The Dynamics of Persuasion

Sid Redner, Santa Fe Institute (physics.bu.edu/~redner)
CIRM, Luminy France, January 5-9, 2015
T. Antal, E. Ben-Naim, P. Chen, P. L. Krapivsky, M. Mobilia. V. Sood, F. Vazquez, D. Volovik + support from

Modeling Consensus:

- introduction to the voter model
- voter model on complex networks lecture 1
- voting with some confidence
- majority rule

Modeling Discord \& Diversity:

- 3-state voter models
- strategic voting
- bounded compromise
- dynamics of social balance
- Axelrod model

Persuasion Dynamics

Real People

People as
interacting "atoms"

Voter Model

0 . Binary voter variable at each site i
I. Pick a random voter
2.Assume state of randomly-selected neighbor individual has no self-confidence \& adopts neighbor's state

Voter Model

Example update:

0 . Binary voter variable at each site i
I. Pick a random voter
2. Assume state of randomly-selected neighbor individual has no self-confidence \& adopts neighbor's state

Voter Model

Example update:

proportional rule

1/4

O. Binary voter variable at each site i
I. Pick a random voter
2. Assume state of randomly-selected neighbor individual has no self-confidence \& adopts neighbor's state

Voter Model

Example update:

proportional rule

0 . Binary voter variable at each site i
I. Pick a random voter
2.Assume state of randomly-selected neighbor individual has no self-confidence \& adopts neighbor's state
3. Repeat I \& 2 until consensus necessarily occurs in a finite system

Voter vs. Ising Models

Voter model: proportional rule Cliford \& Suburry (1973)

Kinetic Ising model: majority rule at $T=0$ Glawber (1963)

Voter Evolution vs. Ising Evolution

random
initial
condition:
droplet
initial
condition:

Voter

Dornic et al. (200I)
random initial condition:
droplet initial condition:

Lattice Voter Model: 3 Basic Properties

I. Final State (Exit) Probability $\mathcal{E}\left(\rho_{0}\right)$

Evolution of a single active link (homogeneous network):

I. Final State (Exit) Probability $\mathcal{E}\left(\rho_{0}\right)$

Evolution of a single active link (homogeneous network):

I. Final State (Exit) Probability $\mathcal{E}\left(\rho_{0}\right)=\rho_{0}$

Evolution of a single active link (homogeneous network):

2. Spatial Dependence of 2-Spin Correlations
flip rate:

$$
w_{i}=\frac{1}{2}\left[1-\frac{\sigma_{i}}{z} \sum_{j \in\langle i\rangle} \sigma_{j}\right]
$$

I-spin correlations:

$$
\frac{d\left\langle\sigma_{i}\right\rangle}{d t}=-2\left\langle\sigma_{i} w_{i}\right\rangle
$$

2. Spatial Dependence of 2-Spin Correlations

flip rate:

$$
w_{i}=\frac{1}{2}\left[1-\frac{\sigma_{i}}{z} \sum_{j \in\langle i\rangle} \sigma_{j}\right]
$$

I-spin correlations:

$$
\begin{aligned}
\frac{d\left\langle\sigma_{i}\right\rangle}{d t} & =-2\left\langle\sigma_{i} w_{i}\right\rangle & \left\langle\sigma_{i}(t)\right\rangle=I_{i}(t) e^{-t} \\
& =-\left\langle\sigma_{i}\right\rangle+\frac{1}{z} \sum_{j}\left\langle\sigma_{j}\right\rangle & \text { for }\left\langle\sigma_{i}(t=0)\right\rangle=\delta_{i, 0}
\end{aligned}
$$

2-spin correlations:

$$
\begin{aligned}
\frac{d\left\langle\sigma_{i} \sigma_{j}\right\rangle}{d t} & =-2\left\langle\sigma_{i} \sigma_{j}\left(w_{i}+w_{j}\right)\right\rangle \\
& =-2\left\langle\sigma_{i} \sigma_{j}\right\rangle+\frac{1}{2 d}\left(\sum_{k \in\langle i\rangle}\left\langle\sigma_{k} \sigma_{j}\right\rangle+\sum_{k \in\langle j\rangle}\left\langle\sigma_{i} \sigma_{k}\right\rangle\right)
\end{aligned}
$$

2. Spatial Dependence of 2-Spin Correlations

(infinite system)
Equation for 2-spin correlation function:

$$
\begin{aligned}
& \frac{d\left\langle\sigma_{i} \sigma_{j}\right\rangle}{d t}=-2\left\langle\sigma_{i} \sigma_{j}\left(w_{i}+w_{j}\right)\right\rangle \\
& \frac{\partial c_{2}(\mathbf{r}, t)}{\partial t}=\nabla^{2} c_{2}(\mathbf{r}, t) \\
& c(r=0, t)=1 ; \quad c(r>0, t=0)=0
\end{aligned}
$$

2. Spatial Dependence of 2-Spin Correlations

(infinite system)
Equation for 2 -spin correlation function:

$$
\begin{aligned}
& \frac{d\left\langle\sigma_{i} \sigma_{j}\right\rangle}{d t}=-2\left\langle\sigma_{i} \sigma_{j}\left(w_{i}+w_{j}\right)\right\rangle \\
& \frac{\partial c_{2}(\mathbf{r}, t)}{\partial t}=\nabla^{2} c_{2}(\mathbf{r}, t) \\
& c(r=0, t)=1 ; \quad c(r>0, t=0)=0
\end{aligned}
$$

2. Spatial Dependence of 2-Spin Correlations

(infinite system)
Equation for 2-spin correlation function:

$$
\begin{aligned}
& \frac{d\left\langle\sigma_{i} \sigma_{j}\right\rangle}{d t}=-2\left\langle\sigma_{i} \sigma_{j}\left(w_{i}+w_{j}\right)\right\rangle \\
& \frac{\partial c_{2}(\mathbf{r}, t)}{\partial t}=\nabla^{2} c_{2}(\mathbf{r}, t) \\
& c(r=0, t)=1 ; \quad c(r>0, t=0)=0
\end{aligned}
$$

