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there are languages at higher levels not recognizable at lower levels. The least powerful models,
at the hierarchy’s bottom, are those with finite memory — the finite automata (DFA/NFA).
At the top are the universal Turing machines (UTM) which have infinite random-access tape
memories. In between, roughly speaking, there are two broad classes of language: context-
sensitive languages that can be recognized by machines whose infinite memories are organized
in a stack, and context-sensitive languages recognized by machines whose memory accesses are
limited by a linear function of the initial input’s length. What is remarkable about this hierarchy
is the wealth of intervening model classes and the accumulated understanding of their relative
language classification powers. Figure 2 includes more detail than is necessary for the following
discussion, but it does demonstrate some of the diversity of computational mechanisms that have
been studied.[31]
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Figure 2 The discrete computation hierarchy. Adjective legend: 1 = one way input tape, 2 = two way input tape, D =
deterministic, N = nondeterministic, I = indexed, RI = restricted I, n = nested, NE = nonerasing, CF = context free, CS = context
sensitive, R = recursive, RE = R enumerable, and U = universal. Object legend: G = grammar, A = automata, FA = finite A,
PDA = pushdown A, SA = stack A, LBA = linear bounded A, RPA = Reading PDA, TM = Turing machine, LS = Lindenmayer
system, 0L = CF LS, 1L = CS LS, and RS = R set. (After [31,35–39].)

Figure 2 includes the formal grammar models of Chomsky and others, the associated finite
and stack automata, and the arbitrary-access tape machines of Turing. Hierarchical structure
should not be thought of as being limited to just these, however. Even staying within the

The Calculi of Emergence, Crutchfield (Physica D, 1994)
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FIG. 3. A cascade of two Z2 counters; the lower-level machine
has two possible transitions, depending on the state of the
higher-level machine. The cascade now can count modulo
four, with the high-level machine counting even versus odd,
and the lower-level machine tracking the second bit.

letter, a, from the environment; the lower-level machine
receives a joint signal Aa or Ba, depending on the state
of the machine above. Inspection shows that this cascade
of two modulo-two counters allows us to count modulo
four.
Cascades of automata are essentially hierarchical. Ma-

chines higher up the chain control more general features
of the system. They require fewer inputs, and are igno-
rant of the finer-scale details of state structures below.
Their states are effectively superstates – collections of
states of the equivalent collapsed machine. The top-level
states A and B of Fig. 3, for example refer to pairs of
states in the equivalent Z4 counter.
It is in these senses that cascades provide a graded

set of effective theories. Truncating a cascade at some
level allows one to “smooth” a complicated, multi-state
process in a manner consistent with its internal logic.
Cascades, of course, have a particularly special form.

In the next section, however, we will see that any au-
tomaton can be rewritten in this cascaded form, with
each level composed of particularly simple subroutines.

V. THE KROHN-RHODES DECOMPOSITION

In some cases, as we saw in the previous sections, the
semigroup associated with an automaton turns out to
be a group. The Cayley theorem – that all groups are
isomorphic to subgroups of the permutations – makes
these automata simple to identify. In particular, for such
an automaton every transformation induced by a letter
of Σ leads to a permutation of the states.
At the other extreme are the “resets.” A letter s in

Σ is a reset if it has the same effect on all states – if it
resets the machine, in other words, to a unique state.
In between, of course, are operations that permute

some states and reset others – for example, a letter s
acting on a subset of states might act as a permutation,
but on a different set it acts as a reset, taking all elements
to a single final state. Examples of these mixed machines
include that of Fig. 5b. Conversely, “pure” machines –
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FIG. 4. Effective theories and “smoothed” computations. (a)
An eight-state automaton with two input letters, built from
XOR gates on the left-shift register. (b) The top level of the
decomposed machine. Despite the complicated internal struc-
ture of (a), at the coarse-grained level, the process is seen
count modulo three (on receiving a signals), and reset (on re-
ceiving b signals.) Movement within the three superstates of
(b) is dictated by Z2 counters and resets at lower levels in the
decomposition.

those that are combinations of only permutations and
resets – are called permutation-reset machines.
The surprising result of the Krohn-Rhodes theo-

rem [16, 17] is that any finite state automaton can be
decomposed into a cascade whose automata contain only
the simple groups and the pure resets. This cascade
produces behavior homeomorphic to the original ma-
chine [18]. In contrast to Turing-complete processes, one
can not only can define a “restricted” algorithmic infor-
mation complexity for the finite state automata by stan-
dard minimization techniques, but can also break them
down into a small number of hierarchically organized sub-
routines.
Ref. [16] proved the existence of such decompositions,

but did not present a simple way to find them. The holon-
omy decomposition [19–21] provides an efficient means of
reconstruction; computations in this paper use an imple-
mentation of the holonomy decomposition in the SgpDec
package in GAP [22–24].
An example of the decomposition is shown in Fig. 4.

