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Abstract

We propose an evolutionary theory of institutional persistence and change. Many
institutional changes are decentralized, with a large number of private actors informally
adopting new practices that are later confirmed by changes in formal governance struc-
tures. For example, land tenure norms, conventional crop shares, inheritance practices,
and traditional property rights all are informal institutions, or conventions, that persist
for long periods of time and sometimes experience rapid changes due to social conflict,
despite the absence of government interventions. We model these types of institutional
transitions by extending evolutionary game theory to incorporate social conflict and
endogenous social classes in a “bottom-up” evolutionary contract game. The driving
mechanism in our model comes from small probabilities of agents engaging in collec-
tive action, leading to some contracts being selected over others in the long-run. We
show that non-risk dominant contractual conventions will be highly persistent under a
stochastic evolutionary dynamic when the size of the poorer class is relatively large, as
it is more difficult for them to generate enough collective action to upset the unequal
equilibrium. We then show that this same result obtains when we endogenize class sizes
using an intergenerational mobility dynamic, with the result that societies with more
barriers to mobility will also have more inequality between rich and poor. Finally, we
extend the model to allow the rate of collective action to increase in the inequality of
a contract, and introduce a government motivated to support the long-term interest of
one of the groups, identifying the conditions under which redistribution implemented
by non-democratic states.
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1 Introduction

Economic institutions such as labor relations and land tenure systems often persist over

centuries, while transitions among these institutions may occur abruptly. A large recent

literature has shown that institutional differences persist, causing long term economic and

social effects (for surveys see Nunn (2009) and Acemoglu et al. (2005))). Banerjee and Iyer

(2005), for example, show that the informal institutions surrounding the Zamindari land

tenure system in India persisted long after the formal institution was abolished. Other

research has found that informal institutions such as contracted crop shares or unequal

gender norms exhibit substantial long-run hysteresis, even in the face of large changes in

technology and agricultural fundamentals (Bardhan, 1984; Young and Burke, 2001b; Alesina

et al., 2011). This paper presents an evolutionary model of social conflict and equilibrium

selection that captures many features of this kind of informal institutional persistence.

Our model and main results are intuitive. We consider two classes or groups playing a

2x2 contract game with 2 pure-strategy Nash equilibria. Empirically, it is known that people

sporadically engage in acts that are individually irrational but would be in the interest of

the group were they to be widely adopted. We reformulate the stochastic “mutations” in

evolutionary game theory to be small, i.i.d, probabilities of agents refusing the status-quo

and acting suboptimally in the group interest, and examine stochastic stability of Nash

equilibria as this probability of individual collective action goes to 0. If a population is large,

however, it will take much more of this idiosyncratic behavior to generate enough collective

action to change a status-quo institution.1 Thus large classes will be disadvantaged in the

long-run. When class composition is endogenized, we find the plausible extension that high

barriers to class mobility result in a larger class of poor relative to rich, and so inefficient

and unequal institutional equilibria are stochastically stable. This generates an empirical

relationship between intergenerational mobility, efficiency, and cross-sectional inequality that

is driven by the relative difficulty of sufficient collective action in a disadvantaged large

population. Further extensions yield familiar results in this new model, where even non-

democratic governments may redistribute in order to deter collective action.

Evolutionary game theory has been used extensively for modeling and selecting among

1As will be shown, this is not due to 1
N incentive problems, which depend on functional form assumptions,

but instead overcoming the minimum fraction of non-best-response play required to induce the other side of
the game to change their best-response.
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equilibria that emerge from decentralized interactions in a large population of low-rationality

agents (Foster and Young, 1990a; Kandori et al., 1993a). It is particularly well suited to

model the evolution of norms, culture, and contracts; institutions that are not maintained

by the state (Bowles, 2004a). Often de facto changes in practices are only confirmed later

by changes in formal governance and structures (North, 1981). In many countries and pe-

riods, this decentralized and informal aspect of institutional transition is evident in, for

example, labor contracts, changes in conventional crop shares, shifts in inheritance prac-

tices, and changes in economic relationships between men and women. Evolutionary models

are well-suited to model these types of institutions. For example, Young (1998b) shows that

conventional contracts that are selected in an evolutionary dynamic optimize a Rawlsian cri-

terion, in that they maximize the payoff of the worst-off. However, this literature lacks three

features that characterize many long-run historical processes: 1) intentional play to benefit

group interest, rather than random deviations from best-response strategies, 2) endogenous

population composition, and 3) the presence of large institutions, such as the state, that

internalize and react to these long-run dynamics.

Another approach, based in political economy, models institutional persistence and change

as the outcome of bargaining between representative agents of a small number of economic

groups of fixed size. Acemoglu and Robinson (2008), for example, consider a model in which

formal political institutions change in response to shocks to political power while the eco-

nomic institutions may or may not persist. In contrast to this and other political economy

models, in our approach, institutions are not directly chosen, but rather emerge as the largely

unintended consequence of individual actions of large numbers of imperfectly rational agents,

none of whom is powerful enough to choose an institution for the entire society (David, 1985;

Greif, 1994; Young, 1998b).

We share with the political economy literature a perspective that emphasizes the in-

tentional pursuit of group objectives and social conflict as key ingredients in a theory of

institutional persistence and change. This differs from the evolutionary approach to institu-

tional innovation and change in which the observed institutions are the outcome of a process

of path-dependent adaptation with random experimentation. However, we also believe that

the strong aggregation and rationality assumptions made by the political economy perspec-

tive are not well-suited for modelling the diffusion and evolution of informal institutions.

For concreteness, we follow the evolutionary bargaining literature(Binmore et al., 2003)
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and study the emergence and persistence of contracts that govern the size of the joint sur-

plus and its distribution between two classes, and we identify conditions under which efficient

and/or egalitarian contracts are likely to emerge and to persist. We represent these insti-

tutions as conventions between such discrete classes of economic actors as employers and

workers, or landlords and sharecroppers. Conventions that are less likely to be upset by the

idiosyncratic collective action of the side that has more to gain from a transition will be

stochastically stable in our model, and because the collective action problem is harder to

solve in larger groups, asymmetric population sizes will have a large effect on equilibrium

selection.

Our model extends stochastic evolutionary game theory in a number of ways: first by

restricting “mutations” to be strategies that would improve the payoff of the agent were they

to become an equilibrium, building on our work in Naidu et al. (2010). These are individual

shocks to engage in actions that are in the collective interest of ones’ group, should sufficiently

many others do the same, and can be interpreted as shocks to social preferences, class-

consciousness, beliefs, or identity, as long as they induce individuals to deviate from the best-

response strategy in the pursuit of group interests. We have in mind rejections of the terms

of the status quo contract by either side, such as lockouts, legal prosecutions, land evictions,

strikes, slave revolts, and urban food riots. This brings a social conflict interpretation to

what are normally understood as “mutations” in the evolutionary games literature. Second,

after establishing that relative class size matters for equilibrium selection, we endogenize the

composition of each class by explicitly modelling intergenerational mobility, which allows

for mutual determination of both steady-state population sizes and stable institutions. An

insight from evolutionary game theory is that the structure of interactions (for example

network structure) and population sizes have direct impacts on stabilizing various equilibria,

and our approach uses an intergenerational mobility dynamic to endogenize this. Third, we

allow the rate of idiosyncratic collective action to vary with the degree of inequality, and

examine the extent of redistribution that a non-democratic far-sighted government would

optimally choose.

Our modifications allows us to introduce political economy considerations into evolution-

ary models of institutions, as we can combine the social conflict over institutions emphasized

by the former with the explicit dynamics and stability of equilibria emphasized by the lat-

ter. Like both the political economy and evolutionary approaches, our model identifies

5



conditions under which inefficient economic institutions persist in the long run. But in con-

trast to the approach pioneered by North and Weingast (1989) and Acemoglu and Robinson

(2006, 2008), commitment problems play no role in explaining inefficient institutions in our

approach. Rather, an inefficient institution may persist due to coordination failures in an

evolutionary game with noise, as in a large literature started by Foster and Young (1990a).

2 But in contrast to this literature, the idiosyncratic shocks to agent behavior are not ran-

dom mistakes, but instead shocks to the willingness to engage in collective action, instead of

best-responding to the status-quo equilibrium (as in Naidu et al. (2010) and Bowles (2004a)).

This yields two contrasts with the evolutionary game theory literature: 1) an inefficient insti-

tution may endure even when it implements highly unequal outcomes, and 2) the equilibrium

favoring the smaller class is more likely to be stochastically stable.

By integrating evolutionary and political economy models of institutions, our approach

integrates a number of insights. First, following Young (1998b), we interpret risk dominance

in a contract game as a measure of the relative equality and efficiency of an equilibrium

contract. Second, we show how class size together with individual collective action shocks

changes which Nash equilibrium is stochastically stable, a result that we showed in a differ-

ent context in Naidu et al. (2010). Third, we integrate best-response evolutionary dynamics

with intergenerational mobility to endogenize class size, and we find that whether the risk-

dominant equilibrium is stochastically stable or not depends on the degree of class mobility.

Our model produces a very general “Great Gatsby Curve”, where intergenerational mobility

is inversely related to cross-sectional inequality. Finally, we provide novel microfounda-

tions for aggregate shocks to de facto political power, arising from idiosyncratic shocks in

decentralized interactions, and give conditions under which a far-sighted non-democratic

government would still choose to redistribute income.

2 Decentralized Transitions: Europe and South Africa

Empirically, the distinction between the political economy and evolutionary approaches is

evident in two very different cases of the demise of European feudalism. Consistent with

the political economy approach, the emancipation of Russia’s serfs by Tsar Alexander II in

1863 was a deliberate choice to implement a new set of institutions resulting from bargaining

2See also Young (1993c); Kandori et al. (1993a); Axtell et al. (2001); Ellison (1993).
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within Russia’s elite (Blum, 1971). In contrast, the demise of English serfdom was not the

result of explicit bargaining among social groups. The historian E.B. Fryde (Fryde, 1996,

pp. 6) writes:

throughout the 1380s and long beyond them....the servile velleins refused with ever

increasing persistence to accept the implications of serfdom, .. In this atmosphere

of frequent local disorder and of continuous tension between lords and tenants, the

direct exploitation of domanial estates would largely disappear from England in

the fifty years after the [1381] Great Revolt.

