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Abstract

We introduce intentional idiosyncratic play in a standard stochastic evolutionary model of equi-
librium selection in a class of bargaining games. By intentional we mean non-best-response play of
mixed strategies that are supported only on the set of strategies that would give the idiosyncratic
player a higher payoff when played as part of a unique pure Nash equilibrium of the unperturbed
game. This induces qualitatively different transitions between Nash equilibria and potentially differ-
ent stochastically stable equilibria than the standard dynamic. We show existence and uniqueness
of a stochastically stable bargaining outcome under intentional idiosyncratic play in a class of
games that nests contract games and the Nash demand game. In the contract game, the inten-
tional idiosyncratic play dynamic selects the equilibrium that implements the Nash bargain as the
stochastically stable state, while the standard dynamic selects the Kalai-Smorodinsky bargain.
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1 Introduction

We extend the Binmore-Samuelson-Young (Binmore et al., 2003) approach to equilibrium selection
in contract games and related bargaining games by imposing empirically plausible restrictions on the
process generating idiosyncratic (non-best-response) play. (By contract game, Young (1998) means
an asymmetric pure coordination game played by randomly matched players from two populations.)
Our modification to the standard dynamic(Kandori et al., 1993; Young, 1993a) is motivated by our
belief that agents who act idiosyncratically in economic conflicts are behaving intentionally, and
thus do not “accidentally” experiment with contracts under which they would do worse, should the
contract be generally adopted. We have in mind such idiosyncratic play as refusing to exchange
under the terms of a contract that awards most of the joint surplus to the other party (for example
locking out overly demanding employees). Like Bergin and Lipman (1996), who conclude that
“models or criteria to determine ‘reasonable’ mutation processes should be a focus of research in
this area”, and Van Damme and Weibull (2002), our idiosyncratic play is state-dependent. But
while these authors make error rates state dependent, we make the distribution of idiosyncratic
play across the strategy space state-dependent, as in Bowles (2004).

The resulting dynamic based on intentional idiosyncratic play provides a more plausible account
of historical real world transitions between economically important conventions, such as customary
crop shares or the de facto recognition of collective bargaining by businesses. First, when non-best-
response play is intentional transitions between contracts are induced only by the idiosyncratic play
of those who stand to benefit from the switch, in contrast to the standard (unintentional) approach.
Second, as one would expect, in the intentional dynamic where population sizes and idiosyncratic
play rates differ, the population whose interests are favored is that whose members who engage in
more frequent idiosyncratic play and who are less numerous.

We find that the contracts that are selected as stochastically stable under the intentional id-
iosyncratic play dynamic differ from those selected under the standard dynamic. Our dynamic
selects the convention that implements the Nash bargain, while the standard dynamic selects the
Kalai-Smorodinsky bargain (Young, 1998; Kalai and Smorodinsky, 1975). The difference is illus-
trated in the example in Table 1. The Kalai-Smorodinsky bargaining solution equates the ratio
of the payoffs to the ratio of the players’ best possible payoff, and thus is the contract pair (1, 1),
as 12/20 = 36/60. In contrast, the Nash solution is (0, 0), since the Nash solution is that which
maximizes the product of the payoffs and 5× 60 > 12× 20 > 36× 1.

Table 1: Example 1

Contract 0 1 2
0 5,60 0,0 0,0
1 0,0 12,20 0,0
2 0,0 0,0 36,1

In Section 2 we introduce intentional idiosyncratic play, present the main proposition of the
paper, and characterize the stochastically stable state under intentional dynamics for a variety of
cases.
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2 The Model

2.1 Setup

We consider two populations of size N and M , denoted R and C for row and column, playing
an asymmetric bargaining game. Both row and column players have K strategies, with payoff
functions given by πR(i, i) = ai, π

C(i, i) = f(ai) where i ∈ S = {1, 2, ...,K} and f is positive and
decreasing. We order the strategies such that ai < aj for i < j , so the row player favors contracts
with higher indices, and the column player favors contracts with lower indices. The off-diagonal
payoffs are given by πR(i, j) = πC(i, j) = 0 if i > j and πR(i, j) = λai, π

C(i, j) = λf(aj) if i < j,
where 0 ≤ λ ≤ 1. That is, agents receive some fraction of their demands if the demands together do
not exhaust the surplus, and receive 0 otherwise. The contract game (Young, 1998) corresponds to
λ = 0 and the Nash demand game corresponds to λ = 1. Clearly, the diagonal of the game matrix
constitutes the set of pure Nash equilibria, and they are all strict and Pareto-optimal.