The complicated structure of Fig. 4a breaks down into
a three-level cascade. The top level, shown in Fig. 4b
is a Z3 counter with a reset; the lower two levels are
additional Z2 counters. The “superstates” of Fig. 4b are
not disjoint: all three of the superstates include states C
and F.
One of the interesting features of the Krohn-Rhodes

theorem is the difference in treatment of the reversible
(group symmetry) and irreversible transformations of the
system. While the groups resolve themselves into a non-
trivial catalog of simple subunits, there are no “irre-
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Figure 2: Graphical representation of the TCP FSM. The events are the flag combinations
of Table 4 and the states are as defined in Table 3. For clarity, the failure state is not shown.

SA event brings the connection to the Connection established state. Since almost 10% of
all SYN packets are retransmitted [2], we allow an S event to keep the connection in the
Connection requested state, and likewise for S and SA events in the Connection established
state. An APU event completes the handshake and takes the connection to the Data transfer
state, and more APU events keep it in that state, while a FAPU or a RAPU event will initiate
a closing sequence for the connection. A RAPU event takes the connection directly to the
Closed state, while a FAPU event leads to Closing and then to Closed after a second FAPU event
occurs. No event changes the state after it enters Closed, except “Others”.

The flag combinations for FAPU are extended in this diagram with subscripts (1,2) to denote
directionality. For a complete closing, one FIN must be sent by each party; the subscript 1
denotes a FIN received from one direction and the subscript 2 denotes a FIN received from
the opposite direction.

Directional differentiation similar to the above is included for the SYN packets involved
in the handshake. In a valid connection, the SYN must originate from the client and the
SYN-ACK from the server. Since the symbols for these states are already different, we do
not use subscripts.

In the analysis of a connection, some attempt must be made to differentiate between be-
haviour that is TCP and effects of the networks such as out-of-order packet delivery (due to
variations in path) and packet replication [5]. To deal with these network effects, we allow
an ACK packet to have no effect on the Connection requested state and a SYN-ACK packet
to have no effect in the Connection established state.

Table 5 shows the transition table for the FSM. For example, if the connection was in
the Connection established (H ) state, and the next event was the arrival of a packet with
PUSH and ACK (APU ) flags, the subsequent state would be Data transfer (X). Note that
the F APU event cannot be applied until the F APU event has occurred; this is denoted by the –
symbol in the transition table. The Failure state is accessible from every state, and once it
is reached, the system remains in that state (known as an absorbing state).

Allowed TCP behaviour that is indicative of improper activity is not considered to be valid
in this model. While the sequences S–RAPU , S–SA–RAPU and S–SA–FAPU are tech-

DRDC Ottawa TM 2003-139 5

J. Treurniet & J.H. Lefebvre (Défense Canada, 2003)

Abstract

Finite state machines can be used to detect anomalous behaviour in TCP traffic by describ-
ing the progression of a connection through states as a result of events based on header
flags. The method was applied to real traffic to understand its realistic use and it was found
that for the time period analysed here, on the order of 37% of TCP connections do not
follow the TCP protocol specifications. The majority of these are a result of malicious ac-
tivity, and approximately 4% are due to benign anomalies such as unresponsive hosts and
misconfigurations. The method may be applied as a network security measure, as a network
management tool or as a research tool for the study of TCP behaviour on the Internet.

Résumé

Les modèles d’automate à états finis peuvent servir à déceler les comportements anormaux
dans le trafic TCP en décrivant la progression d’une connexion dans ses différents états en
fonction des événements basés sur les indicateurs des en-têtes. La méthode a été appliquée
au trafic réel pour en comprendre l’utilisation réaliste et on a constaté que, pour la période
de l’examen, environ 37% des connexions TCP ne respectaient pas les spécifications du pro-
tocole TCP. La majeure partie de ces connexions découlaient d’activités malicieuses, alors
que 4% étaient causées par des anomalies bénignes, comme des hôtes qui ne répondaient
plus ou des erreurs de configuration. Cette méthode peut être appliquée comme mesure de
sécurité du réseau, comme outil de gestion du réseau ou comme outil de recherche pour
l’étude du comportement du protocole TCP dans Internet.