2. Spatial Dependence of 2-Spin Correlations

(infinite system)
Equation for 2-spin correlation function:

$$
\begin{aligned}
& \quad \frac{d\left\langle\sigma_{i} \sigma_{j}\right\rangle}{d t}=-2\left\langle\sigma _ { i } \sigma _ { j } \left(w_{i}\right.\right. \\
& \text { Asymptotic solution: }
\end{aligned}
$$

$$
\frac{\partial c_{2}(\mathbf{r}, t)}{\partial t}=\nabla^{2} c_{2}(\mathbf{r}, t)
$$

$$
c(r=0, t)=1 ; \quad c(r>0, t=0)=0
$$

$$
c(r, t) \sim \begin{cases}1-\frac{1-\left(\frac{a}{r}\right)^{d-2}}{1-\left(\frac{a}{\sqrt{D t}}\right)^{d-2}} & d \neq 2 \\ \frac{1-\frac{\ln r}{\ln a}}{1-\frac{\ln \sqrt{D t}}{\ln a}} & d=2\end{cases}
$$

3. System Size Dependence of Consensus Time

Liggett (I985), Krapivsky (I992)

$$
\int^{\sqrt{D t}} c(r, t) r^{d-1} d r=N
$$

dimension	consensus time
1	$\mathrm{~N}^{2}$
2	$\mathrm{~N} \ln \mathrm{~N}$
>2	N

Lattice Voter Model: 3 Basic Properties

I. Final State Probability $\quad \mathcal{E}\left(\rho_{0}\right)=\rho_{0}$

Evolution of a single active link:

average magnetization conserved
2. Two-Spin Correlations $\quad \frac{\partial c(\mathbf{r}, t)}{\partial t}=\nabla^{2} c(\mathbf{r}, t) \quad \begin{aligned} & c(r=0, t)=1 \\ & c(r>0, t=0)=0\end{aligned}$

3. Consensus Time

$\int^{\sqrt{D t}} c(\mathbf{r}, t) d \mathbf{r}=N$

dimension	consensus time
l	N^{2}
2	$\mathrm{~N} \ln \mathrm{~N}$
>2	N

Voter Model on Complex Networks

magnetization on regular networks

magnetization not conserved on complex networks

"flow" from high degree to low degree

New Conservation Law

low degree

to compensate the different rates: degree-weighted Ist moment:

$$
\omega \equiv \frac{\sum_{k} k n_{k} \rho_{k}}{\sum_{k} k n_{k}}=\frac{\sum_{k} k n_{k} \rho_{k}}{\mu_{1}}
$$

$$
\mu_{1}=\text { av. degree }
$$

$$
n_{k}=\text { frac. nodes of degree } k
$$

$$
\rho_{k}=\text { frac. } \uparrow \text { on nodes of degree } k
$$

Conservation Law for Voter Model

Transition probability

$$
\begin{array}{rlrl}
\eta & \equiv \text { state of system } & y & \uparrow \\
\eta_{x} & \equiv \text { state after flip at } x & \begin{array}{l}
\text { voter } \\
\text { neighbor }
\end{array} \\
\eta(x) & \equiv \text { state at } x(0,1) & \text { at } \times & \begin{array}{l}
\text { at } y
\end{array}
\end{array}
$$

Density change: $\langle\Delta \eta(x)\rangle=[1-2 \eta(x)] \mathbf{P}\left[\eta \rightarrow \eta_{x}\right]$

$$
\pm 1_{\text {at } x}
$$

degree-weighted moments: $\quad \omega_{n}=\frac{1}{N \mu_{n}} \sum_{x} k_{x}^{n} \eta(x)$
change in weighted $\left\langle\Delta \omega_{1}\right\rangle=\sum_{x, y} \frac{A_{x y}}{N k_{x}} k_{x}[\eta(y)-\eta(x)]=0$
first moment:

Exit Probability on Complex Graphs

$$
\mathcal{E}(\omega)=\omega
$$

Extreme case: star graph 0

Final state: all I with prob. I/2!

Voter Model on Complex Networks

Sucheki, Eguiluz \& San Miguel (2005) Sood \& SR (2005)
Antal, Sood \& SR (2005)
complete bipartite graph

two-clique graph

Consensus Time Evolution Equation

warmup: complete graph
$T(\rho) \equiv$ av. consensus time starting with density ρ

$$
\begin{aligned}
T(\rho)= & \mathcal{R}(\rho)[T(\rho+d \rho)+d t] \\
& +\mathcal{L}(\rho)[T(\rho-d \rho)+d t] \\
& +[1-\mathcal{R}(\rho)-\mathcal{L}(\rho)][T(\rho)+d t]
\end{aligned}
$$

Consensus Time Evolution Equation

warmup: complete graph
$T(\rho) \equiv$ av. consensus time starting with density ρ

$$
\begin{aligned}
T(\rho)= & \mathcal{R}(\rho)[T(\rho+d \rho)+d t] \\
& +\mathcal{L}(\rho)[T(\rho-d \rho)+d t] \\
& +[1-\mathcal{R}(\rho)-\mathcal{L}(\rho)][T(\rho)+d t]
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{R}(\rho) & \equiv \operatorname{prob}(\downarrow \uparrow \rightarrow \uparrow \uparrow) \\
& =\rho(1-\rho)
\end{aligned}
$$

