Dynamics of Voter Models on Heterogeneous Networks

Sid Redner (physics.bu.edu/~redner)
Complex Network Program SAMSI Aug. 29-Sept. 1, 2010

> T. Antal (Edinburgh), V. Sood (NBI)
> NSF DMR0535503 \& DMR0906504

Dynamics of Voter Models on Heterogeneous Networks

Sid Redner (physics.bu.edu/~redner)

Complex Network Program SAMSI Aug. 29-Sept. 1, 2010

$$
\begin{aligned}
& \text { T. Antal (Edinburgh), V. Sood (NBI) } \\
& \text { NSF DMR0535503 \& DMR0906504 }
\end{aligned}
$$

The classic voter model
3 basic results
Voting on complex networks T.Antal, V.Sood
new conservation law \& fixation probabilities
two time-scale route to consensus short consensus time

Partisan voting
can truth be reached?
N. Gibert (Paris)
N. Masuda (Tokyo)

Classic Voter Model Clifford \& Sudury (1973) Holley \& Liggett (1975)

0 . Binary voter variable at each site i

Classic Voter Model Cliford \& Sudury (1973) Holley \& Liggett (1975)

0 . Binary voter variable at each site i
I. Pick a random voter

Classic Voter Model Clifford \& Subury (1973) Holley \& Liggett (1975)

0 . Binary voter variable at each site i
I. Pick a random voter
2.Assume state of randomly-selected neighbor individual has no self-confidence \& adopts neighbor's state

Classic Voter Model Clifford \& Sudbury (1973) Holley \& Liggett (1975)

Example update:

O. Binary voter variable at each site i
I. Pick a random voter
2. Assume state of randomly-selected neighbor individual has no self-confidence \& adopts neighbor's state

Classic Voter Model Clifford \& Sudbury (1973) Holley \& Liggett (1975)

Example update:

0 . Binary voter variable at each site i
I. Pick a random voter
2.Assume state of randomly-selected neighbor individual has no self-confidence \& adopts neighbor's state

Classic Voter Model Clifford \& Sudbury (1973) Holley \& Liggett (1975)

Example update:

proportional rule

0 . Binary voter variable at each site i
I. Pick a random voter
2.Assume state of randomly-selected neighbor individual has no self-confidence \& adopts neighbor's state

Classic Voter Model Clifford \& Sudbury (1973) Holley \& Liggett (1975)

Example update:

proportional rule

0 . Binary voter variable at each site i
I. Pick a random voter
2.Assume state of randomly-selected neighbor individual has no self-confidence \& adopts neighbor's state
3. Repeat I \& 2 until consensus necessarily occurs in a finite system

Voter Model Evolution Dorrice etal. (2001)
random initial condition, 256×256 square:

$\mathrm{t}=4$
$t=16$
$\mathrm{t}=64$
$\mathrm{t}=256$

Voter Model Evolution Doricic eal. (2001)

random initial condition, 256×256 square:

$$
t=4 \quad t=16
$$

$$
t=64
$$

$$
\mathrm{t}=256
$$ droplet initial condition:

no surface tension

Voter Model \& Cousins

Voter Model:

Tell me how to vote

Voter Model \& Cousins

Voter Model:

Tell me how to vote
lemming
persuasive "friend"

Invasion Process: I tell you how to vote

Voter Model \& Cousins

Voter Model:

Invasion Process: I tell you how to vote
Tell me how to vote

Link Dynamics:

Pick two disagreeing agents and change one at random
persuasive "friend"
lemming

Voter Model \& Cousins

Tell me how to vote
lemming

Voter Model:

Invasion Process:

Link Dynamics:

Pick two disagreeing agents and change one at random

identical on regular lattices, distinct on random graphs
Suchecki, Eguiluz \& San Miguel (2005), Castellano (2005), Sood \& SR (2005)

Lattice Voter Model: 3 Basic Properties

Lattice Voter Model: 3 Basic Properties

I. Final State (Exit) Probability $\mathcal{E}\left(\rho_{0}\right)$

Evolution of a single active link:

Lattice Voter Model: 3 Basic Properties

I. Final State (Exit) Probability $\mathcal{E}\left(\rho_{0}\right)=\rho_{0}$

Evolution of a single active link:

Lattice Voter Model: 3 Basic Properties

I. Final State (Exit) Probability $\mathcal{E}\left(\rho_{0}\right)=\rho_{0}$

Evolution of a single active link:

2. Two-Spin Correlations $\quad \frac{\partial c_{2}(\mathbf{r}, t)}{\partial t}=\nabla^{2} c_{2}(\mathbf{r}, t) \begin{aligned} & c_{2}(r=0, t)=1 \\ & c_{2}(r>0, t=0)=0\end{aligned}$

Lattice Voter Model: 3 Basic Properties

I. Final State (Exit) Probability $\mathcal{E}\left(\rho_{0}\right)=\rho_{0}$

Evolution of a single active link:

2. Two-Spin Correlations $\quad \frac{\partial c_{2}(\mathbf{r}, t)}{\partial t}=\nabla^{2} c_{2}(\mathbf{r}, t) \begin{aligned} & c_{2}(r=0, t)=1 \\ & c_{2}(r>0, t=0)=0\end{aligned}$

Lattice Voter Model: 3 Basic Properties

I. Final State (Exit) Probability $\mathcal{E}\left(\rho_{0}\right)=\rho_{0}$

Evolution of a single active link:

2. Two-Spin Correlations $\quad \frac{\partial c_{2}(\mathbf{r}, t)}{\partial t}=\nabla^{2} c_{2}(\mathbf{r}, t) \begin{aligned} & c_{2}(r=0, t)=1 \\ & c_{2}(r>0, t=0)=0\end{aligned}$

3. Consensus Time

$$
\int^{\sqrt{D t}} c(r, t) r^{d-1} d r=N
$$

dimension	consensus time
I	N^{2}
2	$\mathrm{~N} \ln \mathrm{~N}$
>2	N

Voter Model on Complex Networks

C. Castellano, D.Vilon, A.Vespignani, EPL 63, I 53 (2003)
K. Suchecki, V. M. Eguiluz, M. San Miguel, EPL 69, 228 (2005)
V. Sood \& SR, PRL 94, I7870 I (2005); T.Antal,V. Sood, SR, PRE 77, 04 I I2I (2008)

Voter Model on Complex Networks

C. Castellano, D.Vilon, A.Vespignani, EPL 63, I 53 (2003)
K. Suchecki, V. M. Eguiluz, M. San Miguel, EPL 69, 228 (2005)
V. Sood \& SR, PRL 94, I7870 I (2005); T.Antal,V. Sood, SR, PRE 77, 04 I I 2 I (2008)
illustrative example: complete bipartite graph

Voter Model on Complex Networks

C. Castellano, D.Vilon, A.Vespignani, EPL 63, I 53 (2003)
K. Suchecki, V. M. Eguiluz, M. San Miguel, EPL 69, 228 (2005)
V. Sood \& SR, PRL 94, I7870I (2005); T.Antal, V. Sood, SR, PRE 77, 04 I I 2 I (2008)
illustrative example: complete bipartite graph
rate equation

$$
\begin{aligned}
d N_{\uparrow, a} & =\frac{N_{\downarrow, a} N_{\uparrow, b}-N_{\uparrow, a} N_{\downarrow, b}}{(a+b) b} \\
d N_{\uparrow, b} & =\frac{N_{\downarrow, b} N_{\uparrow, a}-N_{\uparrow, b} N_{\downarrow, a}}{(a+b) a}
\end{aligned}
$$

Voter Model on Complex Networks

C. Castellano, D.Vilon, A.Vespignani, EPL 63, I 53 (2003)
K. Suchecki, V. M. Eguiluz, M. San Miguel, EPL 69, 228 (2005)
V. Sood \& SR, PRL 94, I7870I (2005); T.Antal, V. Sood, SR, PRE 77, 04 I I 2 I (2008)
illustrative example: complete bipartite graph

rate equation

$$
\begin{aligned}
d N_{\uparrow, a} & =\frac{N_{\downarrow, a} N_{\uparrow, b}-N_{\uparrow, a} N_{\downarrow, b}}{(a+b) b} \\
d N_{\uparrow, b} & =\frac{N_{\downarrow, b} N_{\uparrow, a}-N_{\uparrow, b} N_{\downarrow, a}}{(a+b) a}
\end{aligned}
$$