DRDC Ottawa TM 2003-139 i
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FIG. 3. A cascade of two Z2 counters; the lower-level machine
has two possible transitions, depending on the state of the
higher-level machine. The cascade now can count modulo
four, with the high-level machine counting even versus odd,
and the lower-level machine tracking the second bit.

letter, a, from the environment; the lower-level machine
receives a joint signal Aa or Ba, depending on the state
of the machine above. Inspection shows that this cascade
of two modulo-two counters allows us to count modulo
four.
Cascades of automata are essentially hierarchical. Ma-

chines higher up the chain control more general features
of the system. They require fewer inputs, and are igno-
rant of the finer-scale details of state structures below.
Their states are effectively superstates – collections of
states of the equivalent collapsed machine. The top-level
states A and B of Fig. 3, for example refer to pairs of
states in the equivalent Z4 counter.
It is in these senses that cascades provide a graded

set of effective theories. Truncating a cascade at some
level allows one to “smooth” a complicated, multi-state
process in a manner consistent with its internal logic.
Cascades, of course, have a particularly special form.

In the next section, however, we will see that any au-
tomaton can be rewritten in this cascaded form, with
each level composed of particularly simple subroutines.

V. THE KROHN-RHODES DECOMPOSITION

In some cases, as we saw in the previous sections, the
semigroup associated with an automaton turns out to
be a group. The Cayley theorem – that all groups are
isomorphic to subgroups of the permutations – makes
these automata simple to identify. In particular, for such
an automaton every transformation induced by a letter
of Σ leads to a permutation of the states.
At the other extreme are the “resets.” A letter s in

Σ is a reset if it has the same effect on all states – if it
resets the machine, in other words, to a unique state.
In between, of course, are operations that permute

some states and reset others – for example, a letter s
acting on a subset of states might act as a permutation,
but on a different set it acts as a reset, taking all elements
to a single final state. Examples of these mixed machines
include that of Fig. 5b. Conversely, “pure” machines –
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FIG. 4. Effective theories and “smoothed” computations. (a)
An eight-state automaton with two input letters, built from
XOR gates on the left-shift register. (b) The top level of the
decomposed machine. Despite the complicated internal struc-
ture of (a), at the coarse-grained level, the process is seen
count modulo three (on receiving a signals), and reset (on re-
ceiving b signals.) Movement within the three superstates of
(b) is dictated by Z2 counters and resets at lower levels in the
decomposition.

those that are combinations of only permutations and
resets – are called permutation-reset machines.
The surprising result of the Krohn-Rhodes theo-

rem [16, 17] is that any finite state automaton can be
decomposed into a cascade whose automata contain only
the simple groups and the pure resets. This cascade
produces behavior homeomorphic to the original ma-
chine [18]. In contrast to Turing-complete processes, one
can not only can define a “restricted” algorithmic infor-
mation complexity for the finite state automata by stan-
dard minimization techniques, but can also break them
down into a small number of hierarchically organized sub-
routines.
Ref. [16] proved the existence of such decompositions,

but did not present a simple way to find them. The holon-
omy decomposition [19–21] provides an efficient means of
reconstruction; computations in this paper use an imple-
mentation of the holonomy decomposition in the SgpDec
package in GAP [22–24].
An example of the decomposition is shown in Fig. 4.

The complicated structure of Fig. 4a breaks down into
a three-level cascade. The top level, shown in Fig. 4b
is a Z3 counter with a reset; the lower two levels are
additional Z2 counters. The “superstates” of Fig. 4b are
not disjoint: all three of the superstates include states C
and F.
One of the interesting features of the Krohn-Rhodes

theorem is the difference in treatment of the reversible
(group symmetry) and irreversible transformations of the
system. While the groups resolve themselves into a non-
trivial catalog of simple subunits, there are no “irre-
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automata where each letter induces a permutation of the state space, and reset automata

where each letter is either a reset (sends all states to a fixed single state) or an identity (a

self-loop from every state). However, as noted in the last paragraph of [2] “Finally, no-
tice that the above theory does not indicate how many particular basic building blocks
are needed to construct a cascade product covering of a given semiautomaton.”

A1

A2

A3

A1

A2

A3

Σ Σ

Q1

Q2

X1

X2

X3

Fig. 1. A cascade product of 3 automata using the state-as-input convention (left) and the input-

output convention (right).

I had the privilege to discuss the topic with the late Marcel-Paul Schützenberger who

encouraged me to look at the holonomy decomposition theorem, a variant of the Krohn-

Rhodes theorem, written on eight dense pages of volume B of Eilenberg’s book [1] to

which he contributed. It took me a long time to decipher this motivation-less algebraic

prose, translate the construction to my own automata-theoretic language, and verify

that it is indeed exponential. From there an exponential translation from counter-free

automata to temporal logic, very similar to the construction of Meyer [10] for star-free

regular expressions, followed immediately. We also managed to give a lower bound on

the size of the decomposition, obtained via a bounded two-way counter, also known as

the elevator automaton. Apart from a short abstract [7] and a draft on the web [8] we

have not published this work, which is what I intend to do presently. Unfortunately due

to timing constraints the presentation is not complete, including only the reconstruction

of the holonomy decomposition without the lower bound and the translation to temporal

logic. The interested reader is referred to [7, 8] for those.