Consensus Time Evolution Equation

warmup: complete graph
$T(\rho) \equiv$ av. consensus time starting with density ρ

$$
\begin{aligned}
T(\rho)= & \mathcal{R}(\rho)[T(\rho+d \rho)+d t] \\
& +\mathcal{L}(\rho)[T(\rho-d \rho)+d t] \\
& +[1-\mathcal{R}(\rho)-\mathcal{L}(\rho)][T(\rho)+d t]
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{R}(\rho) & \equiv \operatorname{prob}(\downarrow \uparrow \rightarrow \uparrow \uparrow) \\
\mathcal{L}(\rho) & \equiv \operatorname{prob}(\uparrow \downarrow \rightarrow \downarrow) \\
& =\rho(1-\rho)
\end{aligned}
$$

Consensus Time Evolution Equation

warmup: complete graph
$T(\rho) \equiv$ av. consensus time starting with density ρ

$$
\begin{aligned}
T(\rho)= & \mathcal{R}(\rho)[T(\rho+d \rho)+d t] \\
& +\mathcal{L}(\rho)[T(\rho-d \rho)+d t] \\
& +[1-\mathcal{R}(\rho)-\mathcal{L}(\rho)][T(\rho)+d t] \\
& \\
& L \\
0 & \rho \\
& 1-\boldsymbol{R}-\boldsymbol{L}
\end{aligned} \quad \begin{aligned}
\mathcal{R}(\rho) & \equiv \operatorname{prob}(\downarrow \uparrow \rightarrow \uparrow \uparrow) \\
& \equiv \operatorname{prob}(\uparrow \downarrow \rightarrow \downarrow \downarrow) \\
& =\rho(1-\rho)
\end{aligned}
$$

Consensus Time on Complete Graph

$$
\begin{aligned}
T(\rho)= & \mathcal{R}(\rho)[T(\rho+d \rho)+d t] \\
& +\mathcal{L}(\rho)[T(\rho-d \rho)+d t] \\
& +[1-\mathcal{R}(\rho)-\mathcal{L}(\rho)][T(\rho)+d t]
\end{aligned}
$$

continuum limit:

$$
T^{\prime \prime}=-\frac{N}{\rho(1-\rho)}
$$

solution:

$$
T(\rho)=-N[\rho \ln \rho+(1-\rho) \ln (1-\rho)]
$$

Consensus Time on Heterogeneous Networks

$T\left(\left\{\rho_{k}\right\}\right) \equiv$ av. consensus time starting with density ρ_{k} on nodes of degree k

$$
\begin{aligned}
T\left(\left\{\rho_{k}\right\}\right)= & \sum_{k} \mathcal{R}_{k}\left(\left\{\rho_{k}\right\}\right)\left[T\left(\left\{\rho_{k}^{+}\right\}\right)+d t\right] \\
& +\sum_{k} \mathcal{L}_{k}\left(\left\{\rho_{k}\right\}\right)\left[T\left(\left\{\rho_{k}^{-}\right\}\right)+d t\right] \\
& +\left[1-\sum_{k}\left[\mathcal{R}_{k}\left(\left\{\rho_{k}\right\}\right)+\mathcal{L}_{k}\left(\left\{\rho_{k}\right\}\right)\right]\right]\left[T\left(\left\{\rho_{k}\right\}\right)+d t\right] \\
\mathcal{R}_{k}\left(\left\{\rho_{k}\right\}\right) & =\operatorname{prob}\left(\rho_{k} \rightarrow \rho_{k}^{+}\right) \quad \mathcal{L}_{k}\left(\left\{\rho_{k}\right\}\right)=n_{k} \rho_{k}(1-\omega) \\
& =\frac{1}{N} \sum_{x}^{\prime} \frac{1}{k_{x}} \sum_{y} P(\downarrow,-\uparrow) \\
& =n_{k} \omega\left(1-\rho_{k}\right)
\end{aligned}
$$

Consensus Time on Heterogeneous Networks

continuum limit:

$$
\sum_{k}\left[\left(\omega-\rho_{k}\right) \frac{\partial T}{\partial \rho_{k}}+\frac{\omega+\rho_{k}-2 \omega \rho_{k}}{2 N n_{k}} \frac{\partial^{2} T}{\partial \rho_{k}^{2}}\right]=-1
$$

Voter Model on Complex Networks configuration model

$$
n_{k} \sim k^{-2.5}, \quad \mu_{1}=8
$$

Consensus Time on Heterogeneous Networks

continuum limit:

$$
\sum_{k}\left[\left(\omega-\rho_{k}\right) \frac{\partial T}{\partial \rho_{k}}+\frac{\omega+\rho_{k}-2 \omega \rho_{k}}{2 N n_{k}} \frac{\partial^{2} T}{\partial \rho_{k}^{2}}\right]=-1
$$

now use $\quad \rho_{k} \rightarrow \omega \quad \forall k$
and

$$
\frac{\partial}{\partial \rho_{k}}=\frac{\partial \omega}{\partial \rho_{k}} \frac{\partial}{\partial \omega}=\frac{k n_{k}}{\mu_{1}} \frac{\partial}{\partial \omega}
$$

to give

$$
\frac{\partial^{2} T}{\partial \omega^{2}}=-\frac{N \mu_{1}^{2} / \mu_{2}}{\omega(1-\omega)} \quad \text { as } \quad \text { as } \quad T^{\prime \prime}=-\frac{N}{\rho(1-\rho)}
$$

with effective size $N_{\text {eff }}=N \mu_{1}^{2} / \mu_{2}$

$$
\mu_{n}=\sum_{k} k^{n} n_{k}
$$

Consensus Time for Complex Networks with $n_{k} \sim k^{-\nu}$

$$
T_{N} \propto N_{\mathrm{eff}}=N \frac{\mu_{1}^{2}}{\mu_{2}}
$$

Consensus Time for Complex Networks with $n_{k} \sim k^{-\nu}$

$$
T_{N} \propto N_{\mathrm{eff}}=N \frac{\mu_{1}^{2}}{\mu_{2}} \sim \begin{cases}N & \nu>3 \\ \end{cases}
$$