Similarly, in France protracted agrarian conflict culminated in the 1789 peasant rebellions

and forced local lords to abandon many of their feudal privileges well before any legislation

was passed. “Peasant uprisings kept rural France on the legislative agenda and drowned

out the tendencies to silence on seigneurial rights that characterized much of the nobility”

(Markoff, 1996, pp. 509). The abolition of seigniorial dues by the Estates General in 1789

arguably confirmed the new order, it did not introduce it. Instead, a series of uncoordinated

actions by dispersed peasants, each taking the grievances of the entire group as their own,

induced the aristocratic class to change the terms of agricultural labor.

South Africa’s transition to democracy provides a direct contrast between the evolu-

tionary and political economy approaches. Acemoglu and Robinson (2006, pp. 13) write

that “the basic structure of apartheid was unaltered” until “De Klerk concluded that the

best hope for his people was to negotiate a settlement from a position of strength”. For

Acemoglu and Robinson, South Africa’s new institutions were introduced as the result of

the formal constitutional negotiations beginning in 1990. Consistent with their view that

economic institutions will change only after the political institutions change owing to com-

mitment failures, they conclude that the change in economic institutions resulted from the

introduction of a new political system. However, our reading of the historical evidence is

that fundamental changes in economic practices and hence de facto economic institutions

predate De Klerk’s rise to prominence in the National Party, and are more plausibly seen as

the cause of the subsequent political transition, rather than its consequence.

The labor market aspects of South African apartheid were a convention regulating the

patterns of racial inequality that had existed throughout most of South Africa’s recorded

history and had been formalized in the early 20th century and strengthened in the aftermath
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of World War II. For white business owners, the convention might be expressed: Offer only

low wages for menial work to blacks. For black workers the convention was: Offer one’s

labor at low wages, do not demand access to skilled employment. These actions represented

mutual best responses: As long as (almost) all white employers adhered to their side of the

convention, the black workers’ best response was to adhere to their aspect of the convention,

and conversely.

The power of apartheid labor market conventions is suggested by the fact that real wages

of black gold miners did not rise between 1910 and 1970, despite periodic labor shortages

on the mines and a many-fold increase in productivity(Wilson, 1972). But a series of strikes

beginning in the early 1970s and burgeoning after the mid-1980s with the organization of

the Congress of South African Trade Unions (COSATU) signaled a rejection of apartheid

by increasing numbers of black workers. The refusal of Soweto students to attend classes

taught in Afrikaans and the ensuing 1976 uprising returned civil disobedience to levels not

experienced since the anti-pass law demonstrations a decade and a half earlier, including

the one at Sharpeville at which 69 protesters had been killed by police. The acceleration of

urban protests loosely coordinated by the United Democratic Front (UDF), contributed to

what whites came to call the “ungovernability” of the country and its businesses. Figure 1

depicts these trends.

Many business leaders concluded that adherence to the apartheid convention was no

longer a best response, leading them independently to alter their labor relations, raising real

wages and promoting black workers. An executive of the Anglo American Corporation, South

Africa’s largest, commented: “. . .in the business community we were extremely concerned

about the long-run ability to do business. . .” (Wood, 2003, pp. 171). Starting in the mid

1980s, the Corporation developed new policies for ‘managing political uncertainty’ and to

address worker grievances, even granting workers a half day off to celebrate the Soweto

uprising. In September 1985, Anglo American’s Gavin Relly led several business leaders

on a clandestine “trek” to Lusaka to seek common ground with African National Congress

leaders in exile. In 1986 the Federated Chamber of Industries issued a business charter with

this explanation: “the business community has accepted that far reaching political reforms

have to [be] introduced to normalize the environment in which they do business.” An official

of the Chamber of Mines described the situation in 1987 (Wood, 2003, pp. 169)

The political situation in the country was really dismal and we knew that we
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were going to have one mother of a wage negotiation. And that the issue wasn’t

what level of increases we negotiated; the issue was do we survive or not? Will

there, after this negotiation, still be such a thing as managerial prerogative. Who

controls the mines, really? That was what it would boil down to.

In addition to conceding many of their black employees’ workplace demands, business-led

pressure for political reforms mounted, joined by reform advocates from the government’s

intelligence services, churches and others. Late in 1989, four years after the state of emer-

gency had been declared in response to the strike wave and urban unrest, F. W. de Klerk

replaced the intransigent P. W. Botha as State President. In 1990 he lifted the ban on the

African National Congress, the South African Communist Party and other anti-apartheid

organizations, and released Nelson Mandela from prison. Mandela was elected president in

South Africa’s first democratic election in 1994.

Figure 1: Political and economic disturbances in South Africa, 1960-1994 (Sources: Strik-
ers: Statistics South Africa; Detentions: Institute of Race Relations, Yearbooks; Political
Instability: Fedderke, De Kadt, and Luiz 2001)

Note the following about this process. First, the concession of best-responding businesses

to the collective action of black workers occurred well before and constituted one of the
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causes of the political transition. The redistribution of economic resources thus predated

and contributed to the redistribution of political resources. Second, the process of transition

was extremely abrupt, bringing to an end in less than a decade de facto class and race

relations that had endured for a century. Third, while trade unions, ‘civics’ (community

organizations), and other groups were involved in the rent strikes, student stay aways, and

strikes against employers, the rejection of apartheid was highly decentralized and only loosely

coordinated prior to the 1990 unbanning of the ANC, whose leadership had spent the previous

decade either abroad or in prison. We now model an abstract transition process with these

general features.

3 Institutional Equilibrium Selection

3.1 Contracts

Contracts differ both in the kinds of incentives that they provide and the distribution of

the joint surplus that they implement. To illustrate the kinds of contracts among which

decentralized selection may take place, suppose the Bs (who will be column players in our

game matrix) are landowners or employers while As (who will be row players) are tenants or

workers. Contract E is an equal but inefficient sharecropping or profit-sharing contract and

contract U is an unequal but efficient fixed rental or wage contract. We suppose the unequal

contract U gives joint surplus ρ > 2, of which a share θ goes to the As and the remainder

(1− θ) goes to the Bs, where 0 ≤ θ ≤ 1/2. The equal contract E gives joint payoff 2 divided

equally between the A and B players. We furthermore assume that θρ < 1. Then from ρ > 2,

1 < (1− θ)ρ holds, which means that Bs prefer the unequal contract U while As prefer the

equal contract E. We can represent the payoffs from a contract as a 2×2 game matrix, as in

Table 1. In the Appendix, we provide a model of optimal contracting that microfounds this

reduced-form representation of the payoffs from alternative contract arrangements. Observe

that the unique mixed strategy Nash equilibrium of the game defined above is defined as

(p∗, q∗) with p∗ := 1/(1 + (1− θ)ρ) and q∗ := 1/(1 + θρ).
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U E
U θρ, (1− θ)ρ 0,0
E 0,0 1,1

Table 1: Payoffs in the Contract Game. A gets the row payoffs, B gets the column payoffs.
Note that because θρ < 1 < (1− θ)ρ so Bs strictly prefer the unequal contract (U,U) while
As strictly prefer the equal contract (E,E).

3.2 Dynamics

We consider a population of agents of size N = NA + NB, with γ := NA/N the fraction

of population that are of class A. The dynamic governing contractual offers is myopic best-

response with inertia. Each period, all players are matched with every member of the other

class to play the contract game in Table 1. Thus their payoffs depend on the distribution of

strategies in the other population. Each period, agents play last period’s strategy, U or E,

with probability 1−ν or revise their strategy with probability ν. If they revise their strategy

and do not experience a collective action shock, they play the best-response to last-period’s

distribution of strategies. Each agent in the pair proposes one of two contracts (termed U

or E) governing the distribution of the surplus (e.g. union recognition, crop-shares, or land

tenure norms). If they fail to coordinate on a contract, both get 0, reflecting the fact that,

like the South African employers and workers in Section 2, agents are bargaining over a

discrete institution, agreement on which is necessary for the production of a surplus, rather

than simply over a divisible surplus.

This setting specifies a stochastic dynamical system, where the states represent the num-

bers of agents in each population playing U , the unequal strategy. Thus, the state space is

given by � = {(x, y) : x = 1, · · · , NA, y = 1, · · · , NB} where each x and y is the number of

agents in the A and B population, respectively, who are playing strategy U . We define the

best-response rule of a A (respectively B) agent as follows:

BRU
A(y) =

 1 if y > NBq
∗

0 if y < NBq
∗
, BRU

B(x) =

 1 if x > NAp
∗

0 if x < NAp
∗

, (1)

where we suppose that y 6= NBq
∗ and x 6= NAp

∗ for simplicity. We also set BRE
A := 1−BRU

A

and BRE
B := 1−BRU

B. Thus, BRi
α = 1 means that an agent in α population chooses strategy
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i as a best response. This defines a strategy revision process as follows:

Xt+1 = Xt + αAt BR
U
A(Yt)− βAt BRE

A(Xt) (2)

Yt+1 = Yt + αBt BR
U
B(Xt)− βBt BRE

B(Xt) (3)

where αAt ∼ Bin(NA−Xt, ν), αBt ∼ Bin(NB − Yt, ν) and βAt ∼ Bin(Xt, ν), βBt ∼ Bin(Yt, ν)

are all i.i.d. binomial random variables with probability of success being ν. This dynamic is

simply a generalization of the best-response dynamic in Kandori et al. (1993a) to asymmetric

games. In Appendix, we provide a detailed microscopic dynamic which yields equations

(2) and (3) as an aggregate mean dynamic. Intuitively, the equations (2) and (3) can be

interpreted as the usual “input and output model” as follows (See Hofbauer and Sigmund

(2003)). In the second term of equation (2), the random variable αAt describes the event that

agents in the A population using strategy E, (N −Xt), revise her strategy with probability

v and the term BRU
A(Yt) gives the probability that the chosen individuals switch to strategy

U (this counts “switch in” numbers). Similarly, in the third term of equation (2) the random

variable βAt describes the event that agents in the A population using strategy U (Xt) revise

her strategy with probability v and the term BRE
A(Xt) gives the probability that the chosen

individuals switch to strategy E (this counts “switch out” numbers). Equation (3) can

be interpreted similarly. We call the dynamic defined by (2) and (3) unperturbed process.