The dynamic is a familiar myopic best-response dynamic with inertia (Kandori et al. (1993)
and Binmore et al. (2003)). The state of the dynamic is described by distributions of strategies in
populations denote by (x, y) (x and y for row and column). Each period, all players are matched
to play the contract game. Each time they are matched, agents revise their strategy with some
probability and play the strategy they played last period with the remaining probability. To specify
strategy revisions, first we denote by BRR(y) (or BRC(x)) the best responses of the row player
(or the column player, respectively) − the pure strategy which maximizes the expected payoff,∑

j πR(i, j)yj (or
∑

j πC(i, j)xj).
We model idiosyncratic behaviors by using multinomial random variables. Specifically, for

the row population each period we draw a multinomial random variable ZR = (ZR0 , Z
R
1 , · · · , ZRK)

with parameters N and τR and suppose that ZR0 agents play the best responses and the remaining
ZR1 ,ZR2 , · · · , and ZRK players idiosyncratically choose strategy 1, 2, · · · , and K. Here the probability
vector τR consists of the probability, τR0 , with which each agent in the row population plays the
best responses and the probabilities, τR1 , · · · , and τRK , with which each agent play the idiosyncratic
strategy 1, 2, · · · , andK. Hence the probability vector τR and its support, that we will define shortly,
play a key role to specify idiosyncratic behaviors of populations. We use a similar multinomial
random variable ZC to capture the idiosyncratic plays of the column population. With this updating
rule, the dynamic yields a well-defined Markov chain (Xt, Yt); we provide an example of such
dynamics in the Appendix for an illustration.

Given a strategy b, we note that {i : b < i ≤ K} is the set of strategies that row population
prefers to b because of the indexing of strategies, so the set {i : b < i ≤ K} can provide a set of
strategies from which an intentional idiosyncratic player draws. From this observation, we set

τRi (b) =
{

0 if 1 ≤ i < b
ε

K−b+1 if b < i ≤ K , τCj (b) =
{

ε
b if 1 ≤ j ≤ b
0 if b < j ≤ K ,

τR0 (b) = 1−
K∑
i=1

τRi (b), τC0 (b) = 1−
K∑
j=1

τCj (b), τR = (τR0 , · · · , τRK), and τC = (τC0 , · · · , τCK). Note that

in an unperturbed process in which no idiosyncratic behavior exists, the set {i : b ≤ i ≤ K} is empty
for all b; no agent plays an idiosyncratic strategy. In an unintentional idiosyncratic process, agents
choose idiosyncratic strategy from the whole strategy set; i.e., {i : b ≤ i ≤ K} = S for all b, which
means the support of error always equals S. The intentional idiosyncratic play distribution is state-
dependent; for example, row only experiments with strategies that would give the idiosyncratic
player a higher payoff when played as part of a pure strategy Nash equilibrium of the unperturbed
game, so that column is best-responding with an offer that exhausts the surplus. This observation
leads to the following definition. We write Z ∼MN (N, τ) if Z follows a multinomial variable with
N draws and a probability vector τ .
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Definition 1. • (Xt, Yt)t∈Z+ is an unpertubed if ZRt ∼MN (N, τR(K+1)) and ZCt ∼MN (M, τC(0))

• (Xt, Yt)t∈Z+ is an U-process if ZRt ∼MN (N, τR(0)) and ZCt ∼MN (M, τC(K + 1))

• (Xt, Yt)t∈Z+ is an I-process if ZRt ∼MN (N, τR(BRR(Yt))) and ZCt ) ∼MN (M, τC(BRC(Xt)))

Clearly both the U-process and I-process are finite state space Markov chains and that the
transition probability matrix of U-process is irreducible and aperiodic, so the chain admits a unique
stationary distribution µ(ε). We are interested in the stochastically stable states namely, those that
have positive weight in the limit of the distribution µ(ε) when ε → 0 following Young (1993a). We
show that I-process is irreducible and aperiodic in the Appendix.

2.2 Unintentional vs Intentional Idiosyncratic Dynamics

The U-process is the standard mutation dynamics encountered in the literature (Kandori et al.,
1993; Young, 1993a) . Analyzing the I-process is the contribution of this paper. Binmore et al.
(2003) show that the stochastically stable state in the U-process is the Kalai-Smorodinsky solution
in the contract game, and the Nash bargaining solution in the Nash demand game. It is also useful
to describe the transitions between states in the U-process; in the contract game they are driven by
mistakes in the population who loses from the transition. Our I-dynamic, in contrast, has agents
only erring in the direction that could benefit them if sufficiently many others did the same; thus
the populations driving transitions are the ones that stand to gain. This difference in the relevant
population mutations drives the differences in the stochastically stable state that the two processes
select.