The rest of the paper is organized as follows. In Section 2 we give the basic def-

initions concerning the algebraic theory of automata and semigroups. In section 3 we

define the cascade product and state the theorem. Section 4 is devoted to the study of

a particular structure, the holonomy tree, tightly related to a cascaded decomposition.

It is a combination of a tree whose nodes are labeled by subsets of the states of the

automaton, and on which a transition function, satisfying certain constraints is defined.

After establishing the close relationship between such a tree and a cascaded decompo-

sition we describe in Section 5 an algorithm for computing the tree and thus completing

a constructive version of the proof. The subtle part in these two sections is how to avoid
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FIG. 3. A cascade of two Z2 counters; the lower-level machine
has two possible transitions, depending on the state of the
higher-level machine. The cascade now can count modulo
four, with the high-level machine counting even versus odd,
and the lower-level machine tracking the second bit.

letter, a, from the environment; the lower-level machine
receives a joint signal Aa or Ba, depending on the state
of the machine above. Inspection shows that this cascade
of two modulo-two counters allows us to count modulo
four.
Cascades of automata are essentially hierarchical. Ma-

chines higher up the chain control more general features
of the system. They require fewer inputs, and are igno-
rant of the finer-scale details of state structures below.
Their states are effectively superstates – collections of
states of the equivalent collapsed machine. The top-level
states A and B of Fig. 3, for example refer to pairs of
states in the equivalent Z4 counter.
It is in these senses that cascades provide a graded

set of effective theories. Truncating a cascade at some
level allows one to “smooth” a complicated, multi-state
process in a manner consistent with its internal logic.
Cascades, of course, have a particularly special form.

In the next section, however, we will see that any au-
tomaton can be rewritten in this cascaded form, with
each level composed of particularly simple subroutines.

V. THE KROHN-RHODES DECOMPOSITION

In some cases, as we saw in the previous sections, the
semigroup associated with an automaton turns out to
be a group. The Cayley theorem – that all groups are
isomorphic to subgroups of the permutations – makes
these automata simple to identify. In particular, for such
an automaton every transformation induced by a letter
of Σ leads to a permutation of the states.
At the other extreme are the “resets.” A letter s in

Σ is a reset if it has the same effect on all states – if it
resets the machine, in other words, to a unique state.
In between, of course, are operations that permute

some states and reset others – for example, a letter s
acting on a subset of states might act as a permutation,
but on a different set it acts as a reset, taking all elements
to a single final state. Examples of these mixed machines
include that of Fig. 5b. Conversely, “pure” machines –
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FIG. 4. Effective theories and “smoothed” computations. (a)
An eight-state automaton with two input letters, built from
XOR gates on the left-shift register. (b) The top level of the
decomposed machine. Despite the complicated internal struc-
ture of (a), at the coarse-grained level, the process is seen
count modulo three (on receiving a signals), and reset (on re-
ceiving b signals.) Movement within the three superstates of
(b) is dictated by Z2 counters and resets at lower levels in the
decomposition.

those that are combinations of only permutations and
resets – are called permutation-reset machines.
The surprising result of the Krohn-Rhodes theo-

rem [16, 17] is that any finite state automaton can be
decomposed into a cascade whose automata contain only
the simple groups and the pure resets. This cascade
produces behavior homeomorphic to the original ma-
chine [18]. In contrast to Turing-complete processes, one
can not only can define a “restricted” algorithmic infor-
mation complexity for the finite state automata by stan-
dard minimization techniques, but can also break them
down into a small number of hierarchically organized sub-
routines.
Ref. [16] proved the existence of such decompositions,

but did not present a simple way to find them. The holon-
omy decomposition [19–21] provides an efficient means of
reconstruction; computations in this paper use an imple-
mentation of the holonomy decomposition in the SgpDec
package in GAP [22–24].
An example of the decomposition is shown in Fig. 4.