Under this setting, it is easy to see that the strategy revision process admits two absorbing

classes, namely all coordinate to (U,U) or (E,E).

We now add a perturbation to this dynamic. Suppose that when agents revise their

strategies, they play a non-best response with probability ε if the status-quo contract is not

their preferred contract. When A players deviate, they play contract E, while when B players

deviate, they choose contract U . This formulation of the perturbations is the key difference

between our model and the standard stochastic evolutionary game theory models that have

ε being the probability of playing a randomly chosen strategy. By contrast, our model has ε

as the probability of engaging in collective action by playing the strategy that would be best

for that sub-population were it to be played by both sub-populations in equilibrium. We

describe the stochastic process more fully and apply it to a more general class of bargaining

games in Naidu et al. (2010). We think of these as forms of decentralized social conflict, where

one actor incurs a cost by playing a strategy which is not a best-response, but would yield
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a higher payoff were it to become an equilibrium. Thus we consider our “collective action

shocks” as a reduced form way of incorporating activities such as strikes and lockouts, legal

prosecutions, land invasions and evictions. The non-best-response play can be considered

collective action because it uses the strategy that would yield a higher payoff for the group,

were all agents to play it, the shocks are independent across individuals3, so it is only when

a large enough set of agents is simultaneously perturbed that the equilibrium changes.

This perturbation modify the underlying dynamic (2) and (3) as follows:

Xt+1 = Xt + αAt BR
U
A(Yt)− βAt BRE

A(Yt)− ωABRU
A(Yt) (4)

Yt+1 = Yt + αBt BR
U
B(Xt)− βBt BRE

B(Yt) + ωBBR
C
B(Yt) (5)

where ωA ∼ Bin(N1, vε) and ω ∼ Bin(N2, vε) and all the other terms are as defined above.

In equation (4), the random variable ωA describe the event that the idiosyncratic players

are chosen from the A population with the probability of selecting being ε. The chosen

idiosyncratic players will play strategy E (a favorable strategy to the A population) when

the best response is to play an unfavorable strategy, namely U. Similar interpretation is

possible for the last term in equation (5). While similar to the structure of mutations in

Kandori et al. (1993a) and Young (1993a), our dynamic differs in that the mutations are

unidirectional for each population, so that the A population only idiosyncratically reduces

its play of the unequal contract while the B population only idiosyncratically increases its

play of the unequal contract. This is the sense in which our mutations are not mistakes, but

instead strategies that would improve the payoff of the entire class were they to become an

equilibrium.

This dynamic can define a perturbed best response dynamics which is irreducible (See

Naidu et al. (2010)). Thus there exists a unique stationary distribution, µε, for the per-

turbed dynamic Since the original unperturbed process admits two absorbing states, we are

interested in which absorbing state has positive mass in the ergodic distribution µ when the

probability of idiosyncratic play goes to 0. Such a state, called stochastically stable state,

can be found by taking ε→ 0 for µε; more precisely, the stochastic stable state is defined to

be a state in which the limiting distribution of limε→0 µε put a positive weight (Foster and

Young, 1990b).

3In reality, collective action shocks are likely correlated across individuals, but we abstract from that
here, and discuss it in the conclusion.
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3.3 Institutional Equilibrium Selection

Now we determine which Nash equilibrium is stochastically stable. To do this we call the state

in which every agent plays (U,U) (or (E,E)) U convention (or E convention). It is known

that the stochastic stability can be studied determining the number of idiosyncratic players

it takes to upset each convention(Young, 1993a; Kandori et al., 1993a; Young, 1998a). These

numbers are called resistances or the costs of transition from one convention to the other

in the literature. To compute these numbers, first suppose that the status quo convention

is (U,U), the unequal convention that favors the Bs. If sufficiently many idiosyncratically

playing As demand contract E rather than the status quo contract U , best responding Bs

will switch to offering contract E. By letting p be the fraction of idiosyncratic players in

the A population, we see that the B population agents will play E as their best responses

if (1 − p)(1 − θ)ρ < p. Thus the minimum number of As deviating from the status quo to

induce a switch from contract U to contract E, r(U,E), is given by the first equation in (6).

Similarly, the corresponding resistance for a B-induced transition from the U contract to the

E contract is given by the second equation in (6).

r(U,E) =

⌈
NA

(1− θ)ρ
1 + (1− θ)ρ

⌉
, r(E,U) =

⌈
NB

1

1 + θρ

⌉
(6)

where dte denotes the least integer that is greater than or equal to t.

Then the stochastically stable state is the state i in which r(i, j) > r(j, i), a state which

requires more non-best-response play to escape. If r(i, j) > r(j, i) holds, expected waiting

time before a transition out of i to j will exceed that of the reverse transition, so that the

population will spend more than half of the time near the convention given by i (Ellison,

1993, 2000; Beggs, 2005). Specifically the expected time to exit from the convention U ,

E[WU ], and the expected time to exit from the convention E, E[WE], are respectively given

by

E[WU ] ≈ ε−r(U,E), E[WE] ≈ ε−r(E,U).

These resistances differ from those in the standard perturbed Markov process models in

which the resistances that drive transitions are identified by letting the degree of uninten-

tional idiosyncratic behavior to zero; so transitions are induced by the idiosyncratic play of

that group for which the least number are required to induce the best responders in the other
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group to switch strategies (Binmore et al., 2003). By contrast our resistances are the least

number of intentional idiosyncratic plays, or collective action shocks, required to induce a

transition by those who would benefit should a transition occur. In the contract game under

the standard model, it is always the case that the number of idiosyncratic plays required

to induce a transition is least for members of the sub-population that stands to lose from

the transition, because inducing best responders in the opposing sub-population to switch

to a contract that they prefer requires fewer idiosyncratic players than inducing a switch

to a worse contract. This is why in the standard model with random errors transitions are

always induced by those who lose as a result. In our model transitions are induced by those

who stand to gain, as agents do not ‘experiment’ with contracts under which they would be

worse off. Thus the resistances that drive the two processes (intentional or unintentional)

are always different: resistances in the standard perturbed Markov process model are always

less than one half, while ours are greater than one half.

4 Persistence

We can now investigate how the level of equality and efficiency of a contract, together

with the relative class sizes, affects the persistence of the associated convention. Efficiency

is measured by the level of the joint surplus, that is, 2 in the equal contract and ρ in the

unequal contract, while the level of equality in the unequal contract is measured by the share

of the surplus received by the least well off group, θ. Ignoring the integer consideration and

setting r(U,E) = r(E,U) from (4) and (5) gives the characteristics of unequal contracts

such that the population would spend approximately half of the time at the unequal and

half at the egalitarian contract. We let γ be the fraction of the A class in the population;

i.e., γ = NA/N and γ∗ = γ∗(θ, ρ) be the critical fraction satisfying

γ∗
(1− θ)ρ

1 + (1− θ)ρ
= (1− γ∗) 1

1 + θρ
. (7)

It is simple to check that if γ = 1/2, the stochastically stable state is risk-dominant. In

the 2x2 contract game, this will be the contract that maximizes the product of the payoffs

of the two classes, namely ρ2(1 − θ)θ for convention U and 1 for convention E. Thus, if
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ρ2(1 − θ)θ > 1 then r(U,E) > r(E,U), and U will be selected. The reverse inequality

implies that E is selected. We can generalize these results to the case where the class sizes

differ. Our key result is that unequal and inefficient contracts that are not risk dominant

will be selected if the class suffering the inequality is sufficiently large relative to the favored

class.

Proposition 4.1. For the dynamic process we have the following results:

1. If γ > γ∗ then U is the stochastically stable state.

2. If U is risk-dominant (i.e., ρ2(1 − θ)θ < 1), then γ∗ < 1/2 and if E is risk-dominant

(i.e., ρ2(1− θ)θ > 1), then γ∗ > 1/2.

3. dγ∗(θ, ρ)/dθ < 0.

4. dγ∗(θ, ρ)/dρ < 0.

Proof. See Appendix.

Proposition 4.1 shows that for a given γ, there exists a locus of inequality and efficiency

levels γ∗(θ, ρ) that satisfies equation (7), so that if γ > γ∗ the unequal contract becomes

stochastically stable. The intuition is not the incentive-based logic stressed by the literature

on collective action inspired by Olson (1965); Esteban and Ray (2001); nor is it related to the

fact that excess supply of a factor of production may disadvantage its ‘owners’ in markets.

Rather the advantage of small size arises simply because smaller groups are more likely to

experience realizations of idiosyncratic play large enough to induce a transition, as long as the

rate of idiosyncratic play is less than the critical fraction of idiosyncratic players required to

induce a transition (which we assume throughout, given that the relevant resistances in our

model are always greater than one-half). By contrast, the standard evolutionary dynamic

will have the opposite prediction in this class of games, where a larger relative class size for

the As favors the equal contract (Naidu et al., 2010).

