Coarsening, Slow Dynamics, \& Freezing in the Simplest Spin Systems

Sidney Redner, Physics Department, Boston University collaborators: P. Krapivsky, V. Spirin

Basic question: What is the final state of the Ising-Glauber model @ $\mathrm{T}=0$ with symmetric initial conditions?
We expect: Ground state is approached as $\mathrm{t} \rightarrow \infty$
Basic results: I.

dimension	expectation
I	correct
2	correct "sort of"
>2	wrong

2. Multiscale relaxation, freezing, \& related strange features

New direction: Majority model Ground state is always reached, but with strange dynamics

The System

Ising Hamiltonian $\quad \mathcal{H}=-\sum_{\langle i, j\rangle} \sigma_{i} \sigma_{j} \quad \sigma_{i}= \pm 1$
Initial state:

Lattice: even co-ordination number, periodic boundaries

Dynamics: Glauber at $\mathrm{T}=0$: Pick a random spin and consider outcome of a reversal

$$
\begin{array}{lll}
\text { if } & \Delta E<0 & \text { do it } \\
\text { if } & \Delta E>0 & \text { don't do it } \\
\text { if } & \Delta E=0 & \text { do it with prob. } 1 / 2
\end{array}
$$

Results in $d=1$

Equation of motion at $\mathrm{T}=0$ (with Glauber kinetics):

$$
\dot{s}_{j}=-s_{j}+\frac{1}{2}\left(s_{j-1}+s_{j+1}\right), \quad \text { where } s_{j}=\left\langle\sigma_{j}\right\rangle
$$

Hence

$$
\langle\dot{m}\rangle=\sum_{j} \dot{s}_{j}=0 \quad \rightarrow \quad\langle m\rangle \text { conserved } \quad m \text { diffuses }
$$

Pictorial representation:

Summary of results in d=2 (Spirin, Krapvisk, \& SR 01)

Final state:

$$
\begin{cases}\text { ground state } & \text { prob. } \approx 2 / 3 \\ \text { stripe } & \text { prob. } \approx 1 / 3\end{cases}
$$

Survival probability: 2 time scales!

$$
\begin{aligned}
M_{k} & \equiv\left\langle t^{k}\right\rangle^{1 / k} \\
& \sim \begin{cases}L^{3.5} & k>1 \\
L^{2^{+}} & k<1\end{cases}
\end{aligned}
$$

Energy evolution: $\quad E(t) \sim t^{-1 / 2}$

$$
\begin{aligned}
n_{E}(t) & \sim t^{-\mu(E)} \\
\mu(+4) & \approx 2.1 \\
\mu(+2) & \approx 1.4 \\
\mu(0) & \approx 0.5 \\
\mu(-2) & \approx 0.45
\end{aligned}
$$

The final state in 2d

Survival probability

Understanding the two time-scale relaxation

We observe: $\quad 95 \%$ short-lived, 5% long lived!
Why? Diagonal stripe!

Diagonal stripe dynamics: (Plischke et al 87)

$\begin{aligned} \Delta t=1, \quad L^{\mu} \text { events } & \rightarrow \Delta y_{\mathrm{cm}} \sim L^{\mu / 2} / L \\ & \rightarrow D(L) \sim L^{\mu-2}\end{aligned}$
survival time $\tau \sim L^{2} / D \sim L^{4-\mu}$ but $\mu=1 / 2$
$\sim L^{3.5}$

Multiscaling in moments of the stopping time

Densities of fixed-energy spins

Higher dimensions: Ground state never reached!
Final "sponge" state in 3d:

Why does the system get stuck? Proliferation of metastable states as dincreases.
$\mathrm{d}=2$: stripe packing

$$
M_{L} \sim e^{a L} \sim e^{a V^{1 / 2}}
$$

d=3: filament packing

$$
M_{L} \sim e^{b L^{2}} \sim e^{b V^{2 / 3}}
$$

$\mathrm{d}=\infty$: Cayley tree

Recursion formulae for degeneracy

$$
\begin{aligned}
\bigcirc U_{N+1} & =2 D_{N} \times \frac{1}{2} D_{N}=D_{N}^{2} \quad \text { undetermined } \\
\square \quad D_{N+1} & =\frac{1}{2} D_{N}^{2}+\frac{1}{2} U_{N}^{2}+2 D_{N} U_{N} \quad \text { determined } \\
\rightarrow \ln M_{\mathcal{N}} & \sim \ln \left(U_{N}+D_{N}\right)=\text { const. } \times \mathcal{N}
\end{aligned}
$$

Cultural Interlude: Two Fundamental Spin Models

Ising model with Glauber dynamics:

$$
\begin{aligned}
& \text { majority rule operating on a single spin: } \begin{array}{l}
\text { system freezes! } \\
\text { (above d=2) }
\end{array}, ~
\end{aligned}
$$

Voter model: I.Pick a random spin
2.Assume state of randomly-selected neighbor
3. Repeat until consensus

Exactly soluble in all dimension

dimension	consensus time
I	N^{2}
2	$\mathrm{~N} \ln \mathrm{~N}$
>2	N

$d=2$ is the critical dimension

Majority Rule

I. Pick a group of G spins (odd).
2. All spins in G adopt the majority state.
3. Repeat until consensus.

$$
\begin{array}{llll}
++ & - & +\begin{array}{lll}
+ & + & + \\
+ & - \\
- & + & +
\end{array} & - \\
+ & - & - & + \\
+ & + & + \\
+ & + & + & + \\
+ & + & +
\end{array}
$$

Eventual consensus always!

Basic questions: I. What is the final state?
2. What is the time until consensus?

Mean-field solution (for $\mathrm{G}=3$)

$E_{n} \equiv$ exit probability to $m=1$ starting from n plus spins
$T_{n} \equiv$ mean time to $m=1$ starting from n plus spins

$$
=p_{n}\left(T_{n+1}+\delta t\right)+q_{n}\left(T_{n-1}+\delta t\right)+r_{n}\left(T_{n}+\delta t\right)
$$

Basic results for the mean-field limit

Exit probability
(schematic)

Consensus time (data)

Finite spatial dimensions

$\mathrm{d}=\mathrm{I}: \quad$ almost domain wall diffusion, but...

$$
\begin{gathered}
+(+-+)+ \\
\downarrow \\
+++++
\end{gathered}
$$

s disappear!
general d:

Critical dimension appears to be >4 !
....and stripes still arise in 2d! $\sim 50 \%$ of the time!

leads again to multiscale relaxation

Conclusions

I. Even the simplest Ising model has a complex evolution landscape

ground state
2. How to characterize \& quantify frozen states in $d>2$?
3. What happens for non-symmetric initial conditions?
4. New model: Majority rule critical dimension appears to be >4 (perhaps infinite?) complex relaxation in spite of a unique final state

