Dynamics of Heterogeneous Voter Models

Sid Redner (physics.bu.edu/~redner)
Nonlinear Dynamics of Networks UMD April 5-9, 2010
T. Antal (BU \rightarrow Harvard), N. Gibert (ENSTA), N. Masuda (Tokyo),
M. Mobilia (BU \rightarrow Leeds), V. Sood (BU \rightarrow NBI), D. Volovik (BU) NSF DMR0535503 \& DMR0906504

Dynamics of Heterogeneous Voter Models

Sid Redner (physics.bu.edu/~redner)
Nonlinear Dynamics of Networks UMD April 5-9, 2010

$$
\begin{gathered}
\text { T. Antal (BU } \rightarrow \text { Harvard), N. Gibert (ENSTA), N. Masuda (Tokyo), } \\
\text { M. Mobilia (BU } \rightarrow \text { Leeds), V. Sood (BU } \rightarrow \text { NBI), D. Volovik (BU) } \\
\text { NSF DMR0535503 \& DMR0906504 }
\end{gathered}
$$

The classic voter model
3 basic results
Voting on complex networks T.Antal, V. Sood new conservation law
two time-scale route to consensus short consensus time

Strategic voting (>2 states) long time-scale switching
Partisan voting selfishness vs. collectiveness ultraslow evolution
M. Mobilia, D.Volovik
N. Masuda, N. Gibert

Classic Voter Model Clifford \& Sudury (1973) Holley \& Liggett (1975)

0 . Binary voter variable at each site i

Classic Voter Model Cliford \& Sudury (1973) Holley \& Liggett (1975)

0 . Binary voter variable at each site i
I. Pick a random voter

Classic Voter Model Clifford \& Subury (1973) Holley \& Liggett (1975)

0 . Binary voter variable at each site i
I. Pick a random voter
2.Assume state of randomly-selected neighbor individual has no self-confidence \& adopts neighbor's state

Classic Voter Model Clifford \& Sudbury (1973) Holley \& Liggett (1975)

Example update:

O. Binary voter variable at each site i
I. Pick a random voter
2. Assume state of randomly-selected neighbor individual has no self-confidence \& adopts neighbor's state

Classic Voter Model Clifford \& Sudbury (1973) Holley \& Liggett (1975)

Example update:

0 . Binary voter variable at each site i
I. Pick a random voter
2.Assume state of randomly-selected neighbor individual has no self-confidence \& adopts neighbor's state

Classic Voter Model Clifford \& Sudbury (1973) Holley \& Liggett (1975)

Example update:

proportional rule

0 . Binary voter variable at each site i
I. Pick a random voter
2.Assume state of randomly-selected neighbor individual has no self-confidence \& adopts neighbor's state

Classic Voter Model Clifford \& Sudbury (1973) Holley \& Liggett (1975)

Example update:

proportional rule

0 . Binary voter variable at each site i
I. Pick a random voter
2.Assume state of randomly-selected neighbor individual has no self-confidence \& adopts neighbor's state
3. Repeat I \& 2 until consensus necessarily occurs in a finite system

Voter Model Evolution Dorric etal. (2001)

random initial condition:

$$
t=4 \quad t=16 \quad t=64 \quad t=256
$$

droplet initial condition:

Lattice Voter Model: 3 Basic Properties

Lattice Voter Model: 3 Basic Properties

I. Final State (Exit) Probability $\mathcal{E}\left(\rho_{0}\right)$

Lattice Voter Model: 3 Basic Properties

I. Final State (Exit) Probability $\mathcal{E}\left(\rho_{0}\right)$

Evolution of a single active link:

Lattice Voter Model: 3 Basic Properties

I. Final State (Exit) Probability $\mathcal{E}\left(\rho_{0}\right)=\rho_{0}$

Evolution of a single active link:

Lattice Voter Model: 3 Basic Properties

I. Final State (Exit) Probability $\mathcal{E}\left(\rho_{0}\right)=\rho_{0}$

Evolution of a single active link:

2. Two-Spin Correlations

Lattice Voter Model: 3 Basic Properties

I. Final State (Exit) Probability $\mathcal{E}\left(\rho_{0}\right)=\rho_{0}$

Evolution of a single active link:

2. Two-Spin Correlations $\quad \frac{\partial c_{2}(\mathbf{r}, t)}{\partial t}=\nabla^{2} c_{2}(\mathbf{r}, t) \begin{aligned} & c_{2}(r=0, t)=1 \\ & c_{2}(r>0, t=0)=0\end{aligned}$