If the unequal contract is risk-dominant, then this can occur even if the A class is smaller

than the B class (Proposition 4.1, 2). If contract U is not risk-dominant, hence contract

E is risk-dominant, then stochastic stability requires that the numer of As be larger than

the B-population (Proposition 4.1, 2). As the total surplus of contract U shrinks, it takes

a larger and larger relative population of As to maintain the stochastic stability of contract

U .
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Similarly, as the inequality of contract U increases, so that the As receive less and less of

the surplus, it takes a larger relative population size of the As for the unequal contract to

be stochastically stable. Now suppose that the degree of inequality is greatest; i.e., θ = 0. In

this case, if γ > (1+ρ)/(1+2ρ) the resistance of the transition from the equal to the unequal

contract (r(E,U)) will be less than the resistance of the transition from the unequal to the

equal contract (r(U,E)), so the unequal contract will be selected even if contract U offers

nothing to the A class. This occurs because in a population all of whom are best responding

by playing contract U favored by the Bs if all of the Bs idiosyncratically select their preferred

(unequal) contract, the average payoff to the As of persisting with their preferred contract

(E) is zero, so they will (weakly) best respond by conceding to the Bs and playing U . In

order for the As to induce the Bs to concede to a switch from a contract in which they

receive the entire surplus to the equal contract, it is not necessary for all the As to deviate;

just a fraction ρ/(1 + ρ) of them will be sufficient. But if γ is sufficiently large, this required

number of deviating As will exceed the critical number of deviating Bs to induce a shift in

the opposite direction, namely (1 − γ), so the unequal contract will be selected. Thus the

equilibrium selection process favors smaller classes.

5 Intergenerational Mobility

The assumption that class sizes are given may now be relaxed. We augment the dynamics of

the strategy updating process, in which agents choose strategy of demanding contracts U or

E, with a class mobility process in which the relative size of the A and B class endogenously

changes depending on the payoffs of agents in each of the two classes. It is important to see

if the result relating asymmetric class sizes to stochastic stability of the unequal contract

remains true when class sizes are plausibly endogenized in an explicit dynamic process.

In the class mobility dynamic, we suppose that each generation randomly matches into

mating pairs, has offspring, and then dies. We assume that the probability of a child be-

coming a member of the B class is increasing in parents’ joint income. This barrier to class

mobility could arise because class membership requires that one undertake a project with

a minimum size, for example inheriting capital goods sufficient to employ an economically

viable team of workers or the amount needed to acquire the educational credentials and

social connections necessary to be an elite member. We suppose members of the less well off
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class are credit constrained. Those who inherit less than this amount become members of

the A class. In the resulting model, then, the stochastically stable contract and the relative

sizes of the two classes will be jointly determined.

To simplify the analysis, we suppose that class mobility occurs only when both A and

B classes plays either one of conventions. However, all that is needed for our results is that

the strategy updating dynamic is sufficiently fast compared to the class mobility dynamic.

Also, to exclude the uninteresting case in which one of the class sizes is zero, we suppose that

there is at least one agent in each class throughout in every state. Under the joint process

of strategy revision and class mobility, the state is described by a triplet: the numbers of A

population agents choosing U (x), the number of B population agents choosing E (y) and

the size of A population (nA). Thus the state space ∆ is given by

∆ := {(x, y, nA) : 1 ≤ nA ≤ n− 1, 0 ≤ x ≤ nA, 0 ≤ y ≤ N − nA}.

To be concrete, we suppose the following joint strategy updating and class mobility

dynamics:

• Each period, every agent plays last period’s strategy with probability 1− v, a best re-

sponse strategy with probability v(1−ε), and an idiosyncratic strategy with probability

vε.

• Next if the state corresponds to either of conventions (i.e., all agents in both populations

play either (U,U) or (E,E); (x, y, nA) = (0, 0, k) or (k,N−k, k) for some k), then agents

who have not update their strategy are matched into mating with agents from the other

population and give birth to two offspring, and then die.

Changes in the sizes of the two classes will occur when an offspring of a B parent has

insufficient wealth to retain its parent’s upper class status, or when a child of an A has

sufficient wealth to become a B. The class mobility in general could depend on four things:

the degree of class assortment in parenting, the inheritance rules in force (primogeniture

or equal inheritance, for example), the minimal inheritance required for membership in the

upper class, and the incomes of the two parents. We assume equal inheritance to the two

offspring of each couple and abstract from marital assortment as it will not affect the resulting

equilibria in our model. We assume that when parents belong to the same class, the two

offspring retain the parents’ class membership, the incomes of two Bs always being sufficient
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for both offspring to become Bs and the incomes to two As never being sufficient to allow

their two offspring to become Bs.

To define the expected income of the cross-class couple, first observe that when the state

of the system is (x, y, nA), x/nA fraction and 1 − x/nA fraction of the A population play

strategy U and E and y/(N −nA) fraction and 1− y/(N −nA) fraction of the B population

play strategy U and E, respectively. Thus, the expected income of the A agent is given by

yA(x, y, nA) :=
x

nA

y

N − nA
θρ+ (1− x

nA
)(1− y

N − xA
)1. (8)

Similarly, the expected income of the B agent is given by

yB(x, y, nA) :=
x

nA

y

N − nA
θ(1− ρ) + (1− x

nA
)(1− y

N − xA
)1 (9)

Since the class couple will be formed either by A agents’ matching with the (N − nA)/N

fraction of the B agents in the population or B agents’ matching with the nA/N fraction of

the A agents in the population, the expected income of the cross class couple is

yc(x, y, nA) :=
N − nA
N

yA(x, y, nA) +
nA
N
yB(x, y, nA). (10)

To capture the relationship between parental wealth and class mobility, we suppose that

a measure of the barrier to class mobility yb is given by

yb(nA) := (1− nA
N

)ȳ (11)

for some positive ȳ, called a baseline income barrier. The idea behind (11) is that it is more

difficult for the A population to move up to the B population when the B population is

numerous. While this specific assumption is needed to guarantee interior class sizes, the

general premise that mobility becomes harder as the size of the rich class increases seems

intuitive, and data to support this is presented in Turchin (2003).

Then we suppose that within the class dynamics the matched cross couples give birth to

two B children if yc(x, y, nA) > yb(nA). Thus if we let G be a function describing the net
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increase in the number of agents in the A population when the class dynamic occurs, then

G(x, y, nA) :=


1 if yc(x, y, nA) < yb(nA)

0 if yc(x, y, nA) = yb(nA)

−1 if yc(x, y, nA) > yb(nA)

To describe the changes in the number of agents in the A population during the class

dynamic, we recall that a randomly chosen agent from nA A agents who has not revised the

strategy with probability 1− v will be matched with an B agent whose fraction is 1−nA/N.
Thus, we infer that there will be Bin(nA, (1− v)(1− nA/N)) cross class couples formed by

the A agents and similarly that there will be Bin(N − nA, (1− v)nA/N) cross class couples

formed by the B agents. In fact, we obtain the following aggregate mean class dynamic (12)

from the microscopic model of class dynamics in the Appendix (See Hwang, Katsoulakis,

and Rey-Bellet, 2013 for aggregation):

NA
t+1 = NA

t + χtG(Xt, Yt, N
A
t ). (12)

where χt ∼ (Bin(N −NA
t , (1− v)

NA
t

n
) +Bin(NA

t , (1− v)(1− NA
t

n
)).The class dynamics also

modify the strategy revision dynamics of (4) and (5) slightly. This is because that an agent

in the population is now decribed by the choice of strategy U or E and the membership of A

class or B class and new born children’s strategies depend on the process of class dynamics.

We present the detailed equations in the Appendix (See equations (24) and (25)).

To study the equilibrium selection problem in the joint dynamic of strategy revision and

class defined by (12), (??), and (??), we first need to identify the absorbing states for the

unperturbed system. To do this, observe that from the strategy updating dynamics the

absorbing states only involve one of conventions; i.e., the absorbing states are of the form:

(x, y, nA) = (0, 0, k) or (k,N−k, k) for some k. Consider the case, (Xt, Yt, N
A
t ) = (k,N−k, k)

first. In this case, from (8), (9), and (10) we have

yc(Xt, Yt, N
A
t ) =

N − k
N

θρ+
k

N
θ(1− ρ).

Since yc(Xt, Yt, N
A
t ) is increasing in k and yb in (11) is decreasing in k, if ȳ is greater than

θρ, there exists a unique k∗U = k∗U(ȳ, θ, ρ) such that yc(k
∗
U , N − k∗U , k∗U) = yb(k

∗
U) (See Panel
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A in Figure 2). Then it follows that

Figure 2: Determination of the critical values k∗U and k∗E. The panels show the deter-
mination of the critical values, k∗U and k∗E, in the class mobility dynamics

yc(k,N − k, k) < yb(k) for k < k∗U and yc(k,N − k, k) > yb(k) for k > k∗U . (13)

We suppose that k∗U is an integer for simplicity. Alternatively, we can add the state (k∗U , N−
k∗U , k

∗
U) to the state space Ξ as in Binmore et al. (2003). Then the equation, yc(k

∗
U , N −

k∗U , k
∗
U) = yb(k

∗
U) and inequalities (13) implies that

NA
t+1 > NA

t if k < k∗U , NA
t+1 = NA

t if k = k∗U , NA
t+1 < NA

t if k > k∗U (14)

for the class dynamic equation (12) and this shows that (k∗U , N − k∗U , k
∗
U) is a unique ab-

sorbing state of the form (k,N − k, k) (See Panel A in Figure 2).Similarly, for the case of

(Xt, Yt, N
A
t ) = (0, 0, k), it is easy to see that (0, 0, k∗E) is the unique absorbing state of the

form (0, 0, k). We record this observation in the following lemma, where we note that ȳ > 1

implies ȳ > θρ.

Lemma 5.1. Suppose that ȳ > 1. Then there are two absorbing states, (x, y, nA) = (k∗U , N−
k∗U , k

∗
U) and (x, y, nA) = (0, 0, k∗E), for the unperturbed dynamic of the joint process.

