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random initial condition, 256 x 256 square:
 Voter Model Evolution Dornic et al. (2001)

t=4 t=16 t=64 t=256

droplet initial condition:
t=4 t=16 t=64 t=256

no surface tension
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identical on regular lattices, distinct on random graphs
Suchecki, Eguiluz & San Miguel (2005),  Castellano (2005),  Sood & SR (2005)

Voter Model:           Tell me how to vote

lemming

Link Dynamics: Pick two disagreeing 
agents and change 
one at random

Invasion Process:   I tell you how to vote

persuasive “friend”
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2.  Two-Spin Correlations ∂c2(r, t)

∂t
= ∇

2c2(r, t)
c2(r=0, t) = 1
c2(r>0, t=0) = 0

dimension consensus time

1 N
2

2 N ln N

>2 N

3. Consensus
    Time∫ √

Dt

c(r, t)rd−1 dr = N
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magnetization not conserved

illustrative example: 
complete bipartite graph

degree a

a sites
degree b

b sites
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dN↑,a =
N↓,aN↑,b −N↑,aN↓,b

(a + b)b

dN↑,b =
N↓,bN↑,a −N↑,bN↓,a

(a + b)a

rate equation

Subgraph densities:

ρa,b(t) =
1

2
[ρa,b(0) − ρb,a(0)] e−2t +

1

2
[ρa(0) + ρb(0)]

→

1

2
[ρa(0) + ρb(0)]

ρa = N↑,a/a, ρb = N↑,b/b dt = 1/(a + b)
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low degree; picked often
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Invasion Process on Complex Networks
Castellano,  AIP Conf Proc 779, 114 (2005)
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η = {1, 1, 0, 0, . . . , 1} system state
ηx = system state when voter at x flips
η(x) = state of voter at x

Formal Approach for Conservation Law

Φ(x, y) ≡ η(x)[1− η(y)]
Axy = adjacency matrix

flip rate: P[η → ηx] =
�

y

Axy

Z [Φ(x, y) + Φ(y, x)]

choose x, choose neighbor of x with prob.

choose y (neighbor of x), choose of x with prob.

choose link & update x with prob. 

Z ≡






Nkx VM
Nky IP
Nµ1 LD

(Nkx)−1

(Nky)−1

(Nµ1)−1

2 connected nodes 
in different states
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Formal Approach for Conservation Law

�∆η(x)� = [1− 2η(x)]P[η → ηx] =
�

y

Axy

Z [η(y)− η(x)]

link 
dynamics

�∆ω0�=�∆ρ�=
�

x,y

Axy

Nµ1
[η(y)−η(x)] = 0

invasion
process∆�ω−1� =

�

x,y

Axy

Nkxky
[η(y) − η(x)] = 0

∆�ω1� =
�

x,y

Axy

Nkx
kx [η(y) − η(x)] = 0 voter 

model

degree-weighted 
moments

�ωm� ≡ 1
Nµm

�

x

km
x η(x)=

1
µm

�

k

km nk ρk



Exit Probability on Complex Networks
E(ω) = ωVoter model:
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Exit Probability on Complex Networks

Extreme case: star graph
0

0

0

0

0

0
0

0

0

0

0

0

1

N nodes: degree 1
1  node:  degree N

Final state: all 1 with prob. 1/2!

ω =
1
µ1

�

k

k nkρk =
1
2

E(ω) = ωVoter model:
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0
0

0

0

0

0
0

0

0

0

0

0

1

0 consensus

Invasion Process Fixation Probability

fixation probability
∝ 1/(node degree)
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c = 1

c = 100
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ρ b
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two-clique graph

c

N=10000, C links/node



Consensus Time Evolution Equation

T (ρ) = R(ρ)[T (ρ + dρ) + dt]
+L(ρ)[T (ρ− dρ) + dt]
+[1−R(ρ)− L(ρ)][T (ρ) + dt]

warmup:  complete graph
T (ρ) ≡ av. consensus time starting with density ρ

A Guide to First-Passage Processes
                                   (CUP, 2001)



Consensus Time Evolution Equation
warmup:  complete graph
T (ρ) ≡ av. consensus time starting with density ρ

R(ρ) ≡ prob(↓↑→↑↑)
= ρ(1− ρ)ρ

T (ρ) = R(ρ)[T (ρ + dρ) + dt]
+L(ρ)[T (ρ− dρ) + dt]
+[1−R(ρ)− L(ρ)][T (ρ) + dt]

1

R

ρ0
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= ρ(1− ρ)
ρ

T (ρ) = R(ρ)[T (ρ + dρ) + dt]
+L(ρ)[T (ρ− dρ) + dt]
+[1−R(ρ)− L(ρ)][T (ρ) + dt]

1

RL

0

A Guide to First-Passage Processes
                                   (CUP, 2001)



Consensus Time Evolution Equation
warmup:  complete graph
T (ρ) ≡ av. consensus time starting with density ρ

R(ρ) ≡ prob(↓↑→↑↑)
L(ρ) ≡ prob(↑↓→↓↓)

= ρ(1− ρ)
ρ

T (ρ) = R(ρ)[T (ρ + dρ) + dt]
+L(ρ)[T (ρ− dρ) + dt]
+[1−R(ρ)− L(ρ)][T (ρ) + dt]