Consensus Time for Complex Networks with $n_{k} \sim k^{-\nu}$

$$
T_{N} \propto N_{\mathrm{eff}}=N \frac{\mu_{1}^{2}}{\mu_{2}} \sim \begin{cases}N & \nu>3 \\ N / \ln N & \nu=3 \\ & \end{cases}
$$

Consensus Time for Complex Networks

 with $n_{k} \sim k^{-\nu}$$$
T_{N} \propto N_{\mathrm{eff}}=N \frac{\mu_{1}^{2}}{\mu_{2}} \sim \begin{cases}N & \nu>3 \\ N / \ln N & \nu=3 \\ N^{2(\nu-2) /(\nu-1)} & 2<\nu<3 \\ (\ln N)^{2} & \nu=2 \\ \mathcal{O}(1) & \nu<2\end{cases}
$$

fast consensus
Invasion process:

$$
T_{N} \sim \begin{cases}N & \nu>2, \\ N \ln N & \nu=2, \\ N^{2-\nu} & \nu<2 .\end{cases}
$$

"Confident" Voter Model

motivation: Centola (2010)
related work: Dall'Asta \& Castellano (2007)

"Confident" Voter Model

motivation: Centola (2010)
related work: Dall'Asta \& Castellano (2007)

"Confident" Voter Model

motivation: Centola (2010)
related work: Dall'Asta \& Castellano (2007)

"Confident" Voter Model

motivation: Centola (2010)
related work: Dall'Asta \& Castellano (2007)

marginal

Simplest case: 2 internal states

basic processes:

$$
\begin{array}{llll}
M_{1} P_{1} \rightarrow P_{0} P_{1} \text { or } M_{0} M_{1} & M_{0} P_{0} \rightarrow M_{0} P_{1} \text { or } M_{1} P_{0} \\
P_{0} P_{1} \rightarrow P_{0} P_{1} \text { or } P_{0} P_{0} & M_{0} M_{1} \rightarrow M_{0} M_{1} \text { or } M_{0} M_{0} \\
M_{1} P_{0} \rightarrow M_{1} P_{1} \text { or } P_{0} P_{0} & M_{0} P_{1} \rightarrow M_{1} P_{1} \text { or } M_{0} M_{0}
\end{array}
$$

rate equations/mean-field limit:

$$
\begin{aligned}
& \dot{P}_{0}=-M_{0} P_{0}+M_{1} P_{1}+P_{0} P_{1} \\
& \dot{P}_{1}=M_{0} P_{0}-M_{1} P_{1}-P_{0} P_{1}+\left(M_{1} P_{0}-M_{0} P_{1}\right)
\end{aligned}
$$

similarly for M_{0}, M_{1}
special soluble case: symmetric limit

$$
P_{0}+P_{1}=M_{0}+M_{1}=\frac{1}{2}
$$

$$
\begin{aligned}
& \dot{P}_{0}=-M_{0} P_{0}+M_{1} P_{1}+P_{0} P_{1} \\
& \dot{P}_{1}=M_{0} P_{0}-M_{1} P_{1}-P_{0} P_{1}+\left(M_{1} P_{0}-M_{0} P_{1}\right) \\
& \rightarrow \quad \dot{P}_{0}=-\dot{P}_{1}=P_{0}^{2}+\frac{1}{2} P_{0}-\frac{1}{4} \\
& \quad=-\left(P_{0}-\lambda_{+}\right)\left(P_{0}-\lambda_{-}\right) \\
& \quad \lambda_{ \pm}=\frac{1}{4}(-1 \pm \sqrt{5}) \approx 0.309,-0.809
\end{aligned}
$$

solution: $\quad \frac{P_{0}(t)-\lambda_{+}}{P_{0}(t)-\lambda_{-}}=\frac{P_{0}(0)-\lambda_{+}}{P_{0}(0)-\lambda_{-}} e^{-\left(\lambda_{+}-\lambda_{-}\right) t}$
near symmetric limit:

near symmetric limit: composition tetrahedron

Consensus Time in Two Dimensions

Consensus Time Distribution

two time scales control approach to consensus
see also Spirin, Krapivsky, SR (200I), Chen \& SR (2005)
Ising model
Majority vote model

Majority rule

I. Pick a random group of G spins (with G odd).
2. All spins in G adopt the majority state.
3. Repeat until consensus necessarily occurs.

$$
\begin{array}{llll}
++ & - \\
- & + & + & \longrightarrow \\
+- & - & +\begin{array}{l}
+ \\
+ \\
+ \\
+ \\
+ \\
+ \\
+
\end{array} & - \\
+ & + & + & +
\end{array}
$$

Basic questions: I. Which final state is reached?
2. What is the time until consensus?

Mean-field theory (for $\mathrm{G}=3$)

$E_{n} \equiv$ exit probability to $m=1$ starting from n plus spins

$$
=p_{n} E_{n+1}+q_{n} E_{n-1}+r_{n} E_{n}
$$

$$
\text { where } \begin{aligned}
p_{n} & =\binom{3}{2}\binom{N-3}{n-2} /\binom{N}{n} \\
q_{n} & =\binom{3}{1}\binom{N-3}{n-1} /\binom{N}{n} \\
r_{n} & =1-p_{n}-q_{n}
\end{aligned}
$$

$$
(\mathrm{n}=\mathrm{N})
$$

$T_{n} \equiv$ mean time to $m=1$ starting from n plus spins

$$
=p_{n}\left(T_{n+1}+\delta t\right)+q_{n}\left(T_{n-1}+\delta t\right)+r_{n}\left(T_{n}+\delta t\right)
$$

Exit probability

(schematic)

Consensus time (data)

Consensus time for finite spatial dimensions

Critical dimension appears to be >4 !