To compute the resistances for the transitions between these two absorbing states, we

need to first determine resistances for the transitions between states, r(i, j) for i, j ∈ Ξ
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Figure 3: Class dynamic and strategy updating dynamic. Panel A shows that possible
transitions between two absorbing states in a diagram of the state space (See the Appendix
for the picture of the state space). Panels B, C show the strategy updating dynamic when
the size of the A population is k∗U or k∗E.

(See Young (1998)). We note that the resistances between states for a given size of the A

population is the same as ones in the previous section (equation (6)). Also, for the states

belonging to {(k,N − k, k) : k = 1, · · · , N − 1}, since the unperturbed system always can

reach (k∗U , N − k∗U , k∗U) (from (14)) and cannot escape from (k∗U , N − k∗U , k∗U) under the class

dynamic, r(i, (k∗U , N −k∗U , k∗U)) = 0 and r((k∗U , N −k∗U , k∗U), i) =∞ for all i ∈ {(k,N −k, k) :

k = 1, · · · , N − 1}. Similarly we find that r(i, (0, 0, k∗E)) = 0 and r((0, 0, k∗E), i) = ∞ for

all i ∈ {(0, 0, k) : k = 1, · · · , N − 1} (See Panel 1 in Figure 3 and other resistances in the

Appendix).

Using these observations, the resistances between two absorbing states, (k∗U , N − k∗U , k∗U)
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and (0, 0, k∗E), are computed as follows (See Panels 2, 3 in Figure 3).

Lemma 5.2. Suppose that ȳ > 1. Let U∗ = (k∗U , N − k∗U , k
∗
U) and E∗ = (0, 0, k∗E). The

resistances between U∗ and E∗ are

r(U∗, E∗) =

⌈
k∗U(ȳ, θ, ρ)

(1− θ)ρ
1 + (1− θ)ρ

⌉
, r(E∗, U∗) =

⌈
k∗E(ȳ, θ, ρ)

1

1 + θρ

⌉
, (15)

Proof. See Appendix.

Since the class sizes are different in each absorbing state in the joint dynamics, resistances

in (15) are the modified versions of (6) by endogenizing the relative class fractions. [The

resistances of (15) generalize (6) by showing how the class size depends on income barrier and

clarifying another mechanism through which inequality and productivity affect the resistance

of absorbing states.]

Thus we are able to explore the effects of exogenous changes in ȳ, θ, and ρ on the

stochastically stable contract, the equilibrium class sizes, and hence on the income inequality

between members of the two classes. Intuitively, we would expect that as the barrier to

mobility increased (higher ȳ): a) the A class would be more numerous in equilibrium and

that as a result b) the population would spend a larger fraction of the time at the unequal

contract. Both consequences of an increase in ȳ would be to increase the income difference

between the two classes. Proposition 5.3 shows that these intuitions are correct.

Proposition 5.3. Suppose that ȳ > 1. Then, there exists ȳ∗ = ȳ∗(θ, ρ) such that, for all

ȳ > ȳ∗, we have U∗ = (k∗U , N − k∗U , k∗U) as the stochastically stable state.

Proof. See Appendix.

An implication of Proposition 5.3 is that the risk dominant contract will not be selected if

the cost of vertical class mobility is sufficiently high. An increase in ρ lowers k∗U as it increases

the income of the cross-class couple (dk∗U/dρ < 0), thereby facilitating mobility out of the

A class, reducing the equilibrium number of As and thus favoring them. In contrast to the

exogenous population size model, however, the effect on equilibrium selection is ambiguous,

as an increase in the productivity of the unequal contract ρ (with no change in the equal

contract) will also increase the fraction of idiosyncratically playing As necessary to induce
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the best responding Bs to abandon the unequal contract, (1− θ)ρ/(1 + (1− θ)ρ), so the sign

of dr(U∗, E∗)/dρ is ambiguous. However, a proportional increase in the productivity of both

contracts, for example, scaling up the payoff matrix in Table 1 by some ω > 1, does not

affect the fraction of each class whose idiosyncratic play is sufficient to induce a transition.

In this case the only effect of an increase in ρ is, assuming ȳ fixed as above, to reduce the

equilibrium size of the A population in both contracts, favoring the As and unambiguously

increasing the fraction of time spent at the more equal convention.

Our model’s evolutionary dynamic thus yields the “Great Gatsby Curve”, where low

intergenerational mobility is correlated with high cross-sectional inequality. In our model,

this occurs because large populations require many more deviant players to induce the other

side to change behavior, and unequal contracts make it harder for cross-class couples to send

their children into the wealthier class. So high barriers to mobility make the population of

the poor larger, making collective action harder, and so unequal contracts are more likely to

be stochastically stable. Evidence for this correlation is abundant across a wide variety of

historical contexts: from pre-industrial populations (Mulder et al., 2009) to the modern day

(Corak, 2012), suggesting that it is general phenomenon unrelated to particular technological

or political settings, and therefore worth replicating in our relatively abstract model.

This section shows that the results from the previous section about which contracts

are persistent are robust to endogenizing the class sizes. High barriers to mobility create

asymmetric class sizes, which increases the total income of the Bs, as there are now many As

to interact with. It is also harder for the As to generate enough idiosyncratic deviance to tip

the equilibrium to one that is favorable to them, and so a high barrier to mobility will favor

an unequal contract. Even if one starts from equal population sizes and at the egalitarian

contract, the intergenerational transmission dynamic will eventually produce few elites and

many poor, and this will make it easier for the Bs to obtain their preferred convention.

6 Population Size vs Interaction Structure

We have so far focused on exploring the role that asymmetric population size, in an environ-

ment of idiosyncratic collective action shocks, has on the stochastic stability of the unequal

contract. But another interpretation of our model is that it is the structure of interactions

between two equally sized populations changes the stochastically stable equilibrium. It is
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well known that interaction structure (modelled as a network) can alter many stochastic

stability results; in this section we lay out the relationship between interaction structure

and population size in our model. Essentially, instead of each population best-responding

to the play of the full population of the other type, we can instead think of each population

observing only a sample of the other population. Then, if the sample sizes differ between

the two populations, the population with a larger sample will have an advantage, even if the

population sizes are identical. Because it is sampling noise that drives institutional transi-

tions, populations whose play is not completely observed have the same advantage as small

populations whose play is fully observed.

We have in mind arguments laid out in other social sciences. Early industrial capitalism,

for example, agglomerated workers in large establishments facilitating collective action. By

contrast, earlier class systems, according to Gellner (1983), were characterized by “laterally

separated petty communities of the lay members of society” speaking different dialects or

even languages, presided over by a culturally and linguistically homogeneous class. Economic

relations in such societies often took the form of patron-client relationships that endured over

generations with little mobility of the clients among the patrons (Blau, 1964; Fafchamps,

1992; Platteau, 1995).

The patron client relationship will support a very different dynamic from the relationship

of employee to employer in the modern labor market. The reason is that these two institutions

affect the information available to agents when they adopt best responses.

Suppose that when adopting a best response the members of the two classes do not

know the entire distribution of play in the previous period. As before, players are randomly

matched to play with members of the other population, but now members of a given class

know the distribution of play in only a subset of the other population. While we could in

principle investigate heterogeneous sets of opposing play known by each agent, we simplify

dramatically and focus only on the case where each agent knows the distribution of play

of a fraction of the opposing class. As know the play of a fraction of Bs given by ηA and

Bs know the distribution of play in a fraction ηB of As, where ηA, ηB ≤ 1. Pre-capitalist

agrarian institutions, in Gellner’s view, entailed ηA < ηB, for the upper class communicated

readily amongst themselves and therefore had information about the recent play of a large

segment of the less well-off class. The geographical, cultural and linguistic isolation of the

As, by contrast, militated against information sharing beyond ones local community.
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The advantage enjoyed by the Bs is not that a given B-patron may engage the A-clients

of other Bs. Rather, by drawing information from a larger sample of As, the B’s less noisy

signal of the distribution of play reduces the likelihood that their myopic best response will

overreact to the chance occurrence of a high level of idiosyncratic play among their particular

A-clients. Since the introduction of ηA and ηB modifies the best response rules as follows

BRU
A(y) =

 1 if y > ηANq
∗

0 if y < ηANq
∗
, BRU

B(x) =

 1 if x > ηBNp
∗

0 if x < ηBNp
∗
,

the new resistances r(E,U) and r(U,E) are given by

r(U,E) =

⌈
ηBN

(1− θ)ρ
1 + (1− θ)ρ

⌉
, r(E,U) =

⌈
ηAN

1

1 + θρ

⌉
(16)

Instead of population sizes, we now have asymmetric ‘scope of vision’ parameters in the

resistances (ηA, ηB) mean that more idiosyncratic players are required to induce a concession

by the best responding members of the population that has more information.

If ηA is small, then it takes only a few idiosyncratic plays by the subset of Bs in a given A’s

‘scope of vision’ to convince the best responding A to concede to the unequal contract. As is

evident from (16), a decrease in ηA will reduces r(E,U) and the inequality r(U,E) > r(E,U)

is more likely to be satisfied and hence, the unequal contract will persist for a long time.

Proposition 6.1. Suppose that ȳ > 1 and ηB = 1. Then there exists a η∗A > 0 such that for

all ηA < η∗A, the unequal contract is stochastically stable.

If we redefine γ = ηA/(ηA + ηB), Proposition 4.1 will obtain in this model. While we

do not explore endogenous population structure (only population sizes) dynamics in this

paper, future work could endogenize the ηi’s along similar lines. This framework could

potentially be extended to incorporate results from the literature on stochastic games on

graphs to relate more complex network properties to the stochastically stable equilibrium

(Blume, 1995b; Ellison, 1993; Hojman and Szeidl, 2006).

