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For those who want a worked example of emergent phe-
nomena, we will take as our case study “variations on a
theme” — the theme being classic models of collective
phenomena, including the Ising model, the XY model,
and so forth.

This is not a simple practical; it is open-ended, and
you are strongly encouraged to work in groups.

I. GOALS

You will have done well if you can answer the test
your knowledge questions, understand the mean field
solution (Sec. IV) and the bonus questions provoke good
discussion among your group.

You will have done very well if you can get some code
working to examine phase transitions and topological de-
fects in a known system (Ising, XY.)

You will have made a start on a very interesting scien-
tific paper if you have constructed models using internal
state structures, and interaction graphs, that reflect a
biological, social, or computational system you or your
group-mates have familiarity with — particularly if you
can explore its defect structures in the event of a phase
transition.

II. PREAMBLE

We will define things abstractly in terms of “systems,”
“components,” “interactions,” “states,” and so forth.
However, you may find it helpful to keep a model system
in mind — particularly one from your home discipline.

For example, the Ising model has been influential in
neuroscience, where the components are neurons, and the
states are “on or off.” [1] The interactions are effective
connections between neurons that tend to correlate the
states — neurons switching each other on and off — see,
e.g., [2, 3]

Other cases might suggest themselves. In the XY
model, for example, states are two-dimensional unit vec-
tors. This might suggest a model where people at differ-
ent points are moving in different directions, or — just as
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easily — where an object is held in different fixed orienta-
tions at different points.

In a variation you might invent, the vector might be
confined to the upper-right quadrant (i.e., all values pos-
itive), and have its components sum to unity (as op-
posed to having the sum of the square normalize to
unity.) These states then become like probabilities over
two choices, and might be useful when modeling mixed
strategies in a game. The interactions could be payoff
matrices.

Test your knowledge. Suggest a social or biolog-
ical system where the internal structure of a compo-
nent might be a two dimensional vector with unrestricted
length.

Consider also the structure of the environment. Physi-
cists like to work in two, three, or four dimensions, in Eu-
clidean, Riemannian, or pseudo-Riemannian space. Bi-
ological and social systems might show greater amounts
of inhomogeneity (e.g., ecological or national boundaries,
where things are odd), their spatial arrangement may be
distorted or supplemented by long links, or the system
may be not really spatial at all (e.g., they might take
place on a clustered, random, facebook or small-world
network instead of a lattice.)

Test your knowledge. What network might describe
the Ising model at a cocktail party, where guests are per-
fectly mingling?

Bonus. If you are an evolutionary biologist, what net-
work structures might be more or less amenable to the
emergence of cooperation and group selection?

It is suggested you work through the Ising model case
first, and then to come back and see how you can adapt
more elaborate internal states, network structures and
so forth. There is an absolutely enormous amount of
literature on these problems, and you should feel free to
use the internet to your advantage.

III. GROUND RULES
A. Internal States

Our system is a set of nodes, {o;}, 7 from 1 to N.
They have internal structure — in particular, o; can take
on different values. In the Ising model, o; can be either
+1 or -1. For historical reasons, this parameter is called
spin, and sometimes the +1 state is called “spin up”,
and the -1 state, “spin down.”

In the XY model, o; is a unit vector (i.e., to be pedan-
tic it might be written &;.) The o; need not be ob-
viously mathematical structures — e.g., they might be



drawn from the set {red, black,yellow}.

B. Interactions between States

We define an interaction function H({c;}). As you can
see, it takes the entire system as an input, and gives one
output — a number, which I may slip up and call “energy”
but which can have many analogies. Systems prefer to
be in low-energy states, but the amount of disorder in
the system (characterized here by a “temperature”) may
prevent them from doing so.

The (ferromagnetic) Ising model defines H in the fol-
lowing way:

H({o:}) = —ZJz‘jUz‘Uj (1)

where J;; is a matrix that defines the graph of interac-
tions.

Test your knowledge. In words, what configura-
tions (choices for the values of the nodes) give you lower
energy? What give you higher energy?

Test your knowledge. Take N to be three, and have
all the nodes connected to each other. Write down the
matrix J;;. What is the energy of such a system when
01, 02 and o3 are all +17 What about when they are
all =17 What is the symmetry of this interaction? How
could you alter H to break it?

Bonus. A state space with +1 and —1 can at best have
an H symmetric on switching sign. Pick a state space
that is more interesting than {+1,—1}. How about one
that can have more interesting symmetries? How about
a system with n states — now it can be symmetric under
the n! permutations?