First, it is easily seen that each contract i is an absorbing state in the unperturbed process, where
we identify the state where all agents in both row and column population play the same strategy
i with contract i. Then following Binmore et al. (2003) we compute the resistance Rij−minimum
number of idiosyncratic players to move from the state i to the state j− in I-process, ignoring
integer considerations:

Rij =

{
N

f(ai)−λf(aj)
f(ai)+(1−λ)f(aj)

if i < j

M
ai−λaj

ai+(1−λ)aj
if i > j

We call trees with Rij edge resistances I-trees. From Theorem 1 in (Young, 1993a), we know that
the I-stable state is contained in the root of the minimal I-tree. In Appendix A we show that the
U-stable state in example 1 is the Kalai-Smorodinsky solution, while stochastically stable state
under the I dynamic is the Nash solution. This is a general difference, as illustrated by the next
proposition where we set a∗N = arg max

s∈[0,1]
sf(s), and a∗G = arg max

s∈[0,1]
sM (f(s))N . We suppose that f is

concave and normalize f in a way that f(0) = 1 and f(1) = 0.

Proposition 1. Suppose the ai = iδ and i ∈ {1, ...1−δδ , 1
δ} for δ > 0. Then we have

(i) If λ ≤ 1,a unique stochastically stable contract in the I-dynamic i∗ exists, and is increasing in
N/M
(ii) If λ = 1 and δ is sufficiently small, the stochastically stable contract i∗ in the I-dynamic ap-
proaches (a∗G, f(a∗G)).
(iii) If M = N and δ is sufficiently small, the stochastically stable contract i∗ in the I-dynamic
approaches (a∗N , f(a∗N )).

Proof. See Appendix B.
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Note that if λ = 1 (the Nash demand game) the I- and U- dynamics select the same outcome
(Young, 1993b). If N = M then the symmetric Nash bargain solution is I-stable. Note also that
if λ ≤ 1 and N is not equal to M , the stochastically stable contract will be closer to the best
contract for the group with lower population-size. Smaller groups are favored because the realized
level of idiosyncratic play is more likely to exceed the critical level to induce a transition, and in
the I dynamic groups benefit from the transitions which their idiosyncratic play induces.

Thus we find that a natural and empirically motivated restriction on idiosyncratic play in
bargaining games may select different outcomes, as well as generating an empirically plausible
transition dynamic in which smaller group size is an advantage, and groups whose idiosyncratic
players induce transitions benefit as a result. For example, N = M and λ = 0 (Contract game).
Then the U-dynamic selects the Kalai-Smorodinsky solution (Young, 1998; Binmore et al., 2003),
and the I-dynamic selects the Nash solution. Our I-dynamic is thus another class of bargaining
interactions in which a standard result of axiomatic cooperative game theory is replicated by the
non-cooperative play of only minimally forward looking individuals with limited information. The
contrast between the I-dynamic and the standard model for the contract game illustrates the
economic intuitions underlying these results. The key differences result from the fact that in the
former transitions are induced by the idiosyncratic play of those who stand to benefit. In the
U-dynamic the opposite is the case because it will always take fewer idiosyncratic players in one
population to induce best responders in the other to shift to a contract that they prefer over the
status quo than to induce them to concede to a less advantageous contract. In the U-dynamic,
the deviations of one population induce the other population to coordinate on a contract that they
strictly prefer to the status quo; while in the I-dynamic deviations by one population must induce
the other population to coordinate on a strictly inferior contract.
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3 Appendix A (Not For Publication)

In Table 1, the I-stable contact is 0, while the U-stable contract is 1. Table 2, consisting of tree
resistances, which is the sum of transition resistances within each tree, illustrates the calculations
for the U-dynamic(3 trees for each root).

