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Central Dogma of Spin Dynamics

Start at T � Tc and suddenly quench to Tf .

1. Supercritical dynamics Tf > Tc

2. Critical Tf = Tc

3. Subcritical Tf < Tc universal , same as Tf = 0.
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Central Dogma of Spin Dynamics

Start at T � Tc and suddenly quench to Tf .

1. Supercritical dynamics Tf > Tc

2. Critical Tf = Tc

3. Subcritical Tf < Tc universal , same as Tf = 0.

Dynamic scaling hypothesis:

1. Single length scale L(t) → coarsening
2. Algebraic scaling L(t) ∼ tz

3. Universality z independent of most details.
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The System

H = −
∑

〈i,j〉

σiσj σi = ±1Ising Hamiltonian
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The System

H = −
∑

〈i,j〉

σiσj σi = ±1Ising Hamiltonian

Lattice: • even co-ordination number

• periodic boundaries

homogeneous

Initial state: •  antiferromagnetic

• ↑ with prob. ½,  ↓ with prob. ½

• ½ spins ↑, ½ spins ↓ 
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Endowing Spins with a Dynamics

wi(s)
wi(si)

=
Peq(si)
Peq(s)

=
e−βsi

P
Jijsj

eβsi
P

Jijsj
=

1− si tanh(β
�

j∈�i� Jijsj)
1 + si tanh(β

�
j∈�i� Jijsj)

detailed balance condition:
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Peq(si)wi(si)

Peq(s)wi(s)

s
si

detailed balance condition in state space:

....↑↑↓↓↑↓↑↑↑....

....↑↑↓↓↓↓↑↑↑....

i

i
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eβsi
P

Jijsj
=

1− si tanh(β
�

j∈�i� Jijsj)
1 + si tanh(β

�
j∈�i� Jijsj)

detailed balance condition:

wi = 1
2

�
1− si tanh[βJ (si−1 + si+1)]

�

→ 1
2

�
1− si

si−1 + si+1

2
�

T → 0

flip rate in one dimension:

Endowing Spins with a Dynamics
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if ∆E < 0 do it

if ∆E > 0 don′t do it

if ∆E = 0 do it with prob. 1/2

Glauber dynamics at T=0:  Pick a random spin and 
consider outcome of reversing it 
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Equations of Motion

Correlation functions: Si = �si�, Si,j = �sisj� .....
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Equations of Motion

dSj

dt
= −2

�
sjwj

�

dSi,j

dt
= −2

�
sisj [wi + wj ]

�

Correlation functions: Si = �si�, Si,j = �sisj� .....
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Equations of Motion

dSj

dt
= −2

�
sjwj

�

dSi,j

dt
= −2

�
sisj [wi + wj ]

�

Correlation functions: Si = �si�, Si,j = �sisj� .....

dSj

dt
= −2

�
sj

�
1
2

�
1− sj

sj−1 + sj+1

2
���

= −Sj + 1
2 (Sj−1 + Sj+1)

mean spin:
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mean spin:
dSj

dt
= −Sj + 1

2 (Sj−1 + Sj+1)

dGk

dt
= −2Gk + (Gk−1 + Gk+1)

kth-neighbor correlation function: Gk ≡ Si,i+k

G0(t) = �s2
i � = 1

Sj(t) = Ij(t) e−t
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mean spin:
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k−1�

j=1

Ij(2t)
�
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mean spin:
dSj

dt
= −Sj + 1

2 (Sj−1 + Sj+1)

Gk(t) = 1− e−2t
�
I0(2t) + Ik(2t) + 2

k−1�

j=1

Ij(2t)
�

ρ(t) = 1
2 (1−G1) = 1

2 e−2t
�
I0(2t) + I1(2t)

�

� (4πt)−1/2

dGk

dt
= −2Gk + (Gk−1 + Gk+1)

kth-neighbor correlation function: Gk ≡ Si,i+k

G0(t) = �s2
i � = 1

Sj(t) = Ij(t) e−t
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G1 = �si si+1�
= Prob(aligned) − Prob(anti-aligned)
= 1 − 2 Prob(anti-aligned)
= 1 − 2 Prob(domain wall particle exists)
= 1 − 2ρ
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G1 = �si si+1�
= Prob(aligned) − Prob(anti-aligned)
= 1 − 2 Prob(anti-aligned)
= 1 − 2 Prob(domain wall particle exists)
= 1 − 2ρ

ρ = density of domain-wall “particles”
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mean spin:
dSj

dt
= −Sj + 1

2 (Sj−1 + Sj+1)