Bonus. Take n to be three, and write an H that
breaks permutation symmetry on {red,black,yellow}.
Can you find an H that breaks permutation symmetry
to a smaller symmetry group — say, to a permutation on
only two elements? Can you think of a friend who has
this reduced symmetry?

Bonus. Read up on the groups S,, (all permutations
on n elements) and A,, (the alternating group on n ele-
ments.) Take n to be four, and write an H that breaks
Sy to A4. What happens if you try to do this in the n = 3
case? (S3 to As.)

Bonus. How about a continuous state space, perhaps
symmetric under O(2), or SU(3)? Develop a model for
the condensation of the primordial quark-gluon plasma
into atomic nuclei [4].

C. Stationary Distributions

We first consider a stationary, probabilistic distribu-
tion over system configurations. In other words, I am
going to tell you (how to calculate) the probability of
finding the system in a state where the components take

some value {0;} (e.g., in the N = 3 case above, you will
be able to calculate P({+1,+1,—1}).)

We will take a one-parameter family of distributions,
the Boltzmann distribution, given by

exp [-BH ({0:})]
Z(B) '

where 3 is the “inverse temperature” (when S is larger,
1/ =T is smaller, and the system is said to be colder.)
Z(B) is a constant, just to make sure that P is properly
normalized (i.e., so that when you sum over all possi-
ble configurations you get 1.) It is called the partition
function, and has magical properties — see Fig. 1.

Test your knowledge. Given the N = 3 system
above, what is P({+1,+1,+1}) when 5 is 1, or 10, or
0.17 How does it compare to P({+1,+1,—1})? What
does this tell you about the relation between order and
(inverse) temperature? You will need to boot up Mathe-
matica, Maple, or some other software to do these com-
putations.

Bonus. Recall the definition of entropy. How does
the entropy, S, of the N = 3 system change as a function
of 8?7 How about the heat capacity, defined as dS/dg3?
Where is the maximum of the heat capacity? Can you
see how to use Z(f) to compute quantities like entropy?

Bonus. Read E.T. Jaynes’ famous 1957 paper [5] to
learn exactly how and why both information theoretic
and physical considerations make the form of Eq. 2 is so
special.

P({oi}) =

(2)

IV. MEAN-FIELD SOLUTIONS

Eq. 2 is hard to solve in general. Later we will try nu-
merical simulation, but laying bare the qualitative struc-
ture of a problem is central to scientific goals of explana-
tion and understanding.

In particular, we will work out an approximate solu-
tion to the Ising model, and we will demonstrate the
existence of a catastrophic phase transition, where the
system properties change dramatically. You can then try
your hand at the equivalent approximation for other sys-
tems with different structures.

The approximation is called the mean field solution.
Roughly speaking, it describes the dynamics of the sys-
tem by considering a single individual, and asking how it
interacts with the average properties of the system.

Let’s start with the Ising model. Consider the contri-
bution to the energy from a single (arbitrarily chosen)
spin og,

Ha - _UaZJiaai (3)

Test your knowledge. Derive this from Eq. 1, or,
conversely, convince yourself that H is ) H,.
The mean field approximation says that we can write

H, = —n.0,0, (4)



FIG. 1. Thanks to the generosity of an anonymous donor, the Institute has its own partition function.

where 7 is the average spin of the system (the “mean
field” that the particle sees), and n., sometimes called
the coordination number, is the number of neighbours of
an “average” vertex.

Test your knowledge. What is n. on a two-
dimensional lattice (such as the lines on a Go board, or
the street corners in uptown Manhattan.) What is n. on
a fully connected graph? What is n. on the small world
network?

Bonus. What is n. on a network of particular interest
to you?

Following the derivations above, we can now factor the
monstrous Eq. 2,

ep(-AY, Hy) 1
PUod) = =25 = 7

where [], just to remind you, means take the product.
Now we can get the probability distribution for a single
vertex, since the terms factor. For instance,

H exp(—BH,),

P(Ua = +1> X exp(ﬂnca),

where we only have proportionality, oc, because of the an-
noying factors of Z(3). But we can ask what the average
value of o, is:

<0a> = P(Ua = "1‘1) - P(Ua = _1)a

and just making sure to normalize the probabilities, we
find

(0a) = exp(fn.c) — exp(—LPn.o) 5)

 exp(Bnea) + exp(—Bn.o)
= tanh(fn.o)

We now have an expression for the average value of an
arbitrary node, (o,), as a function of (1) inverse temper-
ature, 8, (2) coordination number n., and (3) the average
value of all the nodes in the system . All that remains
is to make things consistent!