Subgraph densities: $\rho_{a}=N_{\uparrow, a} / a, \rho_{b}=N_{\uparrow, b} / b \quad d t=1 /(a+b)$

$$
\begin{aligned}
\rho_{a, b}(t) & =\frac{1}{2}\left[\rho_{a, b}(0)-\rho_{b, a}(0)\right] e^{-2 t}+\frac{1}{2}\left[\rho_{a}(0)+\rho_{b}(0)\right] \\
& \rightarrow \frac{1}{2}\left[\rho_{a}(0)+\rho_{b}(0)\right] \quad \text { magnetization not conserved }
\end{aligned}
$$

Voter Model on Complex Networks

Voter Model on Complex Networks

Voter Model on Complex Networks

Voter Model on Complex Networks

"flow" from high degree to low degree

Invasion Process on Complex Networks

Castellano, AIP Conf Proc 779, II4 (2005)

Invasion Process on Complex Networks

Castellano, AIP Conf Proc 779, II4 (2005)

Invasion Process on Complex Networks

Castellano, AIP Conf Proc 779, II (2005)

Invasion Process on Complex Networks

Castellano, AIP Conf Proc 779, II4 (2005)

"flow" from Iow degree to high degree

Formal Approach for Conservation Law

flip rate: $\quad \mathbf{P}\left[\eta \rightarrow \eta_{x}\right]=\sum_{y} \frac{A_{x y}}{\mathcal{Z}}[\Phi(x, y)+\Phi(y, x)]$

$$
\eta=\{1,1,0,0, \ldots, 1\} \quad \text { system state }
$$

$$
\eta_{x}=\text { system state when voter at } x \text { flips }
$$

$$
\eta(x)=\text { state of voter at } x
$$

Formal Approach for Conservation Law

$$
\begin{aligned}
& \Phi(x, y) \equiv \eta(x)[1-\eta(y)] \\
& A_{x y}=\text { adjacency matrix }
\end{aligned}
$$

flip rate: $\quad \mathbf{P}\left[\eta \rightarrow \eta_{x}\right]=\sum_{y} \frac{A_{x y}}{\mathcal{Z}}[\Phi(x, y)+\Phi(y, x)]$

$$
\eta=\{1,1,0,0, \ldots, 1\} \quad \text { system state }
$$

$$
\eta_{x}=\text { system state when voter at } x \text { flips }
$$

$$
\eta(x)=\text { state of voter at } x
$$

Formal Approach for Conservation Law

2 connected nodes

$$
\Phi(x, y) \equiv \eta(x)[1-\eta(y)]
$$ in different states

flip rate: $\quad \mathbf{P}\left[\eta \rightarrow \eta_{x}\right]=\sum_{y} \frac{A_{x y}}{Z}[\Phi(x, y)+\Phi(y, x)]$

$$
\eta=\{1,1,0,0, \ldots, 1\} \quad \text { system state }
$$

$$
\eta_{x}=\text { system state when voter at } x \text { flips }
$$

$$
\eta(x)=\text { state of voter at } x
$$

Formal Approach for Conservation Law

2 connected nodes in different states
flip rate: $\quad \mathbf{P}\left[\eta \rightarrow \eta_{x}\right]=\sum_{y} \frac{A_{x y}}{\mathcal{Z}}[\Phi(x, y)+\Phi(y, x)]$

$$
\eta=\{1,1,0,0, \ldots, 1\} \quad \text { system state }
$$

$\eta_{x}=$ system state when voter at x flips
$\eta(x)=$ state of voter at x
$\mathcal{Z} \equiv\left\{\begin{array}{lll}N k_{x} & \text { VM } & \text { choose } \mathrm{x}, \text { choose neighbor of } \mathrm{x} \text { with prob. }\left(N k_{x}\right)^{-1} \\ N k_{y} & \text { IP } & \text { choose } \mathrm{y}(\text { neighbor of } \mathrm{x}) \text {, choose of } \mathrm{x} \text { with prob. }\left(N k_{y}\right)^{-1} \\ N \mu_{1} & \text { LD } & \text { choose link \& update } \mathrm{x} \text { with prob. }\left(N \mu_{1}\right)^{-1}\end{array}\right.$