Gk(t) = 1− e−2t
�
I0(2t) + Ik(2t) + 2

k−1�

j=1

Ij(2t)
�

ρ(t) = 1
2 (1−G1) = 1

2 e−2t
�
I0(2t) + I1(2t)

�

� (4πt)−1/2

dGk

dt
= −2Gk + (Gk−1 + Gk+1)

kth-neighbor correlation function: Gk ≡ Si,i+k

G0(t) = �s2
i � = 1

→ domain wall picture

Sj(t) = Ij(t) e−t
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time

+ + + + + + +_ _ _ _ __ space
------+++++++---------------++++++++++----------------------++++++++++-----------------+++++++++----------+++++-------------------++++++++-----------+++++

 Domain Wall Picture
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ξ ∼ t1/2

------+++++++---------------++++++++++----------------------++++++++++-----------------+++++++++----------+++++-------------------++++++++-----------+++++

time

+ + + + + + +_ _ _ _ __ space

 Domain Wall Picture

Wednesday, February 16, 2011



ξ ∼ t1/2

------+++++++---------------++++++++++----------------------++++++++++-----------------+++++++++----------+++++-------------------++++++++-----------+++++

time

+ + + + + + +_ _ _ _ __ space

• no. interfaces: ∝ t−1/2 (Glauber, 1963)

 Domain Wall Picture

Wednesday, February 16, 2011



ξ ∼ t1/2

------+++++++---------------++++++++++----------------------++++++++++-----------------+++++++++----------+++++-------------------++++++++-----------+++++

time

+ + + + + + +_ _ _ _ __ space

• no. interfaces: ∝ t−1/2 (Glauber, 1963)
• domain length dist: x

t3/2 e−x2/t (Ben-Naim, Krapivsky, 1997)

 Domain Wall Picture

Wednesday, February 16, 2011



ξ ∼ t1/2

------+++++++---------------++++++++++----------------------++++++++++-----------------+++++++++----------+++++-------------------++++++++-----------+++++

time

+ + + + + + +_ _ _ _ __ space

• no. interfaces: ∝ t−1/2 (Glauber, 1963)
• domain length dist: x

t3/2 e−x2/t (Ben-Naim, Krapivsky, 1997)
• time to ground state: T ∝ L2

 Domain Wall Picture
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Domain Length Distribution (Ben-Naim & Krapivsky 97)
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�∞
0 xΦ(x) dx = 1Pk(t) � C t−1 Φ(kt−1/2)scaling ansatz:

Domain Length Distribution (Ben-Naim & Krapivsky 97)
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dρ
dt = −2P1 → P1 � 1

4 C t−3/2

ρ =
�

k≥1 Pk � (4πt)−1/2 →
�∞
0 Φ(x) dx = (4π)−1/2 ≡ C

�∞
0 xΦ(x) dx = 1Pk(t) � C t−1 Φ(kt−1/2)scaling ansatz:

Domain Length Distribution (Ben-Naim & Krapivsky 97)
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dρ
dt = −2P1 → P1 � 1

4 C t−3/2

ρ =
�

k≥1 Pk � (4πt)−1/2 →
�∞
0 Φ(x) dx = (4π)−1/2 ≡ C

�∞
0 xΦ(x) dx = 1Pk(t) � C t−1 Φ(kt−1/2)scaling ansatz:

dPk

dt
= −2Pk + Pk+1 + Pk−1

�
1− P1

ρ

�
+

P1

ρ2

�

i+j=k−1

Pi Pj −
P1

ρ
Pk

d2Φ
dx2

+
1
2

d(xΦ)
dx

+
1

4C

� x

0
Φ(y) Φ(x−y) dy = 0

master equation:

Domain Length Distribution (Ben-Naim & Krapivsky 97)
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dρ
dt = −2P1 → P1 � 1

4 C t−3/2

ρ =
�

k≥1 Pk � (4πt)−1/2 →
�∞
0 Φ(x) dx = (4π)−1/2 ≡ C

�∞
0 xΦ(x) dx = 1Pk(t) � C t−1 Φ(kt−1/2)scaling ansatz:
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dt
= −2Pk + Pk+1 + Pk−1

�
1− P1

ρ

�
+

P1

ρ2

�

i+j=k−1

Pi Pj −
P1

ρ
Pk

d2Φ
dx2

+
1
2

d(xΦ)
dx

+
1

4C

� x

0
Φ(y) Φ(x−y) dy = 0

master equation:

Laplace transform: Φ(s) = 1
C

�∞
0 Φ(x) e−sx dx

dΦ
ds

=
Φ2

2s
+ 2sΦ− 1

2s

Φ = 1−2s2−2s
d

ds
lnD1/2(

√
2 s) � Ae−λx x→∞

Domain Length Distribution (Ben-Naim & Krapivsky 97)
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Two Dimensions
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Two Dimensions

(courtesy of V. Spirin)

t=4 t=16 t=64 t=256

coarsening of 256x256 system
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Two Dimensions:  
Evolution to Ground State
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Two Dimensions:  
Evolution to Ground State
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Two Dimensions:  
Evolution to Stripe State
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Two Dimensions:  
Evolution to Stripe State
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Two Dimensions:  
Evolution to Diagonal Stripe State
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Two Dimensions
Question: what is the final state?
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Two Dimensions
Question: what is the final state?

(Spirin, Krapivsky, & SR 01, 02)Answer from simulations:
ground state with probability ≈ 2/3
stripe state with probability   ≈ 1/3
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Two Dimensions
How long to reach the final state?

M10 =�t10�1/10 ∼ L3.5

survival 
probability
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t/M10
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10-2

10-1
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S(
t)

L=50
L=70
L=100

0 1 2 3 4
t/M1/10

10-2
10-1
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Two Dimensions

2 time scales!

How long to reach the final state?

M1/10 =�t1/10�10 ∼ L2

M10 =�t10�1/10 ∼ L3.5

survival 
probability
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Two time-scale relaxation
95% short-lived, but 5% long lived because of diagonal stripes!

y

L

~L
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Multiscaling in moments of the stopping time
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Two Dimensions
Answer from percolation mapping: (Barros, Krapvisky, & SR 09)

t=1000 t=5000 t=25000
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t=1000 t=5000 t=25000

coarsening of 1024x1024 system

t=200
critical pt of continuum 
percolation a��(t)�L
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deterministic, curvature-driven evolution for �(t)�a
→ Invariant topology in the coarsening regime
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Two Dimensions
Answer from percolation mapping: (Barros, Krapvisky, & SR 09)

t=1000 t=5000 t=25000

coarsening of 1024x1024 system

t=200
critical pt of continuum 
percolation a��(t)�L

�
deterministic, curvature-driven evolution for �(t)�a
→ Invariant topology in the coarsening regime

Pstripe =
√

3
2π

λ(r) 3F2

�
1, 1,

4
3
;
5
3
, 2;λ

�

=
1
2
−
√

3
2π

ln
27
16

= 0.3558 . . .

λ(r) =
�

1− k

1 + k

�2

r = aspect ratio =
2K(k2)

K(1− k2)

(Cardy 1992, Watts 1996, Simmons et al. 2007)

FBC:

PBC: Pstripe ≈ 0.3388
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Two Dimensions
Question: what is the final state?

(Spirin, Krapivsky, & SR 01, 02)Answer from simulations:
ground state with probability ≈ 2/3
stripe state with probability   ≈ 1/3

0.3388

Wednesday, February 16, 2011



Three Dimensions (Olejarz, Krapvisky, & SR)
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Basic result:  ground state is never reached!
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Basic result:  ground state is never reached!
typical 20x20x20 system

Features:
1. Swiss cheesy
2. Zero average curvature

(courtesy of K. Brakke)

Three Dimensions (Olejarz, Krapvisky, & SR)
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Sid Redner,  Physics Department, Boston University,  physics.bu.edu/~redner
collaborators:  P. L. Krapivsky,  V. Spirin,  K. Barros,  J. Olejarz

Fate of the Kinetic Ising Model

The result: dimension expectation

1 absolutely correct

2  “sort of” correct

≥3 wrong

Basic question: What is the final state of the Ising-Glauber 
model @ T=0 with symmetric initial conditions?

Expectation: • Ground state is approached as t→∞
• Power-law coarsening
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Basic result:  ground state is never reached!
typical 20x20x20 system

Features:
1. Swiss cheesy
2. Zero average curvature

Three Dimensions (Olejarz, Krapvisky, & SR)
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Basic result:  ground state is never reached!
typical 20x20x20 system

Features:
1. Swiss cheesy
2. Zero average curvature
3. Non-static
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blinker spin

Basic result:  ground state is never reached!
typical 20x20x20 system

Features:
1. Swiss cheesy
2. Zero average curvature
3. Non-static

Three Dimensions (Olejarz, Krapvisky, & SR)
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Energy Distribution
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Relate Genus and Energy by Topology

Euler 
characteristic

vertices edges faces

χ = 2(1− g) = V − E + F
genus
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Relate Genus and Energy by Topology