Lattice Voter Model: 3 Basic Properties

I. Final State (Exit) Probability $\mathcal{E}\left(\rho_{0}\right)=\rho_{0}$

Evolution of a single active link:

2. Two-Spin Correlations $\quad \frac{\partial c_{2}(\mathbf{r}, t)}{\partial t}=\nabla^{2} c_{2}(\mathbf{r}, t) \begin{aligned} & c_{2}(r=0, t)=1 \\ & c_{2}(r>0, t=0)=0\end{aligned}$

Lattice Voter Model: 3 Basic Properties

I. Final State (Exit) Probability $\mathcal{E}\left(\rho_{0}\right)=\rho_{0}$

Evolution of a single active link:

2. Two-Spin Correlations $\quad \frac{\partial c_{2}(\mathbf{r}, t)}{\partial t}=\nabla^{2} c_{2}(\mathbf{r}, t) \begin{aligned} & c_{2}(r=0, t)=1 \\ & c_{2}(r>0, t=0)=0\end{aligned}$

3. Consensus Time

Lattice Voter Model: 3 Basic Properties

I. Final State (Exit) Probability $\mathcal{E}\left(\rho_{0}\right)=\rho_{0}$

Evolution of a single active link:

2. Two-Spin Correlations $\quad \frac{\partial c_{2}(\mathbf{r}, t)}{\partial t}=\nabla^{2} c_{2}(\mathbf{r}, t) \begin{aligned} & c_{2}(r=0, t)=1 \\ & c_{2}(r>0, t=0)=0\end{aligned}$

3. Consensus Time

dimension	consensus time
1	$\mathrm{~N}^{2}$
2	$\mathrm{~N} \ln \mathrm{~N}$
>2	N

Voter Model on Complex Networks

C. Castellano, D.Vilon, A.Vespignani, EPL 63, I 53 (2003)
K. Suchecki, V. M. Eguiluz, M. San Miguel, EPL 69, 228 (2005)
V. Sood, SR, PRL 94, I7870I (2005); T.Antal,V. Sood, SR, PRE 77, 04II2I (2008)

Voter Model on Complex Networks

C. Castellano, D.Vilon, A.Vespignani, EPL 63, I 53 (2003)
K. Suchecki, V. M. Eguiluz, M. San Miguel, EPL 69, 228 (2005)
V. Sood, SR, PRL 94, I7870I (2005); T.Antal,V. Sood, SR, PRE 77, 04II 2 I (2008)
illustrative example: complete bipartite graph

Voter Model on Complex Networks

C. Castellano, D.Vilon, A.Vespignani, EPL 63, I 53 (2003)
K. Suchecki, V. M. Eguiluz, M. San Miguel, EPL 69, 228 (2005)
V. Sood, SR, PRL 94, I7870I (2005); T.Antal,V. Sood, SR, PRE 77, 04 I I 2 I (2008)
illustrative example: complete bipartite graph

Voter Model on Complex Networks

C. Castellano, D.Vilon, A.Vespignani, EPL 63, I 53 (2003)
K. Suchecki, V. M. Eguiluz, M. San Miguel, EPL 69, 228 (2005)
V. Sood, SR, PRL 94, I7870I (2005); T.Antal,V. Sood, SR, PRE 77, 04II 2 I (2008)
illustrative example: complete bipartite graph

$$
\begin{aligned}
& \begin{array}{c}
\text { pick site on } \\
\text { a sublattice } \\
\mathbb{y}
\end{array} \\
d N_{a} & =\frac{a}{a+b}\left[\frac{a-N_{a}}{a} \frac{N_{b}}{b}-\frac{N_{a}}{a} \frac{b-N_{b}}{b}\right] \\
d N_{b} & =\frac{b}{a+b}\left[\frac{b-N_{b}}{b} \frac{N_{a}}{a}-\frac{N_{b}}{b} \frac{a-N_{a}}{a}\right]
\end{aligned}
$$