Formal Approach for Conservation Law

$$
\langle\Delta \eta(x)\rangle=[1-2 \eta(x)] \mathbf{P}\left[\eta \rightarrow \eta_{x}\right]=\sum_{y} \frac{A_{x y}}{\mathcal{Z}}[\eta(y)-\eta(x)]
$$

Formal Approach for Conservation Law

$$
\langle\Delta \eta(x)\rangle=[1-2 \eta(x)] \mathbf{P}\left[\eta \rightarrow \eta_{x}\right]=\sum_{y} \frac{A_{x y}}{\mathcal{Z}}[\eta(y)-\eta(x)]
$$

$\begin{gathered}\text { degree-weighted } \\ \text { moments }\end{gathered}\left\langle\omega_{m}\right\rangle \equiv \frac{1}{N \mu_{m}} \sum_{x} k_{x}^{m} \eta(x)=\frac{1}{\mu_{m}} \sum_{k} k^{m} n_{k} \rho_{k}$

Formal Approach for Conservation Law

$$
\langle\Delta \eta(x)\rangle=[1-2 \eta(x)] \mathbf{P}\left[\eta \rightarrow \eta_{x}\right]=\sum_{y} \frac{A_{x y}}{\mathcal{Z}}[\eta(y)-\eta(x)]
$$

$\begin{aligned} & \text { degree-weighted } \\ & \text { moments }\end{aligned}\left\langle\omega_{m}\right\rangle \equiv \frac{1}{N \mu_{m}} \sum_{x} k_{x}^{m} \eta(x)=\frac{1}{\mu_{m}} \sum_{k} k^{m} n_{k} \rho_{k}$

$$
\begin{aligned}
& \Delta\left\langle\omega_{1}\right\rangle=\sum_{x, y} \frac{A_{x y}}{N k_{x}} \widehat{k_{x}}[\eta(y)-\eta(x)]=0 \\
& \Delta\left\langle\omega_{-1}\right\rangle=\sum_{x, y} \frac{A_{x y}}{N k_{x}\left(k_{y}\right)}[\eta(y)-\eta(x)]=0 \\
& \left\langle\Delta \omega_{0}\right\rangle=\langle\Delta \rho\rangle=\sum_{x, y} \frac{A_{x y}}{N \mu_{1}}[\eta(y)-\eta(x)]=0
\end{aligned}
$$

voter model
invasion process
link dynamics

Exit Probability on Complex Networks
Voter model: $\mathcal{E}(\omega)=\omega$

Exit Probability on Complex Networks

Voter model: $\mathcal{E}(\omega)=\omega$
Extreme case: star graph N nodes: degree I
I node: degree N

Exit Probability on Complex Networks

Voter model: $\mathcal{E}(\omega)=\omega$

Extreme case: star graph 0

N nodes: degree I
I node: degree N

$$
\omega=\frac{1}{\mu_{1}} \sum_{k} k n_{k} \rho_{k}=\frac{1}{2}
$$

Final state: all I with prob. I/2!

Byproduct: Voter Model Fixation Probability

What is the „probability that a single mutant "takes over" a population?

Byproduct: Voter Model Fixation Probability

 What is the, "probability that a single mutant "takes over" a population?

