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Persuasion Dynamics

 Real People People as  
interacting “atoms”
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individual has no self-confidence & adopts neighbor’s state
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2. Assume state of randomly-selected neighbor
individual has no self-confidence & adopts neighbor’s state
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 Voter vs. Ising Models
Voter model:  proportional rule Clifford & Sudbury (1973) 

Holley & Liggett (1975)

3/4

1/4

consensus inevitable
in a finite system

Kinetic Ising model:  majority rule at T=0 Glauber (1963)

1 consensus 
not inevitable 
in a finite system



 Voter Evolution vs. Ising Evolution
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Dornic et al. (2001)
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 Lattice Voter Model:  3 Basic Properties
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Evolution of a single active link (homogeneous network):

1. Final State (Exit) Probability
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average magnetization is 
conserved!

E(ρ0)
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Equation for 2-spin correlation function:

2.  Spatial Dependence of 2-Spin Correlations 
(infinite system)
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Equation for 2-spin correlation function:
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dimension consensus time

1 N2

2 N ln N

>2 N

3. System Size Dependence of Consensus Time
Liggett (1985),  Krapivsky (1992)
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 Lattice Voter Model:  3 Basic Properties

Evolution of a single 
active link:

1/2

1/2

average 
magnetization 
conserved

1. Final State Probability E(ρ0) = ρ0

2.  Two-Spin Correlations 
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Voter Model on Complex Networks

high degree; few nodes   
     → changes rarely

low degree; many nodes 
    → changes often

“flow” from high degree to low degree

average magnetization conserved!
1/2

1/2

magnetization on regular networks

magnetization not conserved on complex networks
Suchecki, Eguiluz & San Miguel (2005)



conserved!

New Conservation Law

high degree
→ changes rarely

low degree
→ changes often

Sood & SR (2005)

nk = frac. nodes of degree k

�k = frac. � on nodes of degree k

µ1 = av. degree

degree-weighted 
1st moment:

to compensate the different rates:

! ⌘
P

k knk⇢kP
k knk

=

P
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η ≡ state of system

ηx ≡ state after flip at x

η(x) ≡ state at x (0,1)

adjacency 
matrix

voter 
at x

neighbor 
at y

Φ(x, y) ≡ η(x)[1 − η(y)] =↑x↓y

↑x↓y ↓x↑y

⟨∆η(x)⟩ = [1 − 2η(x)]P[η → ηx]Density change:
︸ ︷︷ ︸

±1at x

ωn =
1

Nµn

∑

x

kn

x
η(x)degree-weighted moments: 

Conservation Law for Voter Model

conserved!

change in weighted 
first moment: 

⟨∆ω1⟩ =
∑

x,y

Axy

Nkx

kx [η(y) − η(x)]= 0

Transition probability

P[η → ηx] =
∑

y

Axy

Nkx

[Φ(x, y) + Φ(y, x)]



Exit Probability on Complex Graphs
E(ω) = ω

Extreme case: star graph
0

0
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0

0

0
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N nodes: degree 1
1  node:  degree N

Final state: all 1 with prob. 1/2!
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Voter Model on Complex Networks
Sood & SR (2005)

c

two-clique graph

N=10000,  C links/node

c = 1

c = 100
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Consensus Time Evolution Equation
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Consensus Time on Complete Graph

continuum limit: T �� = � N

�(1� �)

T (�) = �N [� ln � + (1� �) ln(1� �)]

solution:

T (�) = R(�)[T (� + d�) + dt]
+L(�)[T (�� d�) + dt]
+[1�R(�)� L(�)][T (�) + dt]



Consensus Time on Heterogeneous Networks

T ({�k}) � av. consensus time starting with density �k

on nodes of degree k

T ({�k}) =
�
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continuum limit:
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Consensus Time on Heterogeneous Networks



configuration model
nk ∼ k−2.5, µ1 = 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

ρ

ω

ρ6

ρ11

⇢k

Voter Model on Complex Networks



continuum limit:
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Consensus Time for Complex Networks
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fast consensus
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Consensus Time for Complex Networks
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extremal
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 “Confident”  Voter Model
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Simplest case:  2 internal states 
  densities P₀, P₁, M₀, M₁,
  with P₀+P₁+ M₀+ M₁=1 confident

P

P0

11M

M0

unsure

rate equations/mean-field limit:

similarly for M₀, M₁

Ṗ0 = �M0P0 + M1P1 + P0P1

Ṗ1 = M0P0 �M1P1 � P0P1 + (M1P0�M0P1)

M1 P1 ! P0P1 or M0M1 M0 P0 ! M0P1 or M1P0

P0 P1 ! P0P1 or P0P0 M0M1 ! M0M1 or M0M0

M1 P0 ! M1P1 or P0P0 M0 P1 ! M1P1 or M0M0

basic processes:



special soluble case:  symmetric limit
P0 + P1 = M0 + M1 = 1

2

Ṗ0 = �M0P0 + M1P1 + P0P1

Ṗ1 = M0P0 �M1P1 � P0P1 + (M1P0�M0P1)