Voter Model on Complex Networks

C. Castellano, D.Vilon, A.Vespignani, EPL 63, I 53 (2003)
K. Suchecki, V. M. Eguiluz, M. San Miguel, EPL 69, 228 (2005)
V. Sood, SR, PRL 94, I7870I (2005); T.Antal,V. Sood, SR, PRE 77, 04II2I (2008)
illustrative example: complete bipartite graph

$$
\begin{aligned}
& \substack{\text { pick site on } \\
\text { a sublattice } \\
\text { § }} \\
& d N_{a}=\frac{{ }_{a}^{\text {pick } \downarrow}}{a+b}\left[\frac{a-N_{a}}{a} \frac{N_{b}}{b}-\frac{N_{a}}{a} \frac{b-N_{b}}{b}\right] \\
& d N_{b}= \\
& =\frac{b}{a+b}\left[\frac{b-N_{b}}{b} \frac{N_{a}}{a}-\frac{N_{b}}{b} \frac{a-N_{a}}{a}\right]
\end{aligned}
$$

Voter Model on Complex Networks

C. Castellano, D.Vilon, A.Vespignani, EPL 63, I 53 (2003)
K. Suchecki, V. M. Eguiluz, M. San Miguel, EPL 69, 228 (2005)
V. Sood, SR, PRL 94, I7870I (2005); T.Antal,V. Sood, SR, PRE 77, 04II 2 I (2008)
illustrative example: complete bipartite graph

$$
\begin{aligned}
& \text { pick site on pick } \downarrow \quad \text { pick } \uparrow \text { on } \boldsymbol{b} \\
& \text { a sublattice on a sublattice } \\
& d N_{a}=\frac{a}{a+b}\left[\frac{a-N_{a}}{a} \frac{N_{b}}{b}-\frac{N_{a}}{a} \frac{b-N_{b}}{b}\right] \\
& d N_{b}=\frac{b}{a+b}\left[\frac{b-N_{b}}{b} \frac{N_{a}}{a}-\frac{N_{b}}{b} \frac{a-N_{a}}{a}\right]
\end{aligned}
$$

Voter Model on Complex Networks

C. Castellano, D.Vilon, A.Vespignani, EPL 63, I 53 (2003)
K. Suchecki, V. M. Eguiluz, M. San Miguel, EPL 69, 228 (2005)
V. Sood, SR, PRL 94, I7870I (2005); T.Antal,V. Sood, SR, PRE 77, 04II2I (2008)
illustrative example:
complete bipartite graph

$$
\begin{aligned}
& \begin{array}{c}
\text { pick site on } \\
\text { a sublattice }
\end{array} \\
& d N_{a}=\frac{a}{a+b}\left[\frac{a-N_{a}}{a} \frac{N_{b}}{b}-\frac{N_{a}}{a} \frac{b-N_{b}}{b}\right] \\
& d N_{b}=\frac{b}{a+b}\left[\frac{b-N_{b}}{b} \frac{N_{a}}{a}-\frac{N_{b}}{b} \frac{a-N_{a}}{a}\right]
\end{aligned}
$$

Subgraph densities: $\rho_{a}=N_{a} / a, \rho_{b}=N_{b} / b \quad d t=1 /(a+b)$

$$
\begin{aligned}
\rho_{a, b}(t) & =\frac{1}{2}\left[\rho_{a, b}(0)-\rho_{b, a}(0)\right] e^{-2 t}+\frac{1}{2}\left[\rho_{a}(0)+\rho_{b}(0)\right] \\
& \rightarrow \frac{1}{2}\left[\rho_{a}(0)+\rho_{b}(0)\right]
\end{aligned}
$$

Voter Model on Complex Networks

C. Castellano, D.Vilon, A.Vespignani, EPL 63, I 53 (2003)
K. Suchecki, V. M. Eguiluz, M. San Miguel, EPL 69, 228 (2005)
V. Sood, SR, PRL 94, I7870 I (2005); T.Antal,V. Sood, SR, PRE 77, 04 II2I (2008)
illustrative example:
complete bipartite graph

$$
\begin{aligned}
& \substack{\text { pick site on } \\
\text { a sublattice } \\
\mathbb{y y}} \\
& d N_{a}=\frac{a}{a+b}\left[\frac{a-N_{a}}{a} \frac{N_{b}^{\text {pick } \downarrow} \begin{array}{l}
\text { on a }
\end{array}}{b}-\frac{N_{a}}{a} \frac{b-N_{b}}{b}\right] \\
& d N_{b}=\frac{b}{a+b}\left[\frac{b-N_{b}}{b} \frac{N_{a}}{a}-\frac{N_{b}}{b} \frac{a-N_{a}}{a}\right]
\end{aligned}
$$