Substantively, this interpretation of the model thus suggests another possible reason

for the trend in many countries over the past 2 centuries towards a reduction in the relative

incomes of the well off (Piketty 2005). The geographic, industrial, and occupational mobility

characteristic of modern labor markets (coupled with the spread of literacy and greater ease
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of communication) made workers less responsive to the demands of a small number of local

employers, as they knew about the offers of employers outside their local area. The effect

would be to raise ηA and thus to destabilize highly unequal contracts.4

7 Inequality, the Rate of Idiosyncratic Play, and Re-

distributive Politics

Economic inequality may enhance the frequency of deviant play by the less well off group by

providing additional motives and opportunities to challenge the status quo contract (Scott

1976, Moore 1978, Wood 2003). To capture this insight we make the rate of idiosyncratic

play state-dependent, and study the response of a far-sighted government that on behalf of

the myopic Bs seeks to deter a transition to the egalitarian state.

Bergin and Lipman (1996) show that, if one allows ε to vary arbitrarily as a function of

the state, (x, y), then one can choose a function that selects any recurrent class of the unper-

turbed process as the stochastically stable state. But what error functions are empirically

plausible? We would like to capture the idea that idiosyncratic play by the poorer As will

be greater in highly unequal societies. To study this, we modify our baseline model (i.e.,

exogenous class size model) in Section 3 as follows. With some abuse of notation, in this

section we incorporate a state-dependent probability, ε(x, y), of idiosyncratic play into the

model with

ε(x, y) = εφ(λ(πB(x,y)−πA(x,y))), (17)

where we recall that πA and πB are expected payoffs for classes A and B from the underlying

game, given by

πA(x, y) :=
x

NA

y

NB

θρ+
NA − x
NA

NB − y
NB

, πB(x, y) :=
x

NA

y

NB

(1− θ)ρ+
NA − x
NA

NB − y
NB

.

Here φ is a decreasing function and λ > 0 captures the extent to which inequality increases

4Similarly, male-female interactions may be differentially structured in traditional patriarchies, despite
numerical parity. Men who can publically circulate and fraternize with other men have an informational
advantage vis-a-vis women confined to domestic roles and family networks. By observing the behavior of
many women, male strategies will not be altered in response to idiosyncratic play of a few women, resulting
in the persistent of unequal gender norms. The formation of information sharing networks within groups
of women, e.g. via employment outside of the household, would then give women a larger share of the
intrahousehold pie.
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idiosyncratic play. Sociological conditions favoring rejection of unequal contracts as well as

religious or other cultural influences that make economic inequality illegitimate will increase

λ. In the equal contract, the B class idiosyncratically plays at rate ε, since πB(0, 0) =

πA(0, 0) = 1, and in the unequal contract, the A class plays at a rate εφ(λ((1−θ)ρ−θρ)), which is

clearly decreasing in θ, so an decrease in income inequality reduces the rate of idiosyncratic

play. To simplify the analysis from now on, we adopt φ(t) := 1/(1 + t), however our results

do not depend on the particular choice of this functional form. We show that in Proposition

4.1 the sufficiently numerous A population may induce the unequal institution to persist.

However, when the idiosyncratic play rate is dependent on the payoffs, this may not be the

case.

Proposition 7.1. There exists some λ such that for any λ > λ the equal contract is selected.

Proof. See Appendix.

This result is simple, but it allows us to incorporate a plausible relationship between

inequality and institutional persistence; namely that inequality increases the level of non-

best-response play for the worse-off group (the As), destabilizing the unequal contract. In

addition, this feature in our model allows us to endogenize a politically chosen level of

redistribution at the unequal contract.

To study this question more precisely, we introduce a forward-looking government that

may seek to stabilize the status quo contract. We focus on government redistribution of

income as a device to reduce idiosyncratic play in the unequal state, thus prolonging the con-

tract preferred by the upper class. Here we consider the reduced strategy revision processes

{st}t whose two states consist of U convention and E convention and transition probabilities

are based on the resistances between the two states (expression 18). Suppose that the gov-

ernment implements a tax rate τ in each state to maximize the weighted sum of the present

discounted value of the two groups period payoffs subject to the dynamics governed by the

stochastic strategy revision process, whose transition probabilities P (s, B, τ), the probability

of transition from s to a state in B, are indexed by the control parameter τ : i.e., P (s, B, τ)

is given by

U E

U 1− εrUE(τ) εrUE(τ)

E εrEU (τ) 1− εrEU (τ)

(18)
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Since the after tax income for the A and B populations are θρ+τ(1−θ)ρ and (1−τ)(1−θ)ρ,
respectively, the modified resistances rUE(τ) and rEU(τ) in (18) are

rUE(τ) : =

⌈
NA

(1− τ)(1− θ)ρ
1 + (1− τ)(1− θ)ρ

1

1 + λ((1− τ)(1− θ)ρ− θρ− τ(1− θ)ρ)

⌉
(19)

rEU(τ) : =

⌈
NB

1

1 + θρ+ τ(1− θ)ρ

⌉
.

We parameterize the weight put on the payoff of the rich by a parameter ξ ∈ [0, 1] in

its per-period objective function. If we follow Acemoglu and Robinson (2006) and model

democracy as taxation chosen by the median voter, then, since γ > 1/2, democracy would

be equivalent to ξ = 0, and non-democracy would correspond to ξ = 1. In this latter case,

the state faces a trade-off similar in spirit to that in Acemoglu and Robinson (2006): the

state weighs the costs of the tax on the per period income of the Bs against the effect of

reduced income inequality on the transition probabilities from U contract to E contract. To

study this possibility we suppose that ξ > 1/2. Then, the per-period return function to the

government u(s, τ) is given as follows:

u(s, τ) :=

 (1− ξ)(θρ+ τ(1− θ)ρ) + ξ(1− τ)(1− θ)ρ if s = U

1 if s = E

We note that when τ̄ = ((1− θ)ρ− θρ)/2(1− θ)ρ, the payoffs for the A and B classes in

U contract are the same; i.e.,

(1− ξ)(θρ+ τ̄(1− θ)ρ) + ξ(1− τ̄)(1− θ)ρ =
ρ

2
.

Thus we consider τ̄ to be the maximum possible tax rate that the government can impose.

Then the government maximizes

max
{τ t}∞t=1

E0[
∞∑
t=0

βtu(st, τ t)] (20)

such that τ t ∈ [0, τ̄ ] for all t and 0 < β < 1 and st is the Markov process starting from s.
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The corresponding Bellman equation for (20) is given as follows:

v(s) = max
τ
{u(s, τ) + β

∫
v(s′)P (s, ds′, τ)}.

More explicitly for s = U, E, we have the following two equations:

v(U) = max
τ∈[0,1]

{u(U, τ) + β(v(U)P (U,U, τ) + v(E)P (U,E, τ))} (21)

v(E) = max
τ∈[0,1]

{1 + β(v(U)P (E,U, τ) + v(E)P (E,E, τ))} (22)

Then by solving equations (21) and (22), we find the optimal tax policy for a given state

s = U, E. We denote by τE and τU the optimal tax rates at state E and state U.

We first consider the tax rate in the E contract state, given by (22). Since the after tax

income for B’s is always greater than the after tax income for A’s, the per-period return to

the government in U contract is always greater than the per-period return in E contract; i.e.,

u(U, τ) = ρ/2 ≥ 1 for all τ ≤ τ̄ . Thus we have u(st, τ t) ≥ 1 for all t and this implies that v(U)

and v(E) are greater than 1/(1 − β). In particular, it is easy to see that v(E) ≥ 1/(1 − β)

implies that v(U) ≥ v(E) (see Lemma 1 in the Appendix). This shows that the value of

U contract is always greater than E contract; v(U) ≥ v(E). Then from (18) and (19), we

see that an increase in τ in E contract state reduces the minimum number of B agents

inducing transition to U contract, thus makes transition to U contract more likely. Thus

from v(U) > v(E) and equation (22), it is easy to see that the government sets the highest

possible tax rate, namely τE = τ̄ .

Next we consider the optimal tax rate τU in the U contract state. In this case, observe

that because the government put more weight on the B’s payoffs (ξ > 1/2), an increase in

the tax will reduce the per-period return to the government (du(U, τ)/dτ < 0). To study the

effect on the transition probabilities P (U,E, τ), we first ignore the effect of inequality (i.e.,

λ = 0). Then similarly to the tax effect in the E contract state, an increase in the tax will

reduces the minimum number of A’s agent inducing transition to E contract (the first term

in (19)) and makes transition to E contract more likely. However, when the idiosyncratic

rate is state-dependent and increasing in income inequality, an increase in τ in the U contract

state may reduce the degree of inequality by redistribution and thus increase the minimum

number of A’s agent necessary to induce a transition to E, thus delaying the transition
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to the E contract. The second effect stabilizing the unequal contract dominates the first

destabilizing effect, when the responsiveness of idiosyncratic play to inequality is sufficiently

sensitive (λ is sufficiently high). This observation leads to the following proposition.

Proposition 7.2. There exists λ̄ such that for λ > λ̄ such that P (U,E, τ) is nondecreasing

in τ .

Proof. See Appendix.

How is the optimal tax determined in U contract? From the discussion above, when λ

is sufficiently high, an increase in the tax rate reduces the per-period return to government,

but raises the life-long return by reducing the transition probability from U contract to E

contract. This precisely shows the trade-off the government faces between the per-period

loss by a higher level of redistribution and the long term gain by delaying the transition from

U contract to E contract. As Proposition 7.3 shows, when λ is sufficiently high and A’s are

sufficiently numerous, the government would set the positive tax rate adopting redistribution

policy today in the favor of the future gains.

Proposition 7.3. Suppose that λ and NA are sufficiently large. Then τU > 0.

Proof. See Appendix.