→ Ṗ0 = �Ṗ1 = P 2
0 + 1

2P0 � 1
4

= �(P0 � �+)(P0 � ��)
�± = 1

4 (�1±
⇤

5) ⇥ 0.309,�0.809

solution: P0(t)� �+

P0(t)� ��
=

P0(0)� �+

P0(0)� ��
e�(�+���)t



O(1) ln N

near symmetric 
limit:
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near symmetric limit:  composition tetrahedron
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two time scales control approach to consensus
see also Spirin, Krapivsky, SR (2001), Chen & SR (2005)

Ising model Majority vote model



Majority rule Galam (1999), Krapivsky & SR (2003),
Slanina & Lavicka (2003), Chen & SR (2005)

2.      spins in G adopt the majority state.All

3. Repeat until consensus necessarily occurs.

1. Pick a random group of G spins (with G odd).

+

+ +
+ +

+ +
+ + +

+ +
+ +

+ +
+ +

+
+
+ +

Basic questions: 1.  Which final state is reached?

2.  What is the time until consensus?



Mean-field theory (for G=3)

Tn ≡ mean time to m = 1 starting from n plus spins

= pn(Tn+1 + δt) + qn(Tn−1 + δt) + rn(Tn + δt)

where pn =

✓
3

2

◆✓
N � 3

n� 2

◆.✓
N

n

◆

qn =

✓
3

1

◆✓
N � 3

n� 1

◆.✓
N

n

◆

rn = 1� pn � qn
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Discord & Diversity
If people are reasonable, why is consensus hard to reach?
Possibilities: • insufficient communication

• appreciable diversity
• stubbornness
• …. your favorite mechanism

Deffuant, Neau, Amblard & Weisbuch (2000)
Hegselmann & Krause (2002) 
Ben Naim, Krapivsky & SR (2003)

Bounded confidence:  compromise only when close

Models: 

Strategic voting:         ideology vs. strategy Volovik, Mobilia & SR (2009)

Three voting states:        0 +;      + noninteracting Vazquez & 
SR (2004)

Axelrod model:          many features, many traits
Axelrod (1997) 
Castellano, Marsili & Vespignani (2000)
Vazquez & SR (2007)

Social balance:          dynamics of positive/negative links
Antal, Krapivsky & SR (2005, 2006)



1. Pick a random voter
2. Assume state of neighbor if compatible
3. Repeat until either consensus or frozen final state

Three Voting States:       0 +

++ incompatible

0. 3-state voter at each site:  − 0 +

+0
0 0

++
0

0 0
compatible

(N0, N+) ! (N0±1, N+⌥1) prob.
N0N+

N2
= ⇢0⇢+

(N0, N�) ! (N0±1, N�⌥1) prob.
N0N�
N2

= ⇢0⇢�



Evolution in Composition Triangle
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The Phase Diagram 
F (⇢�, ⇢+) = prob. to reach frozen state starting from (⇢�, ⇢+)

F (⇢�, ⇢+) =
X

n odd

2(2n+ 1)

n(n+ 1)

p
⇢�⇢+ (⇢� + ⇢

+

)n P 1

n
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⇢� + ⇢
+

◆

symmetric limit

F (⇢0) = 1� 1� (1� ⇢0)2p
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@2F (⇢�, ⇢+)

@⇢2�
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= 0
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continuum 
limit:
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x
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y
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y
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recursion:

_ +

0
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Phase Diagram & Final State Probabilities

moral: extremism promotes deadlock
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Strategic Voting
¿vote for first choice? vote against last choice¿ ?
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Strategic Voter Model
evolution of the densities a, b, c:

ȧ = T (b+ c� 2a) + rAC ac+ rAB ab

ḃ = T (c+ a� 2b) + rBA ba+ rBC bc

ċ = T (a+ b� 2c) + rCA ca+ rCB cb
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Strategic Voter Model
evolution of the densities a, b, c:

rAB = �rBA =

8
><

>:

+r B minority

0 C minority

�r A minority

strategic voting
rates:

r = const.

r = r0[(a+ b)/2� c]

too drastic

better

two natural
choices

temperature strategic voting

ȧ = T (1� 3a) + rac

ḃ = T (1� 3b) + rbc

ċ = T (1� 3c)� rc(1� c)

in c< sector

a

c< b<

b c
a<

ȧ = T (b+ c� 2a) + rAC ac+ rAB ab

ḃ = T (c+ a� 2b) + rBA ba+ rBC bc

ċ = T (a+ b� 2c) + rCA ca+ rCB cb



Strategic Voter Model

ċ = (1� 3c)T � r0
2
c(1� c)(1� 3c)