The complicated structure of Fig. 4a breaks down into
a three-level cascade. The top level, shown in Fig. 4b
is a Z3 counter with a reset; the lower two levels are
additional Z2 counters. The “superstates” of Fig. 4b are
not disjoint: all three of the superstates include states C
and F.
One of the interesting features of the Krohn-Rhodes

theorem is the difference in treatment of the reversible
(group symmetry) and irreversible transformations of the
system. While the groups resolve themselves into a non-
trivial catalog of simple subunits, there are no “irre-
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FIG. 3. A cascade of two Z2 counters; the lower-level machine
has two possible transitions, depending on the state of the
higher-level machine. The cascade now can count modulo
four, with the high-level machine counting even versus odd,
and the lower-level machine tracking the second bit.

letter, a, from the environment; the lower-level machine
receives a joint signal Aa or Ba, depending on the state
of the machine above. Inspection shows that this cascade
of two modulo-two counters allows us to count modulo
four.
Cascades of automata are essentially hierarchical. Ma-

chines higher up the chain control more general features
of the system. They require fewer inputs, and are igno-
rant of the finer-scale details of state structures below.
Their states are effectively superstates – collections of
states of the equivalent collapsed machine. The top-level
states A and B of Fig. 3, for example refer to pairs of
states in the equivalent Z4 counter.
It is in these senses that cascades provide a graded

set of effective theories. Truncating a cascade at some
level allows one to “smooth” a complicated, multi-state
process in a manner consistent with its internal logic.
Cascades, of course, have a particularly special form.

In the next section, however, we will see that any au-
tomaton can be rewritten in this cascaded form, with
each level composed of particularly simple subroutines.

V. THE KROHN-RHODES DECOMPOSITION

In some cases, as we saw in the previous sections, the
semigroup associated with an automaton turns out to
be a group. The Cayley theorem – that all groups are
isomorphic to subgroups of the permutations – makes
these automata simple to identify. In particular, for such
an automaton every transformation induced by a letter
of Σ leads to a permutation of the states.
At the other extreme are the “resets.” A letter s in

Σ is a reset if it has the same effect on all states – if it
resets the machine, in other words, to a unique state.
In between, of course, are operations that permute

some states and reset others – for example, a letter s
acting on a subset of states might act as a permutation,
but on a different set it acts as a reset, taking all elements
to a single final state. Examples of these mixed machines
include that of Fig. 5b. Conversely, “pure” machines –
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An eight-state automaton with two input letters, built from
XOR gates on the left-shift register. (b) The top level of the
decomposed machine. Despite the complicated internal struc-
ture of (a), at the coarse-grained level, the process is seen
count modulo three (on receiving a signals), and reset (on re-
ceiving b signals.) Movement within the three superstates of
(b) is dictated by Z2 counters and resets at lower levels in the
decomposition.

those that are combinations of only permutations and
resets – are called permutation-reset machines.
The surprising result of the Krohn-Rhodes theo-

rem [16, 17] is that any finite state automaton can be
decomposed into a cascade whose automata contain only
the simple groups and the pure resets. This cascade
produces behavior homeomorphic to the original ma-
chine [18]. In contrast to Turing-complete processes, one
can not only can define a “restricted” algorithmic infor-
mation complexity for the finite state automata by stan-
dard minimization techniques, but can also break them
down into a small number of hierarchically organized sub-
routines.
Ref. [16] proved the existence of such decompositions,

but did not present a simple way to find them. The holon-
omy decomposition [19–21] provides an efficient means of
reconstruction; computations in this paper use an imple-
mentation of the holonomy decomposition in the SgpDec
package in GAP [22–24].
An example of the decomposition is shown in Fig. 4.

The complicated structure of Fig. 4a breaks down into
a three-level cascade. The top level, shown in Fig. 4b
is a Z3 counter with a reset; the lower two levels are
additional Z2 counters. The “superstates” of Fig. 4b are
not disjoint: all three of the superstates include states C
and F.
One of the interesting features of the Krohn-Rhodes

theorem is the difference in treatment of the reversible
(group symmetry) and irreversible transformations of the
system. While the groups resolve themselves into a non-
trivial catalog of simple subunits, there are no “irre-
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+   “Pure” Resets

The importance of transformation semigroups as more concrete representations of ab-

stract semigroups comes from the following theorem:

Theorem 1 (Cayley). Every semigroup is isomorphic to a transformation semigroup.

On the other hand, every automaton gives rise to a transformation semigroup XA whose

generators are the transformations {sσ}σ∈Σ induced by input letters. The following

definition gives an intermediate representation of this semigroup.

Definition 8 (Expanded Automaton). Let A = (Σ, Q, δ) be an automaton and let
XA = (Q, S) be its transformation semigroup. The expansion of A is the automaton
Â = (S, Q, δ) with δ(q, s) = q · s.