E = 2F E
3
≤ V ≤ 2E

3
constraints between V, E , F :

Euler 
characteristic

vertices edges faces

χ = 2(1− g) = V − E + F
genus
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Relate Genus and Energy by Topology

E = 2F E
3
≤ V ≤ 2E

3
constraints between V, E , F :

−→ 0 ≤ g ≤ 1 +
F
6

Euler 
characteristic

vertices edges faces

χ = 2(1− g) = V − E + F
genus
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Relate Genus and Energy by Topology

E = 2F E
3
≤ V ≤ 2E

3
constraints between V, E , F :

−→ 0 ≤ g ≤ 1 +
F
6

→ � + γ ≤ 3if EL = F/L3 ∼ L−�

and �g� ∼ Lγ

Euler 
characteristic

vertices edges faces

χ = 2(1− g) = V − E + F
genus
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Relate Genus and Energy by Topology

E = 2F E
3
≤ V ≤ 2E

3
constraints between V, E , F :

−→ 0 ≤ g ≤ 1 +
F
6

→ � + γ ≤ 3if EL = F/L3 ∼ L−�

and �g� ∼ Lγ
1 1.7 simulations

Euler 
characteristic

vertices edges faces

χ = 2(1− g) = V − E + F
genus
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Slow Relaxation of Blinkers
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Slow Relaxation of Blinkers

deflated inflatedintermediate

synthetic blinker configuration
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corner
inner

outer corner

deflated inflatedintermediate

2d analog:

N+ outer corners
N− inner corners

N+ −N− = 1

�

N+ −N− = 1
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2d analog:
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∆t ∼ N± ∼ �
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corner
inner

outer corner

deflated inflatedintermediate

2d analog:

N+ outer corners
N− inner corners

N+ −N− = 1

u = ∆A
∆t = −1

D = (∆A)2

∆t ∼ N± ∼ �

�

τ ∼ e|u|�2/D ∼ e�

N+ −N− = 1

effective 
bias
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N± ∼ �2

N+ −N− ∼ �

deflated inflatedintermediate

Slow Blinker Relaxation in 3d
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N± ∼ �2

N+ −N− ∼ �
u = ∆A

∆t = −�

D = (∆A)2

∆t ∼ N± ∼ �2

deflated inflatedintermediate

Slow Blinker Relaxation in 3d
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N± ∼ �2

N+ −N− ∼ �
u = ∆A

∆t = −�

D = (∆A)2

∆t ∼ N± ∼ �2

deflated inflatedintermediate

τ ∼ e|u|�3/D ∼ e�2

Slow Blinker Relaxation in 3d
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Merging of 2 Inflated Blinkers 

controls the long-time relaxation
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slope -3
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Summary & Open Problems

final state: the ground state
completion time: L²
domain length distribution still unsolved

d=1:  almost, but not quite, completely soluble
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Summary & Open Problems

final state: the ground state
completion time: L²
domain length distribution still unsolved

d=1:  almost, but not quite, completely soluble

d=2: 
final state:  usually the ground state
connection to percolation crossing probabilities
completion time: usually L², sometimes L 
finite temperature
corner geometry

ground & stripe metastable minima

3.5
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Finite Temperature

lifetime of stripe state:
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Finite Temperature

lifetime of stripe state:

1. defect nucleation
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Finite Temperature

lifetime of stripe state:

1. defect nucleation
2. defect propagation, stripe translates by 1

L2
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Finite Temperature

lifetime of stripe state:

1. defect nucleation
2. defect propagation, stripe translates by 1
3. annihilation of two stripes after time L²
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Finite Temperature

lifetime of stripe state:

1. defect nucleation
2. defect propagation, stripe translates by 1
3. annihilation of two stripes after time L²

stripe state lifetime:  τ � L4 e4J/T
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Finite Temperature

lifetime of stripe state:

1. defect nucleation
2. defect propagation, stripe translates by 1
3. annihilation of two stripes after time L²

stripe state lifetime:  τ � L4 e4J/T

Open:  what is the optimal cooling schedule   
           to ensure that ground state is reached?
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Corner Geometry (driven interface)
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y x

z

ASEP Correspondence

particle equation 
of motion:

∂n

∂t
+

∂[n(1− n)]
∂z

=
∂2n

∂z2
= 0
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y x

z

ASEP Correspondence

n(z, t) =






1 z < −t
1
2

�
1− z

t

�
|z| < t

0 z > t

solution for 
step IC:

particle equation 
of motion:

