biological phenomena.
spin systems, networks, and biological phenomena.
Sidney Redner is a Professor of Physics at Boston University. His Sidney Redner is a Professor of Physics at Boston University. His
current research interests are in non-equilibrium statistical physics and its applications to reactions, networks, social systems, biological phenomena, and first-passage processes.
Eli Ben-Naim is a member of the Theoretical Division and an affiliate of the Center for Nonlinear Studies at Los Alamos National Laboratory. He conducts research in statistical, nonlinear, and soft condensed-matter physics, including the collective dynamics of interacting particle and granular systems.

Cover illustration: Snapshot of a collision cascade in a perfectly elastic, initially stationary hard-sphere gas in two dimensions due to a single incident particle.
Shown are the cloud of moving particices (red) and the stationary partictes (blue) Shown are the cloud of moving particles (red) and the stationary particles (blue) that have not yet experienced any collisions. Figure courtesy of Tibor Antal.
I. Aperitifs
2. Diffusion
3. Collisions
4. Exclusion
5.Aggregation