It can be shown that the existence of a homomorphism between two automata im-

plies the existence of a homomorphism between their corresponding transformation

semigroups. On the other hand, a homomorphism from X = (Q, S) to X � = (Q�, S�)
can be obtained without an automaton state-homomorphism, just by taking Q� ⊆ Q and

letting S�
be the set of transformation on Q�

obtained from transformations in S by pro-

jection (which consitutes the semigroup homomorphism from S to S�
). Mechanically

this semigroup can be computed by constructing Â = (S, Q, δ) and then restricting it to

Q�
and to an alphabet S� ⊆ S consisting of all transformations satisfying δ(Q�, s) ⊆ Q�

.

Definition 9 (Rank). The rank of a transformation s ∈ TR(Q) is defined as the cardi-
nality of its range Qs = {qs : q ∈ Q}.

Permutations and resets (see Fig. 2) represent two extreme types of transformations

in terms of rank. The n! permutations are those in which the domain and the range

coincide and the rank is n while the n resets are the constant transformations of rank

1. It is worth looking at the effect of resets and permutations from the following angle,

Fig. 2. A permutation and a reset illustrated as transition graphs (left) and as transformations

(right).

emphasizing what is known about the state of the automaton upon the occurrence of

a generic transition q� = δ(q,σ). If σ is a reset we do not need to know q in order to

determine q�, however knowing q� we cannot determine q. On the other hand if σ is a

permutation we know nothing about q� if we do not know what q was, but if we know q�,
q is uniquely determined. In other words, a permutation is reverse-deterministic, while

in resets the degree of reverse non-determinism is maximal.
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Fig. 6. The decomposition process: (a) An automaton; (b) its TSA (parenthood indicated by
dashed lines); (c) the TSA rearranged according to height; (d) the holonomy tree obtained af-
ter completion and redirection; (e) state encoding; (f) the decomposition.

Oded Maler (2010)
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FIG. 3. A cascade of two Z2 counters; the lower-level machine
has two possible transitions, depending on the state of the
higher-level machine. The cascade now can count modulo
four, with the high-level machine counting even versus odd,
and the lower-level machine tracking the second bit.

letter, a, from the environment; the lower-level machine
receives a joint signal Aa or Ba, depending on the state
of the machine above. Inspection shows that this cascade
of two modulo-two counters allows us to count modulo
four.
Cascades of automata are essentially hierarchical. Ma-

chines higher up the chain control more general features
of the system. They require fewer inputs, and are igno-
rant of the finer-scale details of state structures below.
Their states are effectively superstates – collections of
states of the equivalent collapsed machine. The top-level
states A and B of Fig. 3, for example refer to pairs of
states in the equivalent Z4 counter.
It is in these senses that cascades provide a graded

set of effective theories. Truncating a cascade at some
level allows one to “smooth” a complicated, multi-state
process in a manner consistent with its internal logic.
Cascades, of course, have a particularly special form.

In the next section, however, we will see that any au-
tomaton can be rewritten in this cascaded form, with
each level composed of particularly simple subroutines.

V. THE KROHN-RHODES DECOMPOSITION

In some cases, as we saw in the previous sections, the
semigroup associated with an automaton turns out to
be a group. The Cayley theorem – that all groups are
isomorphic to subgroups of the permutations – makes
these automata simple to identify. In particular, for such
an automaton every transformation induced by a letter
of Σ leads to a permutation of the states.
At the other extreme are the “resets.” A letter s in

Σ is a reset if it has the same effect on all states – if it
resets the machine, in other words, to a unique state.
In between, of course, are operations that permute

some states and reset others – for example, a letter s
acting on a subset of states might act as a permutation,
but on a different set it acts as a reset, taking all elements
to a single final state. Examples of these mixed machines
include that of Fig. 5b. Conversely, “pure” machines –
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b
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FIG. 4. Effective theories and “smoothed” computations. (a)
An eight-state automaton with two input letters, built from
XOR gates on the left-shift register. (b) The top level of the
decomposed machine. Despite the complicated internal struc-
ture of (a), at the coarse-grained level, the process is seen
count modulo three (on receiving a signals), and reset (on re-
ceiving b signals.) Movement within the three superstates of
(b) is dictated by Z2 counters and resets at lower levels in the
decomposition.

those that are combinations of only permutations and
resets – are called permutation-reset machines.
The surprising result of the Krohn-Rhodes theo-

rem [16, 17] is that any finite state automaton can be
decomposed into a cascade whose automata contain only
the simple groups and the pure resets. This cascade
produces behavior homeomorphic to the original ma-
chine [18]. In contrast to Turing-complete processes, one
can not only can define a “restricted” algorithmic infor-
mation complexity for the finite state automata by stan-
dard minimization techniques, but can also break them
down into a small number of hierarchically organized sub-
routines.
Ref. [16] proved the existence of such decompositions,

but did not present a simple way to find them. The holon-
omy decomposition [19–21] provides an efficient means of
reconstruction; computations in this paper use an imple-
mentation of the holonomy decomposition in the SgpDec
package in GAP [22–24].
An example of the decomposition is shown in Fig. 4.