If inequality generates more idiosyncratic play by the worse-off party, one would expect

far-sighted governments acting on behalf of the long term interests of the B class to subject

the well to do to redistributive taxation. This proposition thus lies in the spirit of Acemoglu

and Robinson (2006), where far-sighted elites choose partial reform in order to prevent (or

delay) the transition to an equilibrium that is even more egalitarian. As in Acemoglu and

Robinson (2006) the paradigmatic historical case on non-democratic redistribution of this

type is Bismark’s expansion of the welfare state (without the franchise) in response to the

German workers movement in the late 19th century. The novelty is that we obtain this result

in an evolutionary model, with individual shocks to collective action, rather than aggregate

shocks to the bargaining power of representative agents.
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8 Conclusion

By synthesizing the collective conflict between groups stressed by political economy and

the decentralized and stochastic aspects emphasized in evolutionary approaches we hope

to match several stylized facts about de facto institutional transitions. For example, long

periods of decentralized conflict that occasionally generate large changes in conventional

practices, the coexistence of large barriers to intergenerational mobility and unequal distri-

bution of income, and the willingness of non-democratic governments to redistribute in the

face of widespread social unrest.

One limitation of our framework is that we have assumed that deviations from best-

response are independent across individuals. In reality, individual members of each class

may choose to act in unison, whether best responding or playing idiosyncratically. Leaders

and organizations may have a role in coordinating strategies, as in Acemoglu and Jackson

(2011), where the play of “prominent” agents affect the pattern of play in all future periods.

The entire membership of a trade union may decide to work under the current contact, or

to refuse to do so. Where members of such organizations may commit themselves to acting

in unison, dynamics are affected in two ways. First the effective size of the class is reduced

to the number of autonomously acting entities. The effect is to increase the fraction of time

spent governed by the contract favored by the affected class. By embedding an explicit

model of collective action as a public goods game in the above dynamic and assuming that

some agents are permanently other regarding, we could generate more adequate behavioral

foundations for idiosyncratic play as we have modelled it. We leave this for future work.5

Another limitation is that for reasonable updating processes, group sizes, and rates of

idiosyncratic play, the waiting times for transitions from one basin of attraction to another are

extraordinarily long, certainly surpassing historically relevant time spans (see Kreindler and

Young (2011b) for a discussion). However, the above and other extensions can dramatically

accelerate the dynamic process, yielding transitions over historically relevant time scales.

First, most populations (nations, ethno-linguistic units) are composed of smaller groups of

frequently interacting members. Because groups are of quite variable size, the process may

be considerably accelerated because the transition times will depend not on the mean group

5The result is that non best response play is correlated, with deviance from the status quo contract being
largely absent when the number of potentially deviant players is insufficient to induce a transition (Kuran,
1991; Bowles, 2004a).
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size but on the size of the smallest groups. Second, chance events affect the payoff structures

as well as the behaviors of the members of the population, occasionally greatly reducing the

size of the basin of attraction of the status quo convention. These effects in conjunction with

non best-response play will accelerate the process of transition. Third, there are generally

far more than two feasible conventions, and some of them may be adjacent (that is, the

resistances among them are small.) A population may traverse a large portion of the state

space by means of a series of transitions among adjacent conventions. Fourth conformism

and collective action will reduce the effective numbers of players and tend to bunch deviant

play, resulting in more frequent transitions.

We think that this model illuminates the dynamics of highly decentralized popular unrest

and elite response during the French Revolution (Markoff, 1996; Soboul, 1964; Rudé, 1972),

the U.S. civil rights (McAdam, 1986) and labor (Freeman, 1998) movements, as well as the

fall of apartheid that we gave as motivation. By specifying historically plausible dynamics

of institutional change, we are able to account for properties of contracts that persist. While

under some conditions efficient and egalitarian institutions are stable in the long-run, highly

unequal and inefficient institutions may outlast (in an evolutionary sense) more egalitarian

and efficient institutions if the barriers to upward class mobility are sufficiently great. We also

think the approach taken in this model could be extended to incorporate network structure,

imitation and conformism, and many other important features determining the diffusion and

persistence of economic institutions.
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9 Appendix

9.1 Microfoundations for the Contract Game

In this section we model the contract E as a share contract that is egalitarian but ineffi-

cient, and the contract U as a fixed payment contract that divides the surplus unequally but

produces efficiently. The share in contract E maximizes the employer/landowner’s profits

subject to the tenant/worker’s incentive compatibility constraint for the supply of labor,

while the rent or wage in the fixed payment contract is determined by the reservation po-

sition of the As. Under both contracts, hours of labor, L, produce output, q, according

to q = f(L), where f is a concave, increasing production function satisfying the Inada

conditions. A’s utility varies with income y and hours worked: V (y, L) = y−h(L). The em-

ployer/landowner’s (B’s) opportunity cost of holding the land is kc. A’s utility-maximizing

labor supply under either contract is L(s), L′ > 0 where s is the share of the residual output

retained by A and is equal to 1 in the fixed rental/wage contract and s ∈ (0, 1) in the share

contract. Under the rental/wage contract the A (as residual claimant) works L(1) hours, so

total output is f(L(1)). Subtracting from this the disutility of the A’s labor h(L(1)) and the

opportunity cost of the land, the joint surplus is f(L(1))− h(L(1))− kc.
Under the share contract B’s profits of (1− s)f(L(s)) are maximized at a share s∗ < 1,

under which terms A works L(s∗) hours, yielding a total output of f(L(s∗)) and a joint

surplus of f(L(s∗))−h(L(s∗))−kc. Define k∗c such that (1−s∗)f(L(s∗))−k∗c = s∗f(L(s∗))−
h(L(s∗)), so that the share contract equally divides the surplus. As expected, the joint

surplus under the fixed rental contract is larger, reflecting its superior incentives. To ensure

that both contracts are Pareto optima, so that the interests of the classes are opposed, we

assume the bargaining power of the Bs in the U contract to be such that the rent, R∗ is

fixed at R∗ > f(L(1))−s∗f(L(s∗))−h(L(1))+h(L(s∗)), so that As are worse off in the fixed

rent contract.

We can also define D ≡ (1− s∗)f(L(s∗))− k∗c , and divide all the payoffs by D. Now by

definition of k∗c , the normalized joint surplus produced under sharecropping is 2, and 1
2

is

the share that the tenant receives. Also define ρ = f(L(1))−h(L(1))−k∗c
D

> 2 as the joint surplus

produced under the rental contract with θ = f(L(1))−h(L(1))−R∗
ρ

< .5 being the share received

by the tenant. This gives the normalized payoffs in the contract game in Table 1.
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9.2 Aggregating Individual Dynamics

In this section, we provide a microscopic model of strategy updating and endogenous pop-

ulation size in Section 5. Then the simplified version of this model will yield the models in

Section 4. Suppose that there are N agents, x1, x2, · · · , xN . Each agent is identified by two

pieces of traits – the strategy used for the contract game (either U or E) in Section 3 and

the membership of groups (A class or B class). We use the notations σ(xi) ∈ {0, 1} and

γ(xi) ∈ {0, 1}, meaning that

σ(xi) = 1 : agent xi uses U strategy in the underlying game; σ(xi) = 0 otherwise

γ(xi) = 1 : agent xi belongs to A class; γ(xi) = 0 otherwise.

Then the state space for the microscopic model is

Ξ :=


 σ

γ

 :=

 σ(x1), σ(x2), · · · , σ(xN)

γ(x1), γ(x2), · · · , γ(xN)

 : σ(xi) = 0, 1, γ(xi) = 0, 1

 = ({0, 1} × {0, 1}){1,··· ,N} .

Then the number of agents in the A population using U , X, the number of agents in the B

population using U, Y, and the number of the A population, NA are

X =
N∑
i=1

σ(xi)γ(xi), Y =
N∑
i=1

σ(xi)(1− γ(xi)), N
A =

N∑
i=1

γ(xi).

We recall the following best response rules for determining the strategy choice :

BRU
A(y,NR) =

 1 if y > (N −NR)q∗

0 if y < (N −NR)q∗
, BRE

A(y,NR) := 1−BRU
A(y,NR)

BRU
B(x,NR) =

 1 if x > NRp∗

0 if x < NRp∗
, BRE

B(x,NR) := 1−BRU
B(x,NR)

Here BRU
A(y,NR) = 1 and BRU

B(x,NR) = 1 mean that the best responses are choosing U .

The events of strategy updating and inter class movement which are decribed in Section

5 can be specifically modeled as follows:

• At the start of each period, every agent x1, · · · , xN receives a strategy revision oppor-
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tunity independently with probability v. Thus the random variable, ci, determining

whether agent i receives the strategy revision opportunity is the Bernoulli random vari-

able with the probability of success being v, denoted Ber(v). Here the Bernoulli random

variable ci takes 1 when agent i receives the revision opportunity and takes 0, other-

wise. When agents who have received the revision opportunity update their strategies,

each agent plays his/her best response with probability 1 − ε and play a idiosyncratic

strategy with probability ε. Then, the random variable, ξi, indicating whether agent i

plays the idiosynctratic strategy is the Bernoulli random variable with the probability

of succee being ε, denoted by Ber(ε).

• Next if the state is the one that all agents play either U or E (i.e., (Xt, Yt, N
A
t ) = (0, 0, k)

or (k,N−k, k) for some k = 1, · · · , N−1), agents who did not update their strategy (i.e.,

ci = 0) are matched with another agent from the different population and give birth to

childern. Specifically, the event that a chosen A agent can be matched with a B agent

can be decribed by a Bernoulli random variable d1 with the success probability being

(N − nR)/N , while the event that a chosen B agent can be matched with an A agent

can be decribed by a Bernoulli random variable d2 with the success probability being

nR/N. Then, the cross couples yield the net increases in agents in the A population

according to g function in p. 14 in the text.

This defines the following microscopic stochastic process:

σt+1(xi) = σt(xi) + γt(xi)ci((1− σt(xi))BRU
A − σt(xi)BRE

A − ξiBRU
A)

+ (1− γt(xi))ci(((1− σt(xi))BRU
B − σt(xi)BRE

B + ξiBRE
B)

γt+1(xi) = γt(xi) + (1− ci) [γt(xi)d1 + (1− γt(xi))d2]G(Xt, Yt, N
A
t ),

where i = 1, · · · , N, and G is defined in the text.