Anomalous dynamics in 2d: stripes $\sim 33 \%$ of the time!

$\mathrm{t}=80$

Slab formation in 3d $\sim 8 \%$ of the time

Consensus time distribution

The Dynamics of Persuasion

Sid Redner, Santa Fe Institute (physics.bu.edu/~redner)
CIRM, Luminy France, January 5-9, 2015
T. Antal, E. Ben-Naim, P. Chen, P. L. Krapivsky, M. Mobilia. V. Sood, F. Vazquez, D. Volovik + support from

Modeling Consensus:

- introduction to the voter model
- voter model on complex networks lecture 1
- voting with some confidence
- majority rule

Modeling Discord \& Diversity:

- 3-state voter models
- strategic voting
- bounded compromise
- dynamics of social balance
- Axelrod model

Discord \& Diversity

If people are reasonable, why is consensus hard to reach?
Possibilities: • insufficient communication

- appreciable diversity
- stubbornness
- your favorite mechanism

Models:
Three voting states: - 0 +; - + noninteracting $\begin{gathered}\text { Vazquez \& } \\ \mathrm{S}_{\mathrm{R}}(2004)\end{gathered}$
Strategic voting: ideology vs. strategy Volovik, Mobilia \& SR (2009)
Bounded confidence: compromise only when close
Deffuant, Neau, Amblard \& Weisbuch (2000)
Hegselmann \& Krause (2002)
Ben Naim, Krapivsky \& SR (2003)
Social balance:
dynamics of positive/negative links
Antal, Krapivsky \& SR $(2005,2006)$
Axelrod model:
many features, many traits
Axelrod (1997)
Castellano, Marsili \& Vespignani (2000)
Vazquez \& SR (2007)

Three Voting States: - 0 +

0.3 -state voter at each site:

$-0+$

I. Pick a random voter
2. Assume state of neighbor if compatible
3. Repeat until either consensus or frozen final state

Evolution in Composition Triangle

Evolution in Composition Triangle

The Phase Diagram

$F\left(\rho_{-}, \rho_{+}\right)=$prob. to reach frozen state starting from $\left(\rho_{-}, \rho_{+}\right)$
recursion: $\quad F\left(\rho_{-}, \rho_{+}\right)=p_{x}\left[F\left(\rho_{-}-\delta, \rho_{+}\right)+F\left(\rho_{-}+\delta, \rho_{+}\right)\right]$

$$
\begin{aligned}
& =p_{y}\left[F\left(\rho_{-}, \rho_{+}-\delta\right)+F\left(\rho_{-}, \rho_{+}+\delta\right)\right] \\
& =\left[1-2\left(p_{x}+p_{y}\right)\right] F\left(\rho_{-}, \rho_{+}\right)
\end{aligned}
$$

continuum limit:

$$
\rho_{-} \frac{\partial^{2} F\left(\rho_{-}, \rho_{+}\right)}{\partial \rho_{-}^{2}}+\rho_{+} \frac{\partial^{2} F\left(\rho_{-}, \rho_{+}\right)}{\partial \rho_{+}^{2}}=0 \quad \begin{aligned}
& F\left(\rho_{-}, 0\right)=0 \\
& F\left(0, \rho_{+}\right)=0 \\
& F\left(\rho_{+}, 1-\rho_{+}\right)=1
\end{aligned}
$$

The Phase Diagram

$F\left(\rho_{-}, \rho_{+}\right)=$prob. to reach frozen state starting from $\left(\rho_{-}, \rho_{+}\right)$
recursion: $\quad F\left(\rho_{-}, \rho_{+}\right)=p_{x}\left[F\left(\rho_{-}-\delta, \rho_{+}\right)+F\left(\rho_{-}+\delta, \rho_{+}\right)\right]$

$$
\begin{aligned}
& =p_{y}\left[F\left(\rho_{-}, \rho_{+}-\delta\right)+F\left(\rho_{-}, \rho_{+}+\delta\right)\right] \\
& =\left[1-2\left(p_{x}+p_{y}\right)\right] F\left(\rho_{-}, \rho_{+}\right)
\end{aligned}
$$

continuum limit:

$$
\rho_{-} \frac{\partial^{2} F\left(\rho_{-}, \rho_{+}\right)}{\partial \rho_{-}^{2}}+\rho_{+} \frac{\partial^{2} F\left(\rho_{-}, \rho_{+}\right)}{\partial \rho_{+}^{2}}=0 \quad \begin{aligned}
& F\left(\rho_{-}, 0\right)=0 \\
& F\left(0, \rho_{+}\right)=0 \\
& F\left(\rho_{+}, 1-\rho_{+}\right)=1
\end{aligned}
$$

$\int_{\sim} F\left(\rho_{-}, \rho_{+}\right)=\sum_{n \text { odd }} \frac{2(2 n+1)}{n(n+1)} \sqrt{\rho_{-} \rho_{+}}\left(\rho_{-}+\rho_{+}\right)^{n} P_{n}^{1}\left(\frac{\rho_{-}-\rho_{+}}{\rho_{-}+\rho_{+}}\right)$

$$
F\left(\rho_{0}\right)=1-\frac{1-\left(1-\rho_{0}\right)^{2}}{\sqrt{1+\left(1-\rho_{0}\right)^{2}}}
$$

symmetric limit

Phase Diagram \& Final State Probabilities

moral: extremism promotes deadlock

Strategic Voting

 ¿vote for first choice?¿vote against last choice?