The complicated structure of Fig. 4a breaks down into
a three-level cascade. The top level, shown in Fig. 4b
is a Z3 counter with a reset; the lower two levels are
additional Z2 counters. The “superstates” of Fig. 4b are
not disjoint: all three of the superstates include states C
and F.
One of the interesting features of the Krohn-Rhodes

theorem is the difference in treatment of the reversible
(group symmetry) and irreversible transformations of the
system. While the groups resolve themselves into a non-
trivial catalog of simple subunits, there are no “irre-
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applicable to situations in which the effect of an input
symbol is probabilistic. In this section, we show how to
break up such probabilistic machines into a cascade, of
a “structureless” Bernoulli automaton at the top, which
feeds a symbol, chosen from a distribution, to a non-
probabilistic automaton beneath. This construction was
first demonstrated by Ref. [25].
An n state probabilistic automaton is defined by

(Σ, Q, p, q0), where p : Q × Σ × Q → [0, 1], replaces the
state transition function. p(q1, s, q2) gives the probabil-
ity that when the machine is in state q1, and receives the
input letter s, it makes a transition to q2. The proba-
bility is normalized so that, for an n state automaton,∑n

i=1 p(q, s, qi) is unity for all s ∈ Σ, q ∈ Q.
Consider the space of all possible transitions on n

states – the full transformation semigroup, M . There
are nn such transitions in the semigroup, which can be
written as functions m(q). A probabilistic automaton as-
sociates a probability, π, with every m, and input letter,
s, as follows:

π(m, s) =
n∏

i=1

p[qi, s,m(qi)]. (2)

In words, the probability of m given s is the probability
that each arrow specified in the original automaton is
obeyed.
The decomposition then proceeds as expected. A

Bernoulli device receives signal s from the environment,
and chooses m ∈ M according to the distribution of
Eq. 2. A deterministic machine with the same n states
as the original probabilistic machine, but which now ac-
cepts up to nn letters, then executes the transition m.
This latter machine can be decomposed in the standard
way.
As an example, consider a probabilistic left-shift au-

tomaton defined by the truth table [0.5, 1, 1, 0.75] – where
the numbers now refer to the probability of emitting a
one. The probabilistic version is shown in Fig. 5a, and
the structured, non-random part in Fig. 5b.

VIII. EMERGENCE IN PROBABILISTIC

SYSTEMS

The construction of the previous section shows that
adding probabilistic behavior to a finite state automa-
ton generally increases the complexity of the underlying
deterministic mechanism. In Fig. 5, for example, the
underlying structure goes from a singleton alphabet to
a four-letter alphabet, and the holonomy decomposition
goes from a single Z3 counter to a four-level cascade of
Z3, Z2 and reset machines.
In the extreme case, a uniformly-distributed proba-

bilistic choice over the full transition semigroup is the
most complex machine – in terms of size of the irreducible
groups. And yet when coupled to a uniform Bernoulli
process, it produces a purely random stream of numbers.
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FIG. 5. Decomposition of a (single input letter) probabilis-
tic automaton into a 4-letter deterministic machine; π(a) =
π(c) = 3/8; π(b) = π(d) = 1/8.

The larger the structure one moves around in, the closer
one gets to randomness; or, put another way, the more
features of the environment a machine is sensitive to, the
more random that machine appears when the relevant
variables are unobserved.
The generators of the left-shift powerset will in general

have different probabilities. While it is tempting to de-
scribe the resulting machine as probabilistic draw of the
different semigroups (and their Krohn-Rhodes decompo-
sitions) associated with each single-letter automaton, this
elides a crucial distinction between the automaton and its
expansion to the semigroup structure. For example, the
semigroup associated with the XOR automaton includes
the cyclic group Z3; however, the “shift by one” and
“shift by two” elements of that group will have different
probabilities when noise is introduced, since they require
different compositions of generators.
In particular, as the machine unfolds in time, differ-

ent elements of the super-machine semigroup will appear
with different probabilities. While the generators are
themselves members, other elements of the full transi-
tion semigroup require multiple compositions, and so the
probability distribution over the different elements will
be a function of time.
The asymptotic distribution depends on the presence

of irreversible transformations. When resets are present,
one finds that the limiting distribution is concentrated
solely at these points. Noisy machines that run for ever
forget everything.
This is most simply visualized as the limit of a random