1

RL
1−R−L

0

A Guide to First-Passage Processes
                                   (CUP, 2001)



Consensus Time on Complete Graph

continuum limit: T �� = − N

ρ(1− ρ)

T (ρ) = −N [ρ ln ρ + (1− ρ) ln(1− ρ)]

solution:

T (ρ) = R(ρ)[T (ρ + dρ) + dt]
+L(ρ)[T (ρ− dρ) + dt]
+[1−R(ρ)− L(ρ)][T (ρ) + dt]



Consensus Time on Heterogeneous Networks

T ({ρk}) ≡ av. consensus time starting with density ρk

on nodes of degree k

T ({ρk}) =
�

k

Rk({ρk})[T ({ρ+
k }) + dt]

+
�

k

Lk({ρk})[T ({ρ−k }) + dt]

+
�
1−

�

k

[Rk({ρk}) + Lk({ρk})]
�
[T ({ρk}) + dt]

Lk({ρk}) = nkρk(1− ω)Rk({ρk}) = prob(ρk → ρ+
k )

=
1
N

��

x

1
kx

�

y

P (↓ ,−− , ↑)

= nkω(1− ρk)



continuum limit:
�

k

�
(ω − ρk)

∂T

∂ρk
+

ω + ρk − 2ωρk

2Nnk

∂2T

∂ρ2
k

�
= −1

Consensus Time on Heterogeneous Networks
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(Molloy-Reed) Configuration Model
nk ∼ k−2.5, µ1 = 8



continuum limit:
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k

�
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∂T

∂ρk
+
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2Nnk

∂2T

∂ρ2
k

�
= −1

now use ρk → ω ∀k
∂
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= ∂ω
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∂
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∂
∂ωand
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k

�
= −1

now use ρk → ω ∀k
∂
∂ρk

= ∂ω
∂ρk

∂
∂ω = knk

µ1

∂
∂ωand

T �� = − N

ρ(1− ρ)
same 
as

Neff = N µ2
1/µ2with effective size

to give
∂2T

∂ω2
= − Nµ2

1/µ2

ω(1− ω)

Consensus Time on Heterogeneous Networks
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N/ lnN ν = 3,
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lnvasion process: TN ∼ Neff = Nµ1 µ−1

TN ∼






N ν > 2
N lnN ν = 2
N3−ν ν < 2



Partisan  Voting and Truth N. Masuda, N. Gibert, SR
PRE 82, 010103(R) (2010)
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prefers truth
& in T state

density T+

prefers false
& in F state

density F−

prefers false
& in T state

density F+

prefers truth
& in F state

density T−

T

T fraction F fraction

+F_

+T F_ fraction that 
believe the truth



1. Pick voter, pick neighbor (as in usual voter model);

2a. If initial voter becomes concordant by   
     adopting neighboring state, 
     change occurs with rate 1+ε; 1+ε

2b. If initial voter becomes discordant by 
     adopting neighboring state, 
     change occurs with rate 1-ε. 1-ε

partisan voting update:



Rate Equations

S = T+ + F+

∆ = T+ − F+

T− = T − T+

F− = F − F+

Ṫ+ = (1 + �)T− [T+ + F−]− (1− �)T+ [T− + F+]

Ṫ− = (1− �)T+ [T− + F+]− (1 + �)T− [T+ + F−]

Ḟ+ = (1 + �)F− [F+ + T−]− (1− �)F+ [F− + T+]

Ḟ− = (1− �)F+ [F− + T+]− (1 + �)F− [F+ + T−]



S=0

1−T Δ=0

2T−1

T

S

Δ
T−1

T

(2T−1)/20

� < 2T − 1

truth 
consensus

1−T

T

(2T−1)/20 TT−1

S

Δ

2T−1
� > 2T − 1

partisanship

Flow Diagram S = T+ + F+

∆ = T+ − F+



Summary & Outlook
Voter model: 

paradigmatic, soluble, (but hopelessly naive)

Voter model on complex networks:
new conservation law
two time-scale route to consensus
fast consensus for broad degree distributions

Future:  
“churn” rather than consensus
heterogeneity of real people
positive and negative social interactions

Extension to Partisanship:
partisanship forestalls consensus to the truth
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Aimed at graduate students, this book explores some of the core

phenomena in non-equilibrium statistical physics. It focuses on the

development and application of theoretical methods to help

students develop their problem-solving skills.

The book begins with microscopic transport processes: diffusion,

collision-driven phenomena, and exclusion. It then presents the

kinetics of aggregation, fragmentation, and adsorption, where basic

phenomenology and solution techniques are emphasized. The

following chapters cover kinetic spin systems, by developing both a

discrete and a continuum formulation, the role of disorder in 

non-equilibrium processes, and hysteresis from the non-equilibrium

perspective. The concluding chapters address population dynamics,

chemical reactions, and a kinetic perspective on complex networks.

The book contains more than 200 exercises to test students'

understanding of the subject. A link to a website hosted by the

authors, containing an up-to-date list of errata and solutions to

some of the exercises, can be found at

www.cambridge.org/9780521851039.
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Cover illustration: Snapshot of a collision cascade in a perfectly elastic, initially
stationary hard-sphere gas in two dimensions due to a single incident particle.
Shown are the cloud of moving particles (red) and the stationary particles (blue)
that have not yet experienced any collisions. Figure courtesy of Tibor Antal.
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