UK elections 1830-2010

Strategic Voter Model

evolution of the densities a, b, c :

$$
\begin{aligned}
\dot{a} & = \\
\dot{b} & = \\
\dot{c} & =
\end{aligned}
$$

Strategic Voter Model

evolution of the densities a, b, c :
temperature
$\dot{a}=T(b+c-2 a)$
$\dot{b}=T(c+a-2 b)$
$\dot{c}=T(a+b-2 c)$

Strategic Voter Model

 evolution of the densities a, b, c :temperature strategic voting

$$
\begin{aligned}
\dot{a} & =T(b+c-2 a)+r_{A C} a c+r_{A B} a b \\
\dot{b} & =T(c+a-2 b)+r_{B A} b a+r_{B C} b c \\
\dot{c} & =T(a+b-2 c)+r_{C A} c a+r_{C B} c b
\end{aligned}
$$

Strategic Voter Model

evolution of the densities a, b, c :

$$
\begin{aligned}
\dot{a} & =T(b+c-2 a)+r_{A C}^{\text {strategic voting }} a c+r_{A B} a b \\
\dot{b} & =T(c+a-2 b)+r_{B A} b a+r_{B C} b c \\
\dot{c} & =T(a+b-2 c)+r_{C A} c a+r_{C B} c b
\end{aligned}
$$

two natural	r	$=$ const.	too drastic
choices	r	$=r_{0}[(a+b) / 2-c]$	
better			

$$
\dot{a}=T(1-3 a)+r a c
$$

$\longrightarrow \dot{b}=T(1-3 b)+r b c \quad$ in $c_{<}$sector

$$
\dot{c}=T(1-3 c)-r c(1-c)
$$

Strategic Voter Model

$$
\begin{array}{rlrl}
\dot{c} & =(1-3 c) T-\frac{r_{0}}{2} c(1-c)(1-3 c) & & c_{3}=\frac{1}{3} \\
& \equiv-\frac{3 r_{0}}{2}\left(c-c_{-}\right)\left(c-c_{+}\right)\left(c-c_{3}\right) & & c_{ \pm}=\frac{1}{2}\left(1 \pm \sqrt{1-8 x_{0}}\right) \\
x_{0} \equiv \frac{T}{r_{0}}
\end{array}
$$

$$
\left[\frac{c(t)-c_{3}}{c(0)-c_{3}}\right]^{\alpha_{3}}\left[\frac{c(t)-c_{+}}{c(0)-c_{+}}\right]^{\alpha_{+}}\left[\frac{c(t)-c_{-}}{c(0)-c_{-}}\right]^{\alpha_{-}}=e^{-3\left(c_{+}-c_{-}\right) r_{0} t / 2}
$$

$$
\alpha_{ \pm}=\frac{1}{c_{3}-c_{ \pm}} \quad \alpha_{3}=\alpha_{-}-\alpha_{+}=\frac{c_{+}-c_{-}}{\left(c_{3}-c_{+}\right)\left(c_{3}-c_{-}\right)}
$$

Strategic Voter Model

mean-field phase diagram

location of fixed point

Simulations of Strategic Voter Model

Bounded Compromise Model

$\sqrt{\square}$

$$
\frac{x_{1}+x_{2}}{2}
$$

If $\left|x_{2}-x_{1}\right|<1$ compromise

If $\left|x_{2}-x_{1}\right|>1$ no interaction

The Opinion Distribution

$\mathrm{P}(\mathrm{x}, \mathrm{t})=$ probability that agent has opinion x at time t

Fundamental parameter: Δ the diversity (initial opinion range)

$$
\left.\begin{array}{c}
\begin{array}{c}
\Delta<1: \\
\Delta>1:
\end{array} \underset{\text { fragmentation }}{\text { consensus }} \quad w \sim e^{-\Delta t / 2} \\
\frac{\partial P(x, t)}{\partial t}=\iint_{\left|x_{1}-x_{2}\right|<1} d x_{1} d x_{2} P\left(x_{1}, t\right) P\left(x_{2}, t\right) \times\left[\delta\left(x-\frac{1}{2}\left(x_{1}+x_{2}\right)\right)-\delta\left(x-x_{1}\right)\right] \\
\begin{array}{c}
\text { gain by } \\
\text { averaing } \\
\text { opinions }
\end{array}
\end{array} \begin{array}{l}
\text { loss by } \\
\text { interaction }
\end{array}\right]
$$

same as Maxwell model for inelastic collisions
\& inelastic collapse phenomena

Early time evolution (for $\Delta=4.2$)

 integrate master equation rather than simulate!

Early time evolution (for $\Delta=4.2$)

 integrate master equation rather than simulate!

Early time evolution (for $\Delta=4.2$)

 integrate master equation rather than simulate!

Early time evolution (for $\Delta=4.2$)

 integrate master equation rather than simulate!

Fragmentation Sequence

Fragmentation Sequence

Fragmentation Sequence

Birth of Extremists

\downarrow separation:

$$
w=\epsilon=e^{-t_{\mathrm{sep}} / 2}
$$

Fragmentation Sequence

Fragmentation Sequence

A Possible Realization
1993 Canadian Federal Election

year	PQ	NDP	L	PC	SC	R/CA
1979		26	114	136	6	
1980		32	147	103		
1984		30	40	211		
1988		43	83	169		
1993	54	9	177	2		52

The Dynamics of Persuasion

Sid Redner, Santa Fe Institute (physics.bu.edu/~redner)
CIRM, Luminy France, January 5-9, 2015
T. Antal, E. Ben-Naim, P. Chen, P. L. Krapivsky, M. Mobilia. V. Sood, F. Vazquez, D. Volovik + support from

Modeling Consensus:

- introduction to the voter model
- voter model on complex networks lecture 1
- voting with some confidence
- majority rule

Modeling Discord \& Diversity:

- 3-state voter models
- strategic voting
- bounded compromise
- dynamics of social balance
- Axelrod model

Dynamics of Social Balance

friend

Investigate dynamical rules that promote evolution to a balanced state

Socially Balanced States

Social Balance

a friend of my friend an enemy of my enemy $\}$ is my friend; $\left.\begin{array}{l}\text { a friend of my enemy } \\ \text { an enemy of my friend }\end{array}\right\}$ is my enemy.