In particular, we simply need to find the solutions of

& = tanh(fn.a), (6)

as a function of n. and 8. The simplest way is to plot
the left hand and right hand sides on a graph, and vary
[ to see where things intersect. The case ¢ equal to zero
will always be a solution, but it may become unstable
to small perturbations. In those cases, we have sponta-
neously broken symmetry — H is symmetric under sign
flips, but the system finds a new solution which picks a
particular sign.

Test your knowledge. Do this for n. equal to two,
three and four. How many solutions are there?

Test your knowledge. In cases where there is more
than one solution, which are stable? Hint: displace the
“incoming messages” by a small amount, and iterate.

You have now conducted a mean-field analysis of the
phase transitions on the Ising model! In particular, the
critical temperature, T., or 1/f., is the point at which
the old solution becomes unstable and new solutions, vio-
lating some of the symmetries of the interaction, appear.

How well does mean field analysis work? Having done
the test your knowledge questions above, you should be
familiar with how to go between n. and lattice dimension.
Table I shows the answers.

As you can see, as the dimension (or effective dimen-
sion, for a disordered network) goes up, the mean field
approximation becomes better and better. When a par-



dimension|7. (mean field)|7. (true) comments
1 2.0 0.0 Ising’s dissertation
2 4.0 2.269... |Onsager’s “tour de force”
3 6.0 4.510... by simulation only
4 8.0 6.682... | approximation better...
5 10.0 10.0 mean field works!
n >4 2n 2n

TABLE I. Mean field predictions for the critical temperature,
compared to true answer. In one and two dimensions, T.
(=1/8.), can be computed analytically — the latter case, how-
ever, only by great effort. In three and four dimensions, nu-
merical solutions are necessary (numbers drawn from Ref. [6].)
As the dimension of the space gets higher — nodes are con-
nected to more and more other nodes — it is more and more
reasonable to neglect fluctuations. Four is the “upper critical
dimension” for the Ising model, and for dimensions five and
higher, the mean field solution is perfect!

ticle interacts with larger numbers of other particles, it
becomes better and better to think of that interaction as
an interaction with an “average” member of the system.
This is similar to how one reduces the variance on a mea-
surement by averaging together many independent data
points.

Conversely, mean field theory fails most drastically
when there are few neighbours, and the neighbours them-
selves are strongly correlated — perhaps because they
themselves are connected. Of course, many interesting
systems have this property!

Bonus: multistate mean field. Allow o; to take
on three values, {+1,0,—1}. Keep the same interaction
structure. What does the mean field solution give? When
do unstable solutions appear? Is it easier or harder to get
a phase transition? This is related, but not identical, to
to the Potts model, introduced in Sec. VI below.

Bonus: XY mean field. Consider the case where o;
is now a 2D unit vector. Take H to be

H({o:}) =Y Jij(0i.20)0 + Tiy0j), (7)

where 0, , is the x component of the o; vector, and so
forth. Put differently, the interaction is the dot product
between the vectors — you lower your energy by becoming
more aligned with your neighbours.

Do a mean field analysis of the XY model.

Bonus. Given all of your thoughts on internal state
structure (what the o; state space is), and the network
properties (what the J;; is), do a mean field analysis of
your social or biological system.

V. DYNAMICS

Eq. 2 defines the stationary, or equilibrium, distribu-
tion of the system. But systems are often out of equi-
librium, either because of the initial conditions of the
Universe, or because you just dropped it.

We would like to define a (discrete time) dynamics on
the system that is consistent with the stationary distri-
bution. Another way to say this is “given a configuration
A, what is the probability that it will change to configura-
tion A, B, C, D...” at the next step. This is P(4A — B),
P(A — (), and so forth. If you start the system in a
state that is rare given the value of g, it will be out of
equilibrium, and the dynamics will take some time to
drive you to where you are cycling through states in a
way consistent with equilibrium. This is called “burn in”
— but if you're interested in non-equilibrium phenomena,
it’s a good thing!

In any case, there will be many possible choices; in
order to reach a stationary distribution consistent with
Eq. 2, all we (really) need is for the processes to balance

P(A—B) _P(B) -
P(B— A P(A)’

where P(A — B) is the probability that, given you are
in configuration A, you transition to configuration B.