Subgraph densities: $\rho_{a}=N_{a} / a, \rho_{b}=N_{b} / b \quad d t=1 /(a+b)$

$$
\begin{aligned}
\rho_{a, b}(t) & =\frac{1}{2}\left[\rho_{a, b}(0)-\rho_{b, a}(0)\right] e^{-2 t}+\frac{1}{2}\left[\rho_{a}(0)+\rho_{b}(0)\right] \\
& \rightarrow \frac{1}{2}\left[\rho_{a}(0)+\rho_{b}(0)\right] \quad \text { magnetization not conserved }
\end{aligned}
$$

Voter Model on Complex Networks

Voter Model on Complex Networks

Voter Model on Complex Networks

Voter Model on Complex Networks

Voter Model on Complex Networks

"flow" from high degree to low degree

New Conservation Law

low degree

New Conservation Law

to compensate different rates, consider: $\begin{aligned} & \text { degree-weighted } \\ & \text { Ist moment: }\end{aligned} \quad \omega=\frac{1}{\mu_{1}} \sum_{k} k n_{k} \rho_{k}$

$$
\begin{aligned}
& \mu_{1}=\text { av. degree } \\
& n_{k}=\text { frac. nodes of degree } k \\
& \rho_{k}=\text { frac. } \uparrow \text { on nodes of degree } k
\end{aligned}
$$

New Conservation Law

to compensate different rates, consider: degree-weighted $\quad \omega=\frac{1}{\mu_{1}} \sum_{k} k n_{k} \rho_{k} \quad$ conserved!
Ist moment:

$$
\begin{aligned}
& \mu_{1}=\text { av. degree } \\
& n_{k}=\text { frac. nodes of degree } k \\
& \rho_{k}=\text { frac. } \uparrow \text { on nodes of degree } k
\end{aligned}
$$

Exit Probability on Complex Graphs

$$
\mathcal{E}(\omega)=\omega
$$

Exit Probability on Complex Graphs

$$
\mathcal{E}(\omega)=\omega
$$

Extreme case: star graph N nodes: degree I I node: degree N

Exit Probability on Complex Graphs

$$
\mathcal{E}(\omega)=\omega
$$

Extreme case: star graph 0

Final state: all I with prob. I/2!

Route to Consensus on Complex Graphs

Route to Consensus on Complex Graphs

complete bipartite graph

Route to Consensus on Complex Graphs

Consensus Time Evolution Equation

Consensus Time Evolution Equation

warmup: complete graph
$T(\rho) \equiv$ av. consensus time starting with density ρ

Consensus Time Evolution Equation

warmup: complete graph
$T(\rho) \equiv$ av. consensus time starting with density ρ

$$
\begin{aligned}
T(\rho)= & \mathcal{R}(\rho)[T(\rho+d \rho)+d t] \\
& +\mathcal{L}(\rho)[T(\rho-d \rho)+d t] \\
& +[1-\mathcal{R}(\rho)-\mathcal{L}(\rho)][T(\rho)+d t]
\end{aligned}
$$

Consensus Time Evolution Equation

warmup: complete graph
$T(\rho) \equiv$ av. consensus time starting with density ρ

$$
\begin{aligned}
T(\rho)= & \mathcal{R}(\rho)[T(\rho+d \rho)+d t] \\
& +\mathcal{L}(\rho)[T(\rho-d \rho)+d t] \\
& +[1-\mathcal{R}(\rho)-\mathcal{L}(\rho)][T(\rho)+d t]
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{R}(\rho) & \equiv \operatorname{prob}(\downarrow \uparrow \rightarrow \uparrow \uparrow) \\
& =\rho(1-\rho)
\end{aligned}
$$

Consensus Time Evolution Equation

warmup: complete graph
$T(\rho) \equiv$ av. consensus time starting with density ρ

$$
\begin{aligned}
T(\rho)= & \mathcal{R}(\rho)[T(\rho+d \rho)+d t] \\
& +\mathcal{L}(\rho)[T(\rho-d \rho)+d t] \\
& +[1-\mathcal{R}(\rho)-\mathcal{L}(\rho)][T(\rho)+d t]
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{R}(\rho) & \equiv \operatorname{prob}(\downarrow \uparrow \rightarrow \uparrow \uparrow) \\
\mathcal{L}(\rho) & \equiv \operatorname{prob}(\uparrow \downarrow \rightarrow \downarrow) \\
& =\rho(1-\rho)
\end{aligned}
$$