Static properties of signed graphs:

Balanced states on complete graph must either be

- utopia: only friendly links
- bipolar: two mutually antagonistic cliques

Two Natural Evolution Rules

Local Triad Dynamics: reduce imbalance in one triad by single update

p: amity parameter

\rightarrow Balance transition as a function of p
Global Triad Dynamics: reduce global imbalance by single update

\rightarrow Outcome unknown

Tantalizing connections to spin glasses \& jamming phenomena

Local Triad Dynamics on Arbitrary Networks

 (social graces of the clueless)I. Pick a random imbalanced (frustrated) triad
2. Reverse a single link so that the triad becomes balanced probability p : unfriendly \rightarrow friendly; probability l-p: friendly \rightarrow unfriendly

Fundamental parameter p :
$p=1 / 3$: flip a random link in the triad equiprobably
$\mathrm{p}>$ I/3: predisposition toward tranquility
$\mathrm{p}<1 / 3$: predisposition toward hostility

The Evolving State

rate equation for the density of friendly links ρ :

$$
\left.\begin{array}{rl}
& -\rightarrow+\text { in } \Delta_{1} \\
\frac{d \rho}{d t} & =3 \rho^{2}(1-\rho)[p-(1-p)]+(1-\rho)^{3} \\
& =3(2 p-1) \rho^{2}(1-\rho)+(1-\rho)^{3}
\end{array}\right] \begin{array}{lll}
\rho_{\infty}+A e^{-C t} & p<1 / 2 ; & \begin{array}{l}
\text { in } \Delta_{3} \\
\text { topid frusprated } \\
\text { steady state }
\end{array} \\
1-\frac{1-\rho_{0}}{\sqrt{1+2\left(1-\rho_{0}\right)^{2} t}} & p=1 / 2 ; & \begin{array}{l}
\text { slow relaxation } \\
\text { to utopia }
\end{array} \\
1-e^{-3(2 p-1) t} & p>1 / 2 . & \begin{array}{l}
\text { rapid attainment } \\
\text { of utopia }
\end{array}
\end{array}
$$

Simulations for a Finite Society

$$
p<\frac{1}{2}, \quad T_{N} \sim e^{N^{2}}
$$

$$
p=\frac{1}{2}, \quad T_{N} \sim N^{4 / 3}
$$

$$
p>\frac{1}{2}, \quad T_{N} \sim \frac{\ln N}{2 p-1}
$$

Fate of a Finite Society

$\mathrm{p}<1 / 2$: effective random walk picture

balance

($N^{3} / 6$ balanced triads)
$p>1 / 2$: inversion of the rate equation
$u \sim e^{-3(2 p-1) t} \approx N^{-2} \rightarrow T_{N} \sim \frac{\ln N}{2 p-1}$
$u=1-\rho$, the unfriendly link density
$\mathrm{p}=1 / 2$
naive rate equation estimate:

$$
u \equiv 1-\rho \propto t^{-1 / 2} \approx N^{-2} \quad \rightarrow T_{N} \sim N^{4}
$$

incorporating fluctuations as balance is approached:

$$
\begin{aligned}
U & =L u+\sqrt{L} \eta \\
& \sim \frac{L}{\sqrt{t}}+\sqrt{L} t^{1 / 4}
\end{aligned}
$$

equating the 2 terms in U :

$$
T_{N} \sim L^{2 / 3} \sim N^{4 / 3}
$$

Possible Application I: Long Beach Street Gangs

gang relations

Nakamura, Tita, \&
Krackhardt (2007)
—_ cool with
—— hate

Possible Application I: Long Beach Street Gangs

gang relations

Nakamura, Tita, \&
Krackhardt (2007)
-_cool with
—— hate
violence frequency

- low incidence - high incidence

Possible Application II: A Historical Lesson

3 Emperor's League I872-8।

French-Russian Alliance I89I-94

Triple Alliance 1882

Entente Cordiale I904

German-Russian Lapse I890

British-Russian Alliance 1907

Axelrod Model

You:

Me:

car	cuisine	recreation	politics	abode
BMW	meat	skiing	leftist	suburb house
SUV	vegetarian	hiking	rightist	city apartment
Ford	vegan	fishing	anarchist	homeless
Trabant	fast weekly	hunting	apathetic	pied-à-terre
bicycle	dieting	running	fascist	city house

Axelrod Model

You:

Me:

car	cuisine	recreation	politics	abode
BMW	meat	skiing	leftist	suburb house
SUV	vegetarian	hiking	rightist	city apartment
Ford	vegan	fishing	anarchist	homeless
Trabant	fast weekly	hunting	apathetic	pied-à-terre
bicycle	dieting	running	fascist	city house

Axelrod Model

You:

car

BMW meat	
SUV vegetarian	
Ford	vegan
Trabant	fast weekly
bicycle	dieting

recreation
skiing
hikIng
fishing
hunting
running
_ F features
politics abode

leftist	suburb house
rightist	city apartmen
anarchist	homeless
apathetic	pied-à-terre
fascist	city house

Me:

car	cuisine	recreation	politics	abode
BMW	meat	skiing	leftist	suburb house
SUV	vegetarian	hiking	rightist	city apartment
Ford	vegan	fishing	anarchist	homeless
Trabant	fast weekly	hunting	apathetic	pied-à-terre
bicycle	dieting	running	fasclst	city house

Axelrod's Simulation

$$
\mathrm{F}=5, \mathrm{q}=10,10 \times 10 \text { lattice }
$$

Axelrod Model simulations on 150×150 square lattice

Axelrod Model

simulations on 150×150 square lattice

Axelrod Model
simulations on 150×150 square lattice

Axelrod Model with F=2

on 4-regular graph

$P_{m} \equiv$ fraction of links with m common features $m=0,2$ inactive; $m=1$ active