Invasion Process Fixation Probability

Route to Consensus on Complex Graphs

complete bipartite graph

Route to Consensus on Complex Graphs

Consensus Time Evolution Equation

warmup: complete graph
$T(\rho) \equiv$ av. consensus time starting with density ρ

$$
\begin{aligned}
T(\rho)= & \mathcal{R}(\rho)[T(\rho+d \rho)+d t] \\
& +\mathcal{L}(\rho)[T(\rho-d \rho)+d t] \\
& +[1-\mathcal{R}(\rho)-\mathcal{L}(\rho)][T(\rho)+d t]
\end{aligned}
$$

Consensus Time Evolution Equation

warmup: complete graph

A Guide to First-Passage Processes
(CUP, 2001)
$T(\rho) \equiv$ av. consensus time starting with density ρ

$$
\begin{aligned}
T(\rho)= & \mathcal{R}(\rho)[T(\rho+d \rho)+d t] \\
& +\mathcal{L}(\rho)[T(\rho-d \rho)+d t] \\
& +[1-\mathcal{R}(\rho)-\mathcal{L}(\rho)][T(\rho)+d t]
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{R}(\rho) & \equiv \operatorname{prob}(\downarrow \uparrow \rightarrow \uparrow \uparrow) \\
& =\rho(1-\rho)
\end{aligned}
$$

Consensus Time Evolution Equation

warmup: complete graph

A Guide to First-Passage Processes
(CUP, 2001)
$T(\rho) \equiv$ av. consensus time starting with density ρ

$$
\begin{aligned}
T(\rho)= & \mathcal{R}(\rho)[T(\rho+d \rho)+d t] \\
& +\mathcal{L}(\rho)[T(\rho-d \rho)+d t] \\
& +[1-\mathcal{R}(\rho)-\mathcal{L}(\rho)][T(\rho)+d t]
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{R}(\rho) & \equiv \operatorname{prob}(\downarrow \uparrow \rightarrow \uparrow \uparrow) \\
\mathcal{L}(\rho) & \equiv \operatorname{prob}(\uparrow \downarrow \rightarrow \downarrow \downarrow) \\
& =\rho(1-\rho)
\end{aligned}
$$

Consensus Time Evolution Equation

warmup: complete graph

A Guide to First-Passage Processes
(CUP, 200I)
$T(\rho) \equiv$ av. consensus time starting with density ρ

$$
\begin{aligned}
& T(\rho)=\mathcal{R}(\rho)[T(\rho+d \rho)+d t] \\
& +\mathcal{L}(\rho)[T(\rho-d \rho)+d t] \\
& +[1-\mathcal{R}(\rho)-\mathcal{L}(\rho)][T(\rho)+d t] \\
& \text { 倣 } \\
& \begin{array}{lll}
0 & \rho & 1
\end{array} \\
& \mathcal{R}(\rho) \equiv \operatorname{prob}(\downarrow \uparrow \rightarrow \uparrow \uparrow) \\
& \mathcal{L}(\rho) \equiv \operatorname{prob}(\uparrow \downarrow \rightarrow \downarrow \downarrow) \\
& =\rho(1-\rho)
\end{aligned}
$$

Consensus Time on Complete Graph

$$
\begin{aligned}
T(\rho)= & \mathcal{R}(\rho)[T(\rho+d \rho)+d t] \\
& +\mathcal{L}(\rho)[T(\rho-d \rho)+d t] \\
& +[1-\mathcal{R}(\rho)-\mathcal{L}(\rho)][T(\rho)+d t]
\end{aligned}
$$

continuum limit:

$$
T^{\prime \prime}=-\frac{N}{\rho(1-\rho)}
$$

solution:

$$
T(\rho)=-N[\rho \ln \rho+(1-\rho) \ln (1-\rho)]
$$

Consensus Time on Heterogeneous Networks

$T\left(\left\{\rho_{k}\right\}\right) \equiv$ av. consensus time starting with density ρ_{k} on nodes of degree k

$$
\begin{aligned}
T\left(\left\{\rho_{k}\right\}\right)= & \sum_{k} \mathcal{R}_{k}\left(\left\{\rho_{k}\right\}\right)\left[T\left(\left\{\rho_{k}^{+}\right\}\right)+d t\right] \\
& +\sum_{k} \mathcal{L}_{k}\left(\left\{\rho_{k}\right\}\right)\left[T\left(\left\{\rho_{k}^{-}\right\}\right)+d t\right] \\
& +\left[1-\sum_{k}\left[\mathcal{R}_{k}\left(\left\{\rho_{k}\right\}\right)+\mathcal{L}_{k}\left(\left\{\rho_{k}\right\}\right)\right]\right]\left[T\left(\left\{\rho_{k}\right\}\right)+d t\right] \\
\mathcal{R}_{k}\left(\left\{\rho_{k}\right\}\right) & =\operatorname{prob}\left(\rho_{k} \rightarrow \rho_{k}^{+}\right) \quad \mathcal{L}_{k}\left(\left\{\rho_{k}\right\}\right)=n_{k} \rho_{k}(1-\omega) \\
& =\frac{1}{N} \sum_{x}^{\prime} \frac{1}{k_{x}} \sum_{y} P(\downarrow,-\uparrow) \\
& =n_{k} \omega\left(1-\rho_{k}\right)
\end{aligned}
$$