⌘ �3r0
2

(c� c�)(c� c+)(c� c3)

c3 = 1
3

c± = 1
2

�
1±

p
1� 8x0

�

x0 ⌘ T
r0


c(t)�c3
c(0)�c3

�↵3

c(t)�c+
c(0)�c+

�↵+

c(t)�c�
c(0)� c�

�↵�

= e�3(c+�c�)r0t/2

↵± =
1

c3�c±
↵3 = ↵��↵+ =

c+�c�
(c3�c+)(c3�c�)
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 Simulations of Strategic Voter Model
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Bounded Compromise Model

↔

x1 x2

x1 + x2

2

1

If |x2 − x1| < 1 compromise

↔

x1 x2

x1 x2

1

If |x2 − x1| > 1 no interaction



The Opinion Distribution

same as Maxwell model for inelastic collisions 
& inelastic collapse phenomena

Ben-Naim and Krapivsky (2000)
Baldassarri, Marconi, Puglisi (2001)
Ben-Naim, Krapvisky, SR (2003)

⇥P (x, t)
⇥t

=
ZZ

|x1�x2|<1

dx1dx2 P (x1, t)P (x2, t)⇥
⇥
�
�
x� 1

2 (x1+x2)
�
��(x�x1)

⇤

gain by 
averaging 
opinions

loss by 
interaction

P(x,t) = probability that agent has opinion x at time t

Fundamental parameter:

Δ<1:  consensus
Δ>1:  fragmentation

Δ the diversity (initial opinion range)

w ⇠ e��t/2
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Fragmentation Sequence

0 2 4 6 8 10

∆

−10

−5

0

5

10

x

major

minor

final 
opinion

(diversity)



Fragmentation Sequence

0 2 4 6 8 10

∆

−10

−5

0

5

10

x

major

minor

final 
opinion

(diversity)



0 2 4 6 8 10

∆

−10

−5

0

5

10

x

major

minor

minor

final 
opinion

(diversity)

Fragmentation Sequence



Birth of Extremists 

1-1−(1 + ϵ) (1 + ϵ)

t = 0

→ m(tsep) ∝ ϵ
3

separation:

w = ϵ = e
−tsep/2

1

0

w≈e
−t/2

m ≈ ϵ e
−t

1 + ✏
2�1� ✏

2



0 2 4 6 8 10

∆

−10

−5

0

5

10

x

major

minor

minor major

final 
opinion

(diversity)

Fragmentation Sequence



0 2 4 6 8 10

∆

−10

−5

0

5

10

x

majorminor

final 
opinion

(diversity)

central

Fragmentation Sequence



A Possible Realization
1993 Canadian Federal Election

year PQ NDP L PC SC R/CA
1979 26 114 136 6
1980 32 147 103
1984 30 40 211
1988 43 83 169

1993 54 9 177 2 52



The Dynamics of Persuasion
Sid Redner,  Santa Fe Institute (physics.bu.edu/~redner)  

CIRM, Luminy France, January 5-9, 2015
T.  Antal,  E. Ben-Naim,  P.  Chen,  P. L. Krapivsky,  M. Mobilia,  V.  Sood,  F.  Vazquez,  D.  Volovik

 + support from

Modeling Discord & Diversity:
• 3-state voter models
• strategic voting                   
• bounded compromise
• dynamics of social balance  
• Axelrod model   

• introduction to the voter model   
• voter model on complex networks
• voting with some confidence 
• majority rule       

Modeling Consensus:

lecture 1

lecture 2

lecture 3



Dynamics of Social Balance

friend enemy

Investigate dynamical rules that promote
           evolution to a balanced state



Socially Balanced States

unfrustrated/balanced frustrated/imbalanced

Clint

△3

Dina

you

△1

Clint Dina

you

Hollywood 
divorce

△2

Clint Dina

you

a friend of my friend 
an enemy of my enemy 
a friend of my enemy
an enemy of my friend 

Social Balance

is my friend;

is my enemy.