Consensus Time Evolution Equation

warmup: complete graph
$T(\rho) \equiv$ av. consensus time starting with density ρ

$$
\begin{aligned}
T(\rho)= & \mathcal{R}(\rho)[T(\rho+d \rho)+d t] \\
& +\mathcal{L}(\rho)[T(\rho-d \rho)+d t] \\
& +[1-\mathcal{R}(\rho)-\mathcal{L}(\rho)][T(\rho)+d t] \\
& \\
& L \\
0 & \rho \\
& 1-\boldsymbol{R}-\boldsymbol{L}
\end{aligned} \quad \begin{aligned}
\mathcal{R}(\rho) & \equiv \operatorname{prob}(\downarrow \uparrow \rightarrow \uparrow \uparrow) \\
& \equiv \operatorname{prob}(\uparrow \downarrow \rightarrow \downarrow \downarrow) \\
& =\rho(1-\rho)
\end{aligned}
$$

Consensus Time on Complete Graph

$$
\begin{aligned}
T(\rho)= & \mathcal{R}(\rho)[T(\rho+d \rho)+d t] \\
& +\mathcal{L}(\rho)[T(\rho-d \rho)+d t] \\
& +[1-\mathcal{R}(\rho)-\mathcal{L}(\rho)][T(\rho)+d t]
\end{aligned}
$$

continuum limit:

$$
T^{\prime \prime}=-\frac{N}{\rho(1-\rho)}
$$

Consensus Time on Complete Graph

$$
\begin{aligned}
T(\rho)= & \mathcal{R}(\rho)[T(\rho+d \rho)+d t] \\
& +\mathcal{L}(\rho)[T(\rho-d \rho)+d t] \\
& +[1-\mathcal{R}(\rho)-\mathcal{L}(\rho)][T(\rho)+d t]
\end{aligned}
$$

continuum limit:

$$
T^{\prime \prime}=-\frac{N}{\rho(1-\rho)}
$$

solution:

$$
T(\rho)=-N[\rho \ln \rho+(1-\rho) \ln (1-\rho)]
$$

Consensus Time on Heterogeneous Networks

$T\left(\left\{\rho_{k}\right\}\right) \equiv$ av. consensus time starting with density ρ_{k} on nodes of degree k

$$
\begin{aligned}
T\left(\left\{\rho_{k}\right\}\right)= & \sum_{k} \mathcal{R}_{k}\left(\left\{\rho_{k}\right\}\right)\left[T\left(\left\{\rho_{k}^{+}\right\}\right)+d t\right] \\
& +\sum_{k} \mathcal{L}_{k}\left(\left\{\rho_{k}\right\}\right)\left[T\left(\left\{\rho_{k}^{-}\right\}\right)+d t\right] \\
& +\left[1-\sum_{k}\left[\mathcal{R}_{k}\left(\left\{\rho_{k}\right\}\right)+\mathcal{L}_{k}\left(\left\{\rho_{k}\right\}\right)\right]\right]\left[T\left(\left\{\rho_{k}\right\}\right)+d t\right] \\
\mathcal{R}_{k}\left(\left\{\rho_{k}\right\}\right) & =\operatorname{prob}\left(\rho_{k} \rightarrow \rho_{k}^{+}\right) \quad \mathcal{L}_{k}\left(\left\{\rho_{k}\right\}\right)=n_{k} \rho_{k}(1-\omega) \\
& =\frac{1}{N} \sum_{x}^{\prime} \frac{1}{k_{x}} \sum_{y} P(\downarrow,-\uparrow) \\
& =n_{k} \omega\left(1-\rho_{k}\right)
\end{aligned}
$$

Consensus Time on Heterogeneous Networks

continuum limit:

$$
\sum_{k}\left[\left(\omega-\rho_{k}\right) \frac{\partial T}{\partial \rho_{k}}+\frac{\omega+\rho_{k}-2 \omega \rho_{k}}{2 N n_{k}} \frac{\partial^{2} T}{\partial \rho_{k}^{2}}\right]=-1
$$

Molloy-Reed Scale-Free Network

Consensus Time on Heterogeneous Networks

continuum limit:

$$
\sum_{k}\left[\left(\omega-\rho_{k}\right) \frac{\partial T}{\partial \rho_{k}}+\frac{\omega+\rho_{k}-2 \omega \rho_{k}}{2 N n_{k}} \frac{\partial^{2} T}{\partial \rho_{k}^{2}}\right]=-1
$$

now use $\quad \rho_{k} \rightarrow \omega \quad \forall k$
and

$$
\frac{\partial}{\partial \rho_{k}}=\frac{\partial \omega}{\partial \rho_{k}} \frac{\partial}{\partial \omega}=\frac{k n_{k}}{\mu_{1}} \frac{\partial}{\partial \omega}
$$