We aggregate the microscopic processes as follows. We denote the Binomial random

variable with repetition n and success probability p, by B(n, p). First we have

NA
t+1 =

N∑
i=1

γt(xi) + (
N∑
i=1

(1− ci)γt(xi)d1 +
N∑
i=1

(1− ci)(1− γt(xi))d2)G(Xt, Yt, N
R
t )

= NA
t + (B(NA

t , (1− v)(1− NA
t

N
)) + B(N −NA

t , v
NA

N
))G(Xt, Yt, N

R
t ),
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where we note that, for example, (1− ci)d1 ∼ Ber((1− v)
NA

t

N
) and

N∑
i=1

γt(xi)(1− ci)d1 ∼
∑

{i:γt(xi)=1}

(1− ci)d1 ∼

∑
i γt(xi)∑
j

(1− ci)d1 ∼ B(NA
t , (1− v)(1− NA

t

N
)).

Similiarly,

Xt+1 =
N∑
i=1

γt+1(xi)σt(xi) +
N∑
i=1

γt+1(xi)γt(xi)ci[(1− σt(xi))BRU
A − σt(xi)BRE

A − ξiBRU
A]

+
N∑
i=1

γt+1(xi)(1− γt(xi))ci[(1− σt(xi))BRU
B − σt(xi)BRE

B + ξiBRE
B]

= : I + II + III.

For the first term (I), we find

I =
N∑
i=1

γt+1(xi)σt(xi) =
N∑
i=1

γt(xi)σt(xi)

+(
N∑
i=1

(1− ci)γt(xi)d1σt(xi) +
N∑
i=1

(1− ci)γt(xi)d2σt(xi))G(Xt, Yt, N
A
t )

= Xt + (B(Xt, (1− v)
N −NA

t

N
) + B(Yt, (1− v)

NA
t

N
))G(Xt, Yt, N

A
t )

and for (II), if ci = 0, γt+1(xi) = γt(xi) and γ2t (xi) = γt(xi). Thus

II =
N∑
i=1

γt(xi)ci((1− σt(xi))BRU
A − σt(xi)BRE

A − ξiBRU
A)

= BRU
AB(NA

t −Xt, v)−BRE
AB(X, v)−BRU

AB(NA
t , vε)

For (III), since γt(xi)(1− γt(xi)) = 0, we have (III) = 0. We then aggregate similarly and

find the following aggregated equations:

NA
t+1 = NA

t + (B(N −NA
t , (1− v)

NA
t

N
) + B(NA

t , (1− v)
N −NA

t

N
))G (23)
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Figure 4: State space for the aggregate population dynamic

Xt+1 = Xt + (B(Yt, (1− v)
NA
t

N
) + B(Xt, (1− v)

N −NA
t

N
))G(Xt, Yt, N

A
t ) (24)

+BRU
A(Yt, N

A
t )αAt −BRE

A(Yt, N
R
t )βBt −BRU

A(Yt, N
R
t )ωAt

Yt+1 = Yt − (B(Yt, (1− v)
NR
t

N
)F1 + B(Xt, (1− v)

N −NR
t

N
))G(Xt, Yt, N

A
t ) (25)

+BRU
B(Xt, N

A
t )αBt −BRE

B(Xt, N
R
t )βBt +BRE

B(Xt, N
R
t )ωBt

where

αAt ∼ B(NA
t −Xt, v), βAt ∼ B(Xt, v), ωAt ∼ B(NR

t , vε)

αBt ∼ B(N −NA
t − Yt, v), βBt ∼ B(Yt, v), ωBt ∼ B(N −NA

t , vε).

We show the figure of the state space of the aggregate population process.

9.3 Determination of Resistances for the Process with Endoge-

nous Class Mobility

We first recall that a resistance for the transitions between states, r(i, j), is defined to be a

number such that 0 < limP ε(i, j)/εr(i,j) <∞, where i, j ∈ ∆ and P ε is the transition prob-
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ability for the perturbed joint dynamics (See Young (1993)). Then from the specifications

of the population and strategy updating dynamics, we find

r((k,N − k, k), (k∗U , N − k∗U , k∗U)) = 0 for k = 1, · · · , N − 1

r((0, 0, k), (0, 0, k∗E)) = 0 for k = 1, · · · , N − 1

r((x, y, k), (x′, y′, k)) = [x− x′]+BRU
A(x, y, k) + [x′ − x]∞BR

E
A(x, y, k)

+[y − y′]∞BRU
B(x, y, k) + [y′ − y]+BR

E
B(x, y, k)

where [t]+ = t if t > 0, = 0 otherwise and [t]∞ = ∞ if t > 0, = 0 otherwise and other

r(i, j)s are infinity.

10 Proofs

10.1 Proof of 4.1

Proof. The proof of the first claim is in the text. By solving (6) for γ, we find

γ∗ =
1 + (1− θ)ρ

1 + 2(1− θ)ρ+ ρ2(1− θ)θ
(26)

For the second claim, differentiating with respect to ρ and θ yields:

dγ∗

dρ
= − ρ (−1 + ρ+ ρ2(θ − 1)2 − 2ρθ)

(−1 + 2ρ(−1 + θ) + ρ2(θ − 1)θ)2
< 0 (27)

The negative sign follows from the fact that 2ρθ + 1 < (ρ(1− θ))2 + ρ.

For the third claim, differentiate γ∗ with respect to θ to get

dγ∗

dθ
=

(1− θ) (−1− 2ρθ − ρ2(1− θ)θ)
(−1 + 2ρ(θ − 1) + ρ2(θ − 1)θ)2

< 0 (28)

since θ < 1/2 implies (1− θ) > 0. The fourth claim follows from substituting ρ2(1− θ)θ < 1

into equation (7).
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10.2 Proof of 5.3

Proof. First from equation (15) , we explicitly find

k∗U = N
ȳ − θρ

ȳ − θρ+ (1− θ)ρ
, k∗E = N

ȳ − 1

ȳ
.

We let α = θρ and β = (1− θ)ρ and define a function

f(y) :=
(y − α)/(y − α + β)

(y − 1)/y
(29)

and if we can find y0 such that for all y > y0, f ′(y) > 0, then we can find ȳ∗ such that for

all ȳ > ȳ∗, dk∗U(1− p∗)e > dk∗Eq∗e . By taking the derivative of (29), we see that f ′(y) > 0 if

and only if (β− 1)y2− 2(β−α)y+α(β−α) > 0. Since α < 1 < β, if we choose y0 such that

y0 > 2(β − α)/(β − 1), then for all y > y0, we have f ′(y) > 0.

10.3 Proof of 7.1.

Proof. The new idiosyncratic play rate given by (17) modifies the resistance expressions in

(6) as follows:

r(U,E) =

⌈
NA

(1− θ)ρ
1 + (1− θ)ρ

1

1 + λ((1− θ)ρ− θρ)

⌉
, r(E,U) =

⌈
NB

1

1 + θρ

⌉
Then, since r(U,E) is decreasing with respect to λ, the result follows.

10.4 Proof of 7.2

Proof. We set

ϕ1(τ) :=
b̃(τ)

1 + b̃(τ)
, ϕ2,λ(τ) :=

1

1 + λ(b̃(τ)− ã(τ))
,

where ã(τ) := a+ bτ and b̃(τ) = (1− τ)b. Then by ignoring the integer problem, we find

sign(
d

dτ
P (U,E, τ)) = −sign(

ϕ′1(τ)

ϕ1(τ)
+
ϕ′2,λ(τ)

ϕ2,λ(τ)
)

where
ϕ′1(τ)

ϕ1(τ)
= − b

(1 + b̃(τ))b̃(τ)
,
ϕ′2,λ(τ)

ϕ2,λ(τ)
=

2bλ

1 + λ(b̃(τ)− ã(τ))
.
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Then since ϕ′1(τ)/ϕ1(τ) is decreasing in τ and ϕ′2,λ(τ)/ϕ2,λ(τ) is increasing in τ , we have

ϕ′1(τ)

ϕ1(τ)
+
ϕ′2,λ(τ)

ϕ2,λ(τ)
> − b

(1 + b̃(τ̄))b̃(τ̄)
+

2bλ

1 + λ(b̃(0)− ã(0))
= − 2

2 + a+ b

2b

a+ b
+

2bλ

1 + λ(b− a)
.

By choosing

λ̄ :=
α

2b− (b− a)α
, where α =

2

2 + a+ b

2b

a+ b
,

we obtain the above claim.

10.5 Proof of 7.3

We begin with a lemma:

Lemma 1. Suppose that v(E) ≥ 1/(1− β). Then v(E) ≤ v(U).

Proof. Let τE be the optimal choice in (22) and let q(τ) := P (E,U, τ). Then we have

1 + βv(U)q(τE) + βv(E)(1− q(τE)) = v(E)

≥ 1 + βv(E) = 1 + βv(E)q(τE) + βv(E)(1− q(τE))

By rearranging we obtian v(U) > v(E).

Proof. We let pε,λ(τ) := P (U,E, τ) and define

V (τ) := u(U, τ)− β(v(U)− v(E))P (U,E, τ) + βv(U)

and (ignoring the integer problem) find

V ′(τ) = (2ξ − 1)b+ β(v(U)− v(E))pε,λ (τ) (− ln ε)NAϕ1(τ)ϕ2(τ)(
ϕ′1(τ)

ϕ1(τ)
+
ϕ′2,λ(τ)

ϕ2,λ(τ)
)

Then for sufficiently large λ, we have ϕ′1(0)/ϕ1(0) + ϕ′2,λ(0)/ϕ2,λ(0) > 0 as in the above

proposition. Thus for sufficiently large NA we find V ′(0) > 0 which implies τU > 0.
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