}
}

friendly 
link

△0

Brad Jen

you



Static properties of signed graphs:

Balanced states on complete graph must either be

Cartwright & Harary (1956)

• utopia:    only friendly links
• bipolar:   two mutually antagonistic cliques



Global Triad Dynamics:
reduce global imbalance by single update

→ Outcome unknown

Tantalizing connections to spin glasses & jamming phenomena

p:  amity parameter

Local Triad Dynamics:

(b)

1−p

p

j k

i
1

(a)

reduce imbalance in one triad by single update

→ Balance transition as a function of p 

Two Natural Evolution Rules



1
1−p

p

j k

i

Local Triad Dynamics on Arbitrary Networks

1. Pick a random imbalanced (frustrated) triad

p=1/3:  flip a random link in the triad equiprobably
p>1/3:  predisposition toward tranquility
p<1/3:  predisposition toward hostility

Fundamental parameter p: 

2. Reverse a single link so that the triad becomes balanced
probability p:  unfriendly → friendly;      probability1-p:  friendly → unfriendly 

(social graces of the clueless)



The Evolving State

− → + in △1 + → − in △1 − → + in △3

rate equation for the density of friendly links ρ:

dρ

dt
= 3ρ2(1 − ρ)[p − (1 − p)] + (1 − ρ)3

= 3(2p − 1)ρ2(1 − ρ) + (1 − ρ)3

ρ(t) ∼

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ρ∞ + Ae−Ct p < 1/2;

1 −

1 − ρ0
√

1 + 2(1 − ρ0)2t
p = 1/2;

1 − e−3(2p−1)t p > 1/2.

rapid approach 
to frustrated 
steady state

rapid attainment 
of utopia

slow relaxation
to utopia



Simulations for a Finite Society
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p <
1

2
, TN ∼ eN

2

p =
1

2
, TN ∼ N4/3

p >
1

2
, TN ∼

lnN

2p − 1



Fate of a Finite Society

→ TN ∼

lnN

2p − 1
≈ N

−2

p>1/2:  inversion of the rate equation

u ∼ e
−3(2p−1)t

u=1-ρ, the unfriendly link density

→ TN ∼ e
vLN /D

∼ e
N2

p<1/2:  effective random walk picture

balance±N N

D ∝ N
2 v ∝ N

balance
(N3/6 balanced triads)

# balanced triads



u ≡ 1 − ρ ∝ t−1/2

naive rate equation estimate:

p=1/2

≈ N
−2

→ TN ∼ N
4

4

−1/2

ln u

ln t

N
−2

N

incorporating fluctuations as balance is approached:

U = Lu +
√

L η

∼
L
√

t
+
√

L t1/4

equating the 2 terms in U:

TN ∼ L
2/3

∼ N
4/3

4/3N
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Figure 2. Gang Network

Figure 3. Gang Network with Violent Incidents
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 Possible Application I:  Long Beach Street Gangs
Nakamura, Tita, & 
Krackhardt (2007)



Page 40 of 44

Figure 2. Gang Network

Figure 3. Gang Network with Violent Incidents

_: Gang

_: Ally Relation

_: Enemy Relation

_: Gang

_: Number of Violent Attacks

(Thickness is proportional to

the number)

gang relations
cool with

hate

violence frequency
low incidence

high incidence

1,3

3,1

 Possible Application I:  Long Beach Street Gangs
Nakamura, Tita, & 
Krackhardt (2007)



Possible Application II:  A Historical Lesson

3 Emperor’s League 1872-81
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Axelrod Model
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Axelrod’s Simulation
F=5,  q=10, 10x10 lattice

t=0 t=200

t=400 t=800



Axelrod Model Castellano, Marsili & Vespignani (2000)

small (F,q):   consensus 
large (F,q):   fragmentation
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Axelrod Model Castellano, Marsili & Vespignani (2000)
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Axelrod Model with F=2
on 4-regular graph

Pm ⌘ fraction of links with m common features

m = 0, 2 inactive; m = 1 active

10
0

10
1

10
2

10
3

time

0

0.2

0.4

0.6

0.8

1

b
o
n
d
 d

e
n
s
it
ie

s

P
0

P
2

P
1

q = qc� 1
4

10
0

10
1

10
2

10
3

10
4

time

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

P
1
(t

)

0 100 200T
0

0.1

0.2

k=�1

k=1

k=3

k=5

k=7

q = qc� 1
4k

q = qc+
1
46

long 
time 
scale



Master Equations for Bond Densities

direct 
processes
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Ṗ2 =
P1

z
+

z�1

z
P1

⇥
1
2�P1 � P2

⇤



direct process for P :   choose random link
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Master Equations for Bond Densities
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Master Equations for Bond Densities
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Master Equations for Bond Densities
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Master Equations for Bond Densities
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Axelrod Model with F=2

transition between steady state (q<q ) & 
fragmented static state (q>q )

c

c

c
' (qc�q)�1/2

q<q  :  very slow approach to steady state with
          time scale 

long transient in which
before steady state is reached 

P1 ' (qc�q)



Some Closing Thoughts

Models of Diversity & Discord
•bifurcation sequence in bounded compromise
•role of competing social interactions mostly unknown
•mathematical understanding of Axelrod model lacking
•data-driven models

Voter Model well characterized, but:
•consensus route incompletely understood on complex graphs
•generalizations, role of heterogeneity, role of internal beliefs, 
•data-driven models

Notes: physics.bu.edu/~redner:
               click the “slides from selected talks” link 