Consensus Time on Heterogeneous Networks

continuum limit:

$$
\sum_{k}\left[\left(\omega-\rho_{k}\right) \frac{\partial T}{\partial \rho_{k}}+\frac{\omega+\rho_{k}-2 \omega \rho_{k}}{2 N n_{k}} \frac{\partial^{2} T}{\partial \rho_{k}^{2}}\right]=-1
$$

(Molloy-Reed) Configuration Model

Consensus Time on Heterogeneous Networks

continuum limit:

$$
\sum_{k}\left[\left(\omega-\rho_{k}\right) \frac{\partial T}{\partial \rho_{k}}+\frac{\omega+\rho_{k}-2 \omega \rho_{k}}{2 N n_{k}} \frac{\partial^{2} T}{\partial \rho_{k}^{2}}\right]=-1
$$

now use $\quad \rho_{k} \rightarrow \omega \quad \forall k$
and

$$
\frac{\partial}{\partial \rho_{k}}=\frac{\partial \omega}{\partial \rho_{k}} \frac{\partial}{\partial \omega}=\frac{k n_{k}}{\mu_{1}} \frac{\partial}{\partial \omega}
$$

Consensus Time on Heterogeneous Networks

continuum limit:

$$
\sum_{k}\left[\left(\omega-\rho_{k}\right) \frac{\partial T}{\partial \rho_{k}}+\frac{\omega+\rho_{k}-2 \omega \rho_{k}}{2 N n_{k}} \frac{\partial^{2} T}{\partial \rho_{k}^{2}}\right]=-1
$$

now use $\quad \rho_{k} \rightarrow \omega \quad \forall k$
and

$$
\frac{\partial}{\partial \rho_{k}}=\frac{\partial \omega}{\partial \rho_{k}} \frac{\partial}{\partial \omega}=\frac{k n_{k}}{\mu_{1}} \frac{\partial}{\partial \omega}
$$

to give

$$
\frac{\partial^{2} T}{\partial \omega^{2}}=-\frac{N \mu_{1}^{2} / \mu_{2}}{\omega(1-\omega)} \quad \underset{\text { as }}{\text { same }} T^{\prime \prime}=-\frac{N}{\rho(1-\rho)}
$$

with effective size $N_{\text {eff }}=N \mu_{1}^{2} / \mu_{2}$

Consensus Time for Power-Law Degree

 Distribution $n_{k} \sim k^{-\nu}$Voter model: $T_{N} \sim N_{\text {eff }}=N \mu_{1}^{2} / \mu_{2}$

$$
T_{N} \sim \begin{cases}N & \nu>3 \\ N / \ln N & \nu=3 \\ N^{(2 \nu-4) /(\nu-1)} & 2<\nu<3, \\ (\ln N)^{2} & \nu=2, \\ \mathcal{O}(1) & \nu<2\end{cases}
$$

Consensus Time for Power-Law Degree Distribution $n_{k} \sim k^{-\nu}$
Voter model: $T_{N} \sim N_{\text {eff }}=N \mu_{1}^{2} / \mu_{2}$

$$
T_{N} \sim \begin{cases}N & \nu>3 \\ N / \ln N & \nu=3 \\ N^{(2 \nu-4) /(\nu-1)} & 2<\nu<3, \\ (\ln N)^{2} & \nu=2 \\ \mathcal{O}(1) & \nu<2\end{cases}
$$