Consensus Time on Heterogeneous Networks

continuum limit:

$$
\sum_{k}\left[\left(\omega-\rho_{k}\right) \frac{\partial T}{\partial \rho_{k}}+\frac{\omega+\rho_{k}-2 \omega \rho_{k}}{2 N n_{k}} \frac{\partial^{2} T}{\partial \rho_{k}^{2}}\right]=-1
$$

now use $\quad \rho_{k} \rightarrow \omega \quad \forall k$
and

$$
\frac{\partial}{\partial \rho_{k}}=\frac{\partial \omega}{\partial \rho_{k}} \frac{\partial}{\partial \omega}=\frac{k n_{k}}{\mu_{1}} \frac{\partial}{\partial \omega}
$$

to give

$$
\frac{\partial^{2} T}{\partial \omega^{2}}=-\frac{N \mu_{1}^{2} / \mu_{2}}{\omega(1-\omega)}
$$

Consensus Time on Heterogeneous Networks

continuum limit:

$$
\sum_{k}\left[\left(\omega-\rho_{k}\right) \frac{\partial T}{\partial \rho_{k}}+\frac{\omega+\rho_{k}-2 \omega \rho_{k}}{2 N n_{k}} \frac{\partial^{2} T}{\partial \rho_{k}^{2}}\right]=-1
$$

now use $\quad \rho_{k} \rightarrow \omega \quad \forall k$
and

$$
\frac{\partial}{\partial \rho_{k}}=\frac{\partial \omega}{\partial \rho_{k}} \frac{\partial}{\partial \omega}=\frac{k n_{k}}{\mu_{1}} \frac{\partial}{\partial \omega}
$$

to give

$$
\frac{\partial^{2} T}{\partial \omega^{2}}=-\frac{N \mu_{1}^{2} / \mu_{2}}{\omega(1-\omega)} \quad \text { as } \quad \text { ase } \quad T^{\prime \prime}=-\frac{N}{\rho(1-\rho)}
$$

with effective size $N_{\text {eff }}=N \mu_{1}^{2} / \mu_{2}$

Consensus Time for Power-Law Degree

 Distribution $n_{k} \sim k^{-\nu}$$$
T_{N} \propto N_{\mathrm{eff}}=N \frac{\mu_{1}^{2}}{\mu_{2}} \sim\left\{\begin{array}{ll}
N & \nu>3 \\
N / \ln N & \nu=3 \\
N^{2(\nu-2) /(\nu-1)} & 2<\nu<3 \\
(\ln N)^{2} & \nu=2 \\
\mathcal{O}(1) & \nu<2
\end{array}\right]
$$

Strategic Voting

Strategic Voter Model $\begin{aligned} & \text { D.Volovik, M. Mobilia, SR } \\ & \text { EPL } 85,48001(2009)\end{aligned}$

randomly-selected voter changes to any other state equiprobably (rate T)
majority-minority interaction: minority preferentially changes to majority (rate r)
rate equations (A, B majority; c minority):

$$
\begin{aligned}
\dot{A} & =T(B+c-2 A)+r A c \\
\dot{B} & =T(c+A-2 B)+r B c \\
\dot{c} & =T(A+B-2 c)-r(A+B) c
\end{aligned}
$$

Phase Portrait

Phase Portrait

Slow Switching

Partisan Voter Model N.Masad. . . Gbers. SR arXiv:I003.0768

Partisan Voter Model N.Masuda, N. Gibert, SR arXiv:I003.0768

Partisan Voter Model N.Masuda, N. Gibert, SR arXiv:I003.0768

个happy
democrat

density D_{h} \begin{tabular}{l}
sad

democrat

density D_{s}

\quad

个ad

republican

density R_{s}

\downarrow happy

republican

density R_{h}
\end{tabular}

partisan voting update:

Partisan Voter Model N.Masuda, N, Gibert, SR

个happy
democrat

density D_{h} \begin{tabular}{l}
sad

democrat

density D_{s}

\quad

个ad

republican

density R_{s}

\downarrow happy

republican

density R_{h}
\end{tabular}

partisan voting update:
I. Pick voter, pick neighbor (as in usual voter model);