walk on the directed graph of the semigroup, where each
vertex corresponds to a member of the group and each di-
rected edge corresponds to some multiplication by an el-
ement of the left-shift powerset – this graph is analogous
to the Cayley graph for groups. Convergence depends on
the details of the noise mechanism, but the resets form a
strongly connected subgraph that, once reached, is never
left.
Noisy automata, then, can show complexity only on

short timescales. This is shown in Fig. 6, where the shift-
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FIG. 6. The rise, and fall, of group structures in noisy Boolean
systems. For the XOR function of Fig. 2b, with a 1% bit-flip
rate, we show the probability that the function implements
one of the group elements of the noise free case (Z3, solid
line), one of the four reset automata (dotted line), or any
group element not in Z3 (the set S4 − Z3, dashed line.) The
light gray line shows the remainder. As time passes and errors
accumulate, the chances of a transformation being a member
of Z3 decline, while the reset automata come to dominate the
long term input-output maps. The non-trivial relationship
between noise and complexity can be seen when, for a brief
period, representatives of more complex groups appear and
even dominate the pure resets.

ing distribution of semigroup structures is shown for the
noisy-XOR. As noise increases, the machine becomes less
likely to realize the Z3 cyclic group. The ultimate limit
of the process is to end up at the resets. This amounts
to a forgetting, and a time horizon of complexity.
For a brief window, members of other groups (elements

of the set of all permutations, minus the members of Z3)
appear. These other members are expected, since they
are included in the left-shift semigroup; however, their
appearance is only fleeting, and (in this case) never be-
comes a significant driver of dynamics. The question of
whether such noise-assisted group structures can become
significant is open, and may provide insight into the use
and management of noise in biological systems (see, e.g.,
Ref. [26–31].)
One can now see the two-fold relationship between

noise and the truncation of increasing numbers of groups.
Combining underlying mechanisms in the non-

probabilistic case leads to a growing diversity of group
structures; with sufficiently complex environments, and
sufficiently large mechanisms, one can instantiate every
classical and sporadic group known – all the way up to
the Fischer-Griess Monster Group with 1053 states (but
only two generators – so that such a group can live in a
very simple environment indeed!)
As we saw in the previous section, the probabilistic

system contains a non-random submachine with many
groups far more complicated than those instantiated by
the corresponding noiseless mechanism. In the exam-
ples we have seen, however, their appearance is quickly
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FIG. 7. A rare noisy automaton, on three bits, that does not
converge to a collection of resets Such machines require at
least partially noise-free behavior at the mechanism level.

overwhelmed by the uninteresting resets. Noise in the
mechanism leads finally to a decay in the complexity of
the emergent process. As mechanisms are combined, the
noise in their resulting function breaks up their structure.
Can a system avoid this fate? More precisely, is it pos-

sible to have noise such that Eq. 2 puts zero weight on
dissipative structures that combine into resets? Even a
probabilistic choice on transformations of two “counter-
rotating” cyclic groups will lead to a reset in π(m) by
Eq. 2, and the presence of an overlapping reset and per-
mutation are sufficient to produce the necessary irre-
versibility. Examples can be constructed where the re-
sets apply only to part of the system; Fig. 7 is one. Note,
however, that the probabilistic behavior is confined to a
subsystem – and that this subsystem converges to a reset.

IX. CONCLUSIONS

Effective theories have proven to a powerful tool for
the investigation of the physical world; when combined
with group theoretic arguments, they have allowed for
principled exploration of phenomena where the underly-
ing mechanisms remain unclear or unknown. We have
shown here how effective theories can extend to irre-
versible, dissipative and out-of-equilibrium systems with
a demonstration that relates an underlying mechanism
(the acyclic Boolean circuits) to a higher-level decompo-
sition that permits coarse-graining.
Irreversibility can occur “by design,” when certain en-

vironmental inputs are taken to be resets by the under-
lying mechanism. In natural systems, such resets may
be useful in cases, for example, where radical changes in
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Figure 1: Example of sonogram of Bengalese finch song and its syllable label sequence.

(A) Sonogram of Bengalese finch (BF09) with syllable labels annotated by three human

experts. Labeling was done based on visual inspection of sonogram and syllables with

similar spectrogram given same syllable. (B) Bigram automaton representation (transition

diagram) of syllable sequences obtained from same song set as (A). Ellipses represent one

syllable and arrows with values represent transitional probabilities. Rare transitions with

probabilities < 0.01 are omitted. (C) POMM representation of same sequences as (B).

Syllables that have significant higher-order dependency on preceding syllables (colored

states in (B)) are divided into distinct states depending on preceding syllables (context).
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Complex sequencing rules of birdsong can be 
explained by simple hidden Markov processes
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