Master Equations for Bond Densities

$$
\dot{P}_{0}=\frac{z-1}{z} P_{1}\left[-\lambda P_{0}+\frac{1}{2} P_{1}\right]
$$

direct process for \dot{P}_{1} : choose random link

$$
\Delta N_{1}=-\frac{1}{2} P_{1} \quad \rightarrow \frac{\Delta P_{1}}{\Delta t}=-\frac{\frac{1}{2} P_{1} / L}{1 / N}=-\frac{P_{1}}{z}
$$

Master Equations for Bond Densities

$$
\dot{P}_{0}=\frac{z-1}{z} P_{1}\left[-\lambda P_{0}+\frac{1}{2} P_{1}\right] \quad \begin{aligned}
& \text { indirect } \\
& \text { processes }
\end{aligned}
$$

$$
\dot{P}_{1}=-\frac{P_{1}}{z}+\frac{z-1}{z} P_{1}\left[\lambda P_{0}-\frac{1}{2}(1+\lambda) P_{1}+P_{2}\right]
$$

$$
\left.\dot{P}_{2}=\frac{P_{1}}{z}+\frac{z-1}{z} P_{1} \frac{1}{2} \lambda P_{1}-P_{2}\right]
$$

direct process for \dot{P}_{1} : choose random link

$$
\Delta N_{1}=-\frac{1}{2} P_{1} \quad \rightarrow \frac{\Delta P_{1}}{\Delta t}=-\frac{\frac{1}{2} P_{1} / L}{1 / N}=-\frac{P_{1}}{z}
$$

indirect processes for $\dot{P}_{2}: 1 \rightarrow 2$

direct process for \dot{P}_{1} : choose random link

$$
\Delta N_{1}=-\frac{1}{2} P_{1} \quad \rightarrow \frac{\Delta P_{1}}{\Delta t}=-\frac{\frac{1}{2} P_{1} / L}{1 / N}=-\frac{P_{1}}{z}
$$

indirect processes for $\dot{P}_{2}: 1 \rightarrow 2$

direct process for \dot{P}_{1} : choose random link

$$
\Delta N_{1}=-\frac{1}{2} P_{1} \quad \rightarrow \frac{\Delta P_{1}}{\Delta t}=-\frac{\frac{1}{2} P_{1} / L}{1 / N}=-\frac{P_{1}}{z}
$$

indirect processes for $\dot{P}_{2}: 1 \rightarrow 2$

direct process for \dot{P}_{1} : choose random link

$$
\Delta N_{1}=-\frac{1}{2} P_{1} \quad \rightarrow \frac{\Delta P_{1}}{\Delta t}=-\frac{\frac{1}{2} P_{1} / L}{1 / N}=-\frac{P_{1}}{z}
$$

indirect processes for $\dot{P}_{2}: 1 \rightarrow 2$

Master Equations for Bond Densities

$$
\begin{aligned}
& d \tau \\
& \begin{array}{ll}
\dot{P}_{0} & =\frac{z-1}{z} P_{1}\left[-\lambda P_{0}+\frac{1}{2} P_{1}\right] d t \\
x & \equiv P_{0} \\
y & \equiv P_{1} \\
P_{2} & =1-P_{0}-P_{1} \\
\dot{P}_{1} & =-\frac{P_{1}}{z}+\frac{z-1}{z} P_{1}\left[\lambda P_{0}-\frac{1}{2}(1+\lambda) P_{1}+P_{2}\right]
\end{array} \\
& \dot{P}_{2}=\frac{P_{1}}{z}+\frac{z-1}{z} P_{1}\left[\frac{1}{2} \lambda P_{1}-P_{2}\right]
\end{aligned}
$$

Master Equations for Bond Densities

$$
\begin{array}{rlrl}
x^{\prime} & =-\lambda x+\frac{1}{2} y & d \tau & =\frac{z-1}{z} P_{1} d t \\
y^{\prime} & =\left(1-\frac{1}{\eta}\right)+(\lambda-1) x-\left(\frac{3+\lambda}{2}\right) y & x & \equiv P_{0} \\
y & \equiv P_{1} \\
P_{2} & =1-P_{0}-P_{1}
\end{array}
$$

Master Equations for Bond Densities

$$
\begin{array}{rlrl}
x^{\prime} & =-\lambda x+\frac{1}{2} y & d \tau & \equiv \frac{z-1}{z} P_{1} d t \\
y^{\prime} & =\left(1-\frac{1}{\eta}\right)+(\lambda-1) x-\left(\frac{3+\lambda}{2}\right) y & x & \equiv P_{0} \\
& \equiv P_{1}
\end{array}
$$

$$
q=q_{c}-\frac{1}{4^{k}}
$$

$$
q=q_{c}-\frac{1}{4^{k}}
$$

Axelrod Model with F=2

transition between steady state $\left(\mathrm{q}<\mathrm{q}_{\mathrm{c}}\right)$ \& fragmented static state $\left(q>q_{c}\right)$
$\mathrm{q}<\mathrm{q}_{\mathrm{c}}$: very slow approach to steady state with time scale $\simeq\left(q_{c}-q\right)^{-1 / 2}$
long transient in which $P_{1} \simeq\left(q_{c}-q\right)$ before steady state is reached

Some Closing Thoughts

Voter Model well characterized, but:
-consensus route incompletely understood on complex graphs - generalizations, role of heterogeneity, role of internal beliefs, -data-driven models

Models of Diversity \& Discord
-bifurcation sequence in bounded compromise

- role of competing social interactions mostly unknown
- mathematical understanding of Axelrod model lacking
-data-driven models
Notes: physics.bu.edu/~redner: click the "slides from selected talks" link