Invasion process: $T_{N} \sim N_{\text {eff }}=N \mu_{1} \mu_{-1}$

$$
T_{N} \sim \begin{cases}N & \nu>2 \\ N \ln N & \nu=2 \\ N^{3-\nu} & \nu<2\end{cases}
$$

\uparrow prefers truth density T_{+}

$\downarrow \begin{aligned} & \text { prefers truth } \\ & \&\end{aligned}$

 density T_{-} density F_{+}
prefers false \& in F state density F_{-}

Partisan Voting and Truth

个 prefers truth \& in T state prefers truth
\& in F state 个refers false $\begin{aligned} & \text { pre in } T \text { state }\end{aligned}$ density F_{+}
prefers false
\& in F state density F

partisan voting update:

I. Pick voter, pick neighbor (as in usual voter model);

2a. If initial voter becomes concordant by adopting neighboring state, change occurs with rate $I+\varepsilon$;

2b. If initial voter becomes discordant by adopting neighboring state, change occurs with rate $I-\varepsilon$.

Rate Equations

$$
\begin{gathered}
\dot{T}_{+}=(1+\epsilon) T_{-}\left[T_{+}+F_{-}\right]-(1-\epsilon) T_{+}\left[T_{-}+F_{+}\right] \\
\dot{T}_{-}=(1-\epsilon) T_{+}\left[T_{-}+F_{+}\right]-(1+\epsilon) T_{-}\left[T_{+}+F_{-}\right] \\
\dot{F}_{+}=(1+\epsilon) F_{-}\left[F_{+}+T_{-}\right]-(1-\epsilon) F_{+}\left[F_{-}+T_{+}\right] \\
\dot{F}_{-}=(1-\epsilon) F_{+}\left[F_{-}+T_{+}\right]-(1+\epsilon) F_{-}\left[F_{+}+T_{-}\right] \\
\\
T_{-}=T-T_{+} \quad S=T_{+}+F_{+} \\
F_{-}=F-F_{+} \quad \Delta=T_{+}-F_{+}
\end{gathered}
$$

Flow Diagram $\quad \begin{aligned} S & =T_{+}+F_{+} \\ \Delta & =T_{+}-F_{+}\end{aligned}$

Summary \& Outlook

Voter model:
paradigmatic, soluble, (but hopelessly naive)
Voter model on complex networks:
new conservation law
two time-scale route to consensus
fast consensus for broad degree distributions
Extension to Partisanship:
partisanship forestalls consensus to the truth
Future:
"churn" rather than consensus
heterogeneity of real people
positive and negative social interactions

Crass Commercialism

Aimed at graduate students, this book explores some of the core phenomena in non-equilibrium statistical physics. It focuses on the development and application of theoretical methods to help students develop their problem-solving skills.
The book begins with microscopic transport processes: diffusion, ollision-driven phenomena, and exclusion. It then presents the

 phenomen og sor , following chapters cover kinetic spin systems, by developing both discrete and a continuum formulation, the role of disorder in non-equilibrium processes, and hysteresis from the non-equilibrium perspective. The concluding chapters address population dynamics, chemical reactions, and a kinetic perspective on complex networks. The book contains more than 200 exercises to test students' understanding of the subject. A link to a website hosted by the authors, containing an up-to-date list of errata and solutions to some of the exercises, can be found at
www.cambridge.org/9780521851039.
Pavel L. Krapivsky is Research Associate Professor of Physics at Boston University. His current research interests are in strongly interacting many-particle systems and their applications to kinetic spin systems, networks, and biological phenomena
Sidney Redner is a Professor of Physics at Boston University. His current research interests are in non-equilibrium statistical physic and its applications to reactions, networks, social systems, biologica phenomena, and first-passage processes.
Eli Ben-Naim is a member of the Theoretical Division and an affiliate of the Center for Nonlinear Studies at Los Alamos National Laboratory. He conducts research in statistical, nonlinear, and soft condensed-matter physics, including the collective dynamics of interacting particle and granular systems.
I. Aperitifs
2. Diffusion
3. Collisions
4. Exclusion
5. Aggregation

6. Fragmentation
7. Adsorption
8. Spin Dynamics
9. Coarsening 10. Disorder