∂n

∂t
+

∂[n(1− n)]
∂z

=
∂2n

∂z2
= 0
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Mapping to Driven Ising Interface

n(z) = −y�(x) z = x− y

y x

z
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Mapping to Driven Ising Interface
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Mapping to Driven Ising Interface

y(x, t) =
� ∞
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� t
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y =

�
1
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Mapping to Driven Ising Interface

y(x, t) =
� ∞

x−y
n(z, t) dz =

� t

max(x−y,−t)
n(z, t) dz

y =

�
1
2

�
t
2 − (x− y) + 1

2t (x− y)2
�

|x− y| < t

0 x− y > t

n(z) = −y�(x) z = x− y

y x

z

√
x +

√
y =

√
t 0 < x, y < t (Rost, 1981)
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Undriven Ising Interface
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Undriven Ising Interface

∂n

∂t
=

∂2n

∂z2
particle eqn 
of motion:
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Undriven Ising Interface

∂n

∂t
=

∂2n

∂z2
particle eqn 
of motion:

n(z, t) =
1√
π

� ∞

z/
√

4t
e−w2

dw =
1
2

erfc
�

z√
4t

�
solution for 
step IC:
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∂z2
particle eqn 
of motion:

n(z, t) =
1√
π

� ∞

z/
√

4t
e−w2

dw =
1
2

erfc
�

z√
4t

�
solution for 
step IC:

→ implicit form for interface in x, y, t
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Undriven Ising Interface

∂n

∂t
=

∂2n

∂z2
particle eqn 
of motion:

n(z, t) =
1√
π

� ∞

z/
√

4t
e−w2

dw =
1
2

erfc
�

z√
4t

�
solution for 
step IC:

→ implicit form for interface in x, y, t

Note: equilibrium Ising interface related to 
         partitions of the integers
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final state: the ground state
completion time: L²
domain length distribution still unsolved

d=1:  almost, but not quite, completely soluble

d=2: 
final state:  usually the ground state
connection to percolation crossing probabilities
completion time: usually L², sometimes L 
finite temperature
corner geometry

ground & stripe metastable minima

3.5

Summary & Open Problems
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final state: the ground state
completion time: L²
domain length distribution still unsolved

d=1:  almost, but not quite, completely soluble

d≥3: 
topologically complex final state
topological connection between energy & genus
perpetually blinking spins
ultra-slow relaxation whose functional form is unknown
finite temperature
corner geometry

rich state space structure

d=2: 
final state:  usually the ground state
connection to percolation crossing probabilities
completion time: usually L², sometimes L 
finite temperature
corner geometry

ground & stripe metastable minima

3.5

Summary & Open Problems
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Crass Commercialism

1.  Aperitifs
2. Diffusion
3. Collisions
4. Exclusion
5. Aggregation

6. Fragmentation
7.  Adsorption 
8. Spin Dynamics
9. Coarsening
10. Disorder

11. Hysteresis
12. Population Dynamics
13. Diffusion Reactions
14. Complex Networks
     > 200 problems
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development and application of theoretical methods to help

students develop their problem-solving skills.

The book begins with microscopic transport processes: diffusion,

collision-driven phenomena, and exclusion. It then presents the

kinetics of aggregation, fragmentation, and adsorption, where basic

phenomenology and solution techniques are emphasized. The

following chapters cover kinetic spin systems, by developing both a

discrete and a continuum formulation, the role of disorder in 

non-equilibrium processes, and hysteresis from the non-equilibrium

perspective. The concluding chapters address population dynamics,

chemical reactions, and a kinetic perspective on complex networks.

The book contains more than 200 exercises to test students'

understanding of the subject. A link to a website hosted by the
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www.cambridge.org/9780521851039.

Pavel L. Krapivsky is Research Associate Professor of Physics at

Boston University. His current research interests are in strongly

interacting many-particle systems and their applications to kinetic

spin systems, networks, and biological phenomena.

Sidney Redner is a Professor of Physics at Boston University. His

current research interests are in non-equilibrium statistical physics

and its applications to reactions, networks, social systems, biological

phenomena, and first-passage processes.

Eli Ben-Naim is a member of the Theoretical Division and an

affiliate of the Center for Nonlinear Studies at Los Alamos National

Laboratory. He conducts research in statistical, nonlinear, and soft

condensed-matter physics, including the collective dynamics of

interacting particle and granular systems.

Cover illustration: Snapshot of a collision cascade in a perfectly elastic, initially
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that have not yet experienced any collisions. Figure courtesy of Tibor Antal.
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