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The classic voter model
3 basic results

Voting on complex networks  TAntal, V.Sood

new conservation law & fixation probabilities
two time-scale route to consensus
short consensus time

Partisan voting N. Gibert (Paris)
can truth be reached? N. Masuda (Tokyo)
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Example update:
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0. Binary voter variable at each site i
|. Pick a random voter

2.Assume state of randomly-selected neighbor
individual has no self-confidence & adopts neighbor’s state

3. Repeat | & 2 until consensus necessarily occurs in
a finite system
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Voter Model Evolution  Doric etal. (2001

random |nit|al condltlon 256 X 256 square:

no surface tension
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Voter Model & Cousins

lemming

Voter Model: Tell me how to vote

Invasion Process: | tell you how to vote

Link Dynamics: Pick two disagreeing
agents and change
one at random

identical on regular lattices, distinct on random graphs
Suchecki, Eguiluz & San Miguel (2005), Castellano (2005), Sood & SR (2005)
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. Final State (Exit) Probability £(pg) = pg
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Sni : Oca(r,t) 5 eo(r=0,t) = 1
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illustrative example: ,
complete bipartite graph rate equation

NiaNtp — NiaNp b

a sites
"Q"\degreeb dNT,a — (a—l—b)b
_— b sites o Nl,bNT,a — NT,le,a
degree a dNT,b — (CL 1 b)a

Subgraph densities: p, = Ny ./a, pp = N1u/b dt =1/(a+b)

1 _ 1
pus® = 2[0us(0) = pra(0)] € + Lpul0) + po(0)
1
—  =1pa(0) + pu(0), magnetization not conserved

2
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high degree; few nodes
change rarely
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“flow” from high degree to low degree
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Invasion Process on Complex Networks

Castellano, AIP Conf Proc 779, |14 (2005)

high degree; change often

/ \
/\¢
/SN
Iow degree; picked often
export often

“flow” from low degree to high degree
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Formal Approach for Conservation Law

2 connected nodes oz, y) E,n(x)[l B n(y?]
in different states \ Azy = adjacency matrix
flip rate: Pn— n.| = ®(x,y) + P(y,x
Yy

n=1{1,1,0,0,...,1} system state
Nz = system state when voter at x flips

n(x) = state of voter at x

Nk, VM  choose x, choose neighbor of x with prob. (qu;)_l
1P choose y (neighbor of x), choose of x with prob. (Nky)_l

AN
I
=
@P?

N,u1 LD choose link & update x with prob. (N,Ul)_l
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Formal Approach for Conservation Law

(Ana)) = 1 = 2] Py — 1] = 3 Agy (y) — (@)

1
degree-weighted ¢ Kl n(x)=—) k™ ny
Win ) Pk
moments N/‘mZ “m;
B Ty B _ voter
= Z S Dnty) —n(a) =0 voter
Invasion

WQ process

(Ao =(80)=3_ Ly (y) ()] = 0 amics
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Exit Probability on Complex Networks

Voter model: E(w) = W

: h N nodes: degree |
Extreme case: star grap | node: degree N

0
0 0
1 1
0 0
= — kn = —
\\ // ¢ 1 zk: Pk
1 0
) // \\ ,  Final state:all | with prob. 1/2!
0 0
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“takes over” a population?



Byproduct: Voter Model Fixation Probability

What is the probability that a single mutant
“takes over” a population?

1 consensus

fixation probability
x node degree




Invasion Process Fixation Probability

0 consensus

fixation probability
x |/(node degree)
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Consensus Time Evolution Equation

A Guide to First-Passage Processes

warmup: complete graph (CUP,2001)

T'(p) = av. consensus time starting with density p
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warmup: complete graph (CUR2001)

T'(p) = av. consensus time starting with density p
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Consensus Time Evolution Equation

A Guide to First-Passage Processes

warmup: complete graph (CUP.2001)

T'(p) = av. consensus time starting with density p

T(p) = RPEIT(p+dp)+di]
+L(p)[T'(p — dp) + di]
+[1 =R(p) — L(p)][T(p) + di]

1-R-L
L R
. . R(p) = prob(IT-11)
0 P 1 L(p) = prob(T]—]])
= p(1 —p)



Consensus Time on Complete Graph

T(p) = Rp)IT(p+dp)+ di]
L(p)[T(p — dp) + dt]
1 —=R(p) — L(p)][T(p) + dt]

N
p(1—p)

+ +

continuum limit: T —

solution:

I'(p) =—Nlplnp+(1—p)ln(l—p)



Consensus Time on Heterogeneous Networks

T({pr}) = av. consensus time starting with density py
on nodes of degree k

T({pr}) ZRk {oeNIT{ P} }) + di]
¥ Z Le(oe DT ({pe 1) +df
k
+ 1= ST Re({orh) + LU [T ({or}) + ]

k
Ri({pr}) = prob(pr — p}) Lr({1pe}) = nipe(l — w)