Partisan Voter Model N.Masudat, N, Gibert, SR

partisan voting update:
I. Pick voter, pick neighbor (as in usual voter model);

2a. If initial voter becomes happy by adopting neighboring state, change occurs with rate $I+\varepsilon$;

$$
\uparrow \downarrow \underset{1+\varepsilon}{\rightarrow} \downarrow \downarrow
$$

Partisan Voter Model N.Masuda, N, Gibert, SR

partisan voting update:
I. Pick voter, pick neighbor (as in usual voter model);

2a. If initial voter becomes happy by adopting neighboring state, change occurs with rate $I+\varepsilon$;

$$
\uparrow \downarrow \underset{\jmath+\varepsilon}{\rightarrow} \downarrow \downarrow
$$

2b. If initial voter becomes unhappy by adopting neighboring state, change occurs with rate $I-\varepsilon$.

$$
\downarrow \uparrow \rightarrow \uparrow \uparrow
$$

Partisan Voter Model: Mean-Field Limit

rate equations:

$$
\begin{gathered}
\dot{D}_{h}=2 \epsilon D_{h} D_{s}+(1+\epsilon) D_{s} R_{s}-(1-\epsilon) D_{h} R_{h} \\
\dot{D}_{s}=-2 \epsilon D_{h} D_{s}+(1-\epsilon) D_{h} R_{h}-(1+\epsilon) D_{s} R_{s} \\
\text { and } R \leftrightarrow D
\end{gathered}
$$

Symmetric Case: $D=R=1 / 2$
$H \equiv D_{h}+R_{h}$
$=$ density of happy voters
$\Delta \equiv D_{h}-R_{h}=D_{h}-\left(\frac{1}{2}-R_{s}\right)=\rho-\frac{1}{2}$
$=$ density democratic voters $-\frac{1}{2}$

Consensus Time on Finite Graphs

Summary \& Outlook

Voter model:

paradigmatic, soluble, (but hopelessly naive)
Voter model on complex networks:
new conservation law
meandering route to consensus
fast consensus for broad degree distributions

Extensions:

strategic voting \rightarrow minority suppressed partisan voting \rightarrow selfishness forestalls consensus

Future:
"churn" rather than consensus
heterogeneity of real people
positive and negative social interactions \rightarrow social balance

Crass Commercialism

Aimed at graduate students, this book explores some of the core phenomena in non-equilibrium statistical physics. It focuses on the development and application of theoretical methods to help students develop their problem-solving skills.
The book begins with microscopic transport processes: diffusion, collision-driven phenomena, and exclusion. It then presents the kinetics of aggregation, fragmentation and adsorption, where the basic phenomenology and solution techniques are emphasized. The
following chapters cover kinetic spin systems, both from a discrete following hapers cove kives spin systris, and a continuum perspective; the role of disorder in non-
perspective; the kinetics of chemical reactions; and the properties of perspective; the k. The networks. The book contains 200 exercises to test students' complex networks. The book contains 200 exercises to test stude authors, containing supplementary material including solutions to some of the exercises, can be found at
www.cambridge.org/9780521851039.
Pavel L. Krapisky is Research Associate Professor of Physics at
Boston University. His current research interests are in strongly interacting many-particle systems and their applications to kinetic spin systems, networks, and biological phenomena.
Sidney Redner is a Professor of Physics at Boston University. His
current research interests are in non-equilibrium statistical physics. and its applications to reactions, networks, social systems, biological phenomena, and first-passage processes.
Eli Ben-Naim is a member of the Theoretical Division and an
affiliate of the Center for Nonlinear Studies at Los Alamos National Laboratory. He conducts research in statistical, nonlinear, and soft condensed-matter physis, including the c
interacting particle and granular systems.

Cover illustration: Snapshot of a collision cascade in a perfectly elastic hardsphere gas in two dimensions due to a singli incident particle. Shown are the cloud of moving particles (Ted) and the stationary particles (blue) that have not
yet experienced any collisions. Figure courtes of Tibor Antal.

to appear this October

TABLE OF CONTENTS
I.Aperitifs
2. Diffusion
3. Collisions
4. Exclusion
5. Aggregation
6. Fragmentation II.Hysteresis
7. Adsorption I2. Population Dynamics
8. Spin Dynamics
9. Coarsening
10. Disorder
13. Diffusion Reactions
14. Complex Networks