Only the ratio of switching is fixed. If you are simulat-
ing a Boltzmann distribution model for other purposes —
for example, if you are doing statistical inference, have a
Likelihood function, and are doing what is called Markov-
Chain-Monte-Carlo (MCMC) — then you want to pick a
dynamics that is super-easy to simulate. Such recipes
are common, but may in some cases have unusual prop-
erties (e.g., in some cases they may become completely
deterministic, transition probability of unity.)

A nice, somewhat “physical,” choice, by contrast, is
Glauber dynamics, which reduces in various contin-
uum and “soft-spin” limits to partial differential equa-
tions. It is given by:

exp(—SH[B])
exp(—AH|[B]) + exp(—BH[A])’

where H[A] is the energy of configuration A.

Test your knowledge. Show that Eq. 9 is consistent
with Eq. 8.

A simple procedure now suggests itself. Start in some
configuration, A. Pick a vertex at random. Configuration
B is defined to be the same as configuration A, except
with that spin flipped. Switch to configuration B with
probability given by Eq. 9, otherwise stay in state A.
Repeat.

Test your knowledge. For this one spin-flip tran-
sition, can you simplify Eq. 9 so that you don’t have to
compute all of the sums over ¢ and j implicit in H[A] and
H[B]?

Bonus. Write code to simulate the Ising model in two
dimensions. Written well, you should be able to do a 32 x
32 grid in real time. Roughly, where is the critical point?
You can measure this a number of different ways, but
plotting average spin as a function of time is one simple
way to see if the system is really finding a symmetry-
breaking phase. Put in domain wall defects, and show
how they evolve.

P(A— B)= (9)



Bonus — Critical Slowdown. Come up with mea-
sures for system timescale. How do these behave near
the critical point?

Bonus. Simulate the Ising model on a network close to
your heart. How do domain wall defects behave? Where
do domain walls, for example, stall out and stop propa-
gating? What network properties are good for dissipating
defects?

Bonus. Compare defect dynamics on the 2D model
and your network. Given random initial conditions, are
your networks more or less susceptible to formation of
domain walls?

VI. ADVANCED TOPICS

Defects like domain walls are associated with the
breaking of a symmetry. In the case of the Ising model,
the energy is symmetric in flipping plus to minus; you
investigated other kinds of symmetries in the bonus ques-
tions to Sec. III B.

The question of defects in the two-dimensional XY
model is somewhat subtle, since there is not actually a
true phase transition at any non-zero temperature. How-
ever, many online simulations exist to show you how two
kinds of vortices arise, and how they compose and dissi-
pate.

A much simpler case to implement and visualize is the
Potts model, where you retain the discreteness of the
state space, but allow a greater number of states. The
n-state Potts model, in particular, can be given two dif-
ferent kinds of interactions. The first just says that states
are only lower in energy if they are the same, i.e.,

H==> Jijlo,0,, (10)

where J;; is the network structure, as before, and 6,,o,

is the Kronecker delta, or, more simply “one if o; = o,
zero otherwise.”

The second more tricky one assigns each of the n states
an angle between 0 and 27, equally spaced (e.g., when
n is three, o; takes on values {0,27/3,47/3}. Then the
interaction is given by

H=- Z Jij cos(o; — 0j) (11)

Test your knowledge. Show how the two-state Potts
model can be altered to look exactly like the Ising model.
Do they have the same dynamics?

Test your knowledge. What are the symmetries
of these two interaction structures? You may wish to
consult some of the answers you came up with in the
bonus sections of Sec. III B.

Bonus. Simulate the three-state Potts model un-
der the two choices of interaction structure, Eq. 10 and
Eqg. 11. You will have to generalize the dynamical rules
of the previous section only slightly: you might, for ex-
ample, try a spin shift instead of a spin flip to get config-
uration B, or you might just pick a new value of the spin
at random. What defects do you see? What dynamical
properties do they have?

The classification of defects in symmetry breaking sys-
tems proceeds by something called homotopy theory. An
informal introduction to these issues can be found in
Chapter 9 of Ref. [7].

There are many directions one can go in. If the J;; are
taken to be randomly distributed, and possibly negative,
one edges closer to spin glass models. These were con-
sidered, for many years, the most promising applications
of physical reasoning to biological systems, and have be-
come part of the standard lore.

Slightly different dynamics, e.g., the voter model, lead
to different defect dynamics — and in some cases, to the
disappearance of a phase transition at all.
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