:%Z/ézp(la—aT)
L Yy

= npw(l — k)



Consensus Time on Heterogeneous Networks

continuum limit:

> _(w—p )aT WA pr = 2wp O°T
_ “ opr 2Nny, op3 |

k



(Molloy-Reed) Configuration Model

ng ~ k—2.57 [ = 8
| | - |
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Consensus Time on Heterogeneous Networks

continuum limit:

> _(w—p )aT WA pr = 2wp O°T
_ “ opr 2Nny, op3 |

k

now use pr —w Vk

0 _ Ow 0 __ kng O
Opr  Opp Ow  p1 Ow

and



Consensus Time on Heterogeneous Networks

continuum limit:

k

NOW USE

and

to give

> |

0T  w+ pr — 2wpy, O°T
QN”/Lk ({9,0% 1

Pr — W Vk

0 _ Ow 0 __ kng O
Opr  Opp Ow  p1 Ow

0°T N it/ iz

_ same T —

N
ow?  w(l—w) as p(1 = p)

with effective size Neg = N ,u% / 142



Consensus Time for Power-Law Degree
Distribution ng ~ k™"
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Consensus Time for Power-Law Degree
Distribution ng ~ k™"
Voter model: Tx ~ Nog = Nu?/ o

N v > 3,
N/In N v =3,

Ty ~{ NE=8/v=1) 9~} 3
(In V)2 v =2,
O(1) v < 2.

Invasion process: T ~ Neg = Npp pi—q
N v > 2
In~<S NInN v=2
N3V v < 2
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N. Masuda, N. Gibert, SR

Partisan Voting and Truth PRE 82,010103(R) (2010)

refers truth refers truth refers false g(rgfers false
§< in T state g( in F state g( in T state in F state

density T’y density T_ density F. density F_

fraction that
believe the truth

T fraction F fraction



partisan voting update:

|. Pick voter, pick neighbor (as in usual voter model);

2a. If initial voter becomes concordant by
adopting neighboring state, T l —> ll
change occurs with rate | +€; | +¢

2b. If initial voter becomes discordant by
adopting neighboring state, lT —> TT
change occurs with rate |-&. | -€



Rate Equations

T. =(1+eT_ [Ty +F. ]—(1—-eT. [T+ F,
T =1-eT.[T-+F.]— (14T [T, +F_
F,=14+eF_ [Fo+T.]—(1—eF.[F_+T,
F.=(1-€eF. [F-.+T,]-(1+eF_[F.+T_




Flow Diagram

A — T_|_—F_|_

e < 21— 1
2T-1

T-1 0 2T-1)/2 T T-1 0 2T-1)12 T

A — A —



Summary & Outlook

Voter model:
paradigmatic, soluble, (but hopelessly naive)

Voter model on complex networks:

new conservation law
two time-scale route to consensus
fast consensus for broad degree distributions

Extension to Partisanship:
partisanship forestalls consensus to the truth

Future:

“churn” rather than consensus
heterogeneity of real people
positive and negative social interactions



Crass Commercialism

Aimed at graduate students, this book explores some of the core
phenomena in non-equilibrium statistical physics. It focuses on the
development and application of theoretical methods to help
students develop their problem-solving skills.

The book begins with microscopic transport processes: diffusion,
collision-driven phenomena, and exclusion. It then presents the
kinetics of aggregation, fragmentation, and adsorption, where basic
phenomenology and solution techniques are emphasized. The
following chapters cover kinetic spin systems, by developing both a
discrete and a continuum formulation, the role of disorder in
non-equilibrium processes, and hysteresis from the non-equilibrium
perspective. The concluding chapters address population dynamics,
chemical reactions, and a kinetic perspective on complex networks.
The book contains more than 200 exercises to test students’
understanding of the subject. A link to a website hosted by the
authors, containing an up-to-date list of errata and solutions to
some of the exercises, can be found at
www.cambridge.org/9780521851039.
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Cover illustration: Snapshot of a collision cascade in a perfectly elastic, initially
stationary hard-sphere gas in two dimensions due to a single incident particle.
Shown are the cloud of moving particles (red) and the stationary particles (blue)
that have not yet experienced any collisions. Figure courtesy of Tibor Antal. 0 521 851

52 85103

|. Aperitifs
2. Diffusion

4. Exclusion
5.Aggregation

wieN-ug
1upaYy
Aysaidery

>
=
>

o
=,
<
(@]

=

o

o
(9]
—
>
—
w
—
)
P
—
|
s
<
w
@
(9]

FOATIIINVD

6.

/. Adsorption
3. Collisions 8. Spin Dynamics

9. Coarsening

10. Disorder

A Kinetic View of

STATISTICA
PHYSICS

Pavel L. Krapivsky
Sidney Redner
Eli Ben-Naim

Fragmentation |. Hysteresis
2. Population Dynamics
3. Diffusion Reactions

4. Complex Networks

to
appear
this
October