Table 2: U-Resistances for Example 1

Root/Trees
0 0.266 0.297 0.266
1 0.341 0.310 0.169
2 0.544 0.371 0.371

Table 3: I-Resistances for Example 1

Root/Trees
0 1.583 1.455 1.830
1 1.500 1.628 1.733
2 1.702 1.689 1.932

Thus the lowest tree, with resistance 7
41 + 1

21 = 0.169 has root 1. The actual tree is given below.

r Contract 0

rContract 1

rContract 2

?�
�
��

1
21

5
41

However, with intentional idiosyncratic play distributions(the I-dynamic), the tree resistances
are given in Table 3. The minimal I-tree has root 0, with resistance 1.455, shown in the tree below.

r Contract 0

rContract 1

rContract 2

�
�
�	

@
@
@R

12
17

36
48
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4 Appendix B (Not For Publication)

4.1 Idiosyncratic Dynamics

The state space is given by Ξ = ∆R ×∆C ,

∆R = {n = (n1, n2..., nK)|
∑

i
ni = N}, ∆C = {m = (m1,m2, ..,mK)|

∑
i
mi = M}

where N is the size of the row population and M is the size of the column population, and each
ni and mi is the number of the row and column agents, respectively, who are playing strategy i.
Given a state, (n,m) ∈ Ξ we define best response functions as follows:

BRR : ∆C → S, m 7→ arg max
i∈S

∑
j∈S

πR(i, j)
mj

M
, BRC : ∆R → S, n 7→ arg max

i∈S

∑
j∈S

πC(i, j)
nj
N

where we break ties by choosing the higher indexed strategy. To model intentional idiosyncratic
play, we consider a discrete time process indexed by t = 1, 2, · · · . Following Kandori et al. (1993)
and Binmore et al. (2003), we define a random best response dynamic:

Xt+1 = αRt
(
ZR0t eBRR(Yt) + ZRt

)
+ (1− αRt )Xt (1)

Yt+1 = αCt
(
ZC0t eBRC(Xt) + ZCt

)
+ (1− αCt )Yt (2)

where Xt = (X1t, X2t, · · · , XKt)T , Yt = (Y1t, Y2t, · · · , YKt)T , T denotes a transpose, ei denotes K
dimensional vector with 1 in the i th position and 0 elsewhere. αRt , α

C
t are independent Bernoulli

random variables taking value 1 with probability ν, which captures inertia. (ZR0t, Z
R
1t, · · · , ZRKt),

(ZC0t, Z
C
1t, · · · , ZCKt) are multinomial random variables with N draws and a probability vector τ and

we use notations, ZRt = (ZR1t, · · · , ZRKt)T , ZCt = (ZC1t, · · · , ZCKt)T . The variables, ZRt and ZCt ,
specify the numbers of agents playing each strategy idiosyncratically, while ZR0t and ZC0t represent
the numbers of agents playing best responses. When v = 0, the dynamic is characterized by full
inertia, and we see that αRt = αCt = 0, Xt+1 = Xt,and Yt+1 = Yt. On the other hand in case
of v = 1, the dynamic is solely driven by the first two terms in (1) and (2). In particular, when
τR = τC = (1, 0, · · · , 0) so we have ZR0t = N, ZC0t = M and ZRt = ZCt = 0, and the best response
functions completely determine the dynamics.

We show that I-process is irreducible and aperiodic. This is straightforward, albeit not triv-
ial, since our non-best-responses are not always supported on the entire strategy space. Given
an absorbing state (n,m) ∈ Ξ in the unperturbed process, how can we get to state (n′,m′) in
a finite number of periods? It suffices to point out that we can get to the state (n0,m0) =
((0, 0, ..., N), (M, 0, 0, ..., 0)), which is where the best responses of both populations are the con-
tract that would be worst for them were it to become an equilibrium, since then the error dis-
tribution is supported on the entire state space, and therefore any state is accessible from an
absorbing state (n,m). Then since any arbitrary state can reach one of absorbing states, the irre-
ducibility follows. The fact that the chain is aperiodic follows as the inertia of the system implies
Pr {(Xt+1,Yt+1) = (n,m)|(Xt,Yt) = (n,m)} > 0 for all n and m. We begin with proofs of parts
(ii) and (iii) and then prove part (i).

4.2 Proof of Proposition 1 (ii), (iii)

We note that the resistance from state i to j in I-dynamics is

Rij =

{
N

f(ai)−λf(aj)
f(ai)+(1−λ)f(aj)

if i < j

M
ai−λaj

ai+(1−λ)aj
if i > j

(3)
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Also from the definition of ai and the concavity of f, we have a2
i > ai−1ai+1 and (f(ai))2 >

f(ai−1)f(ai+1) for all i = 2, ..., 1−δ
δ . Since we will apply naive minimization test, we establish the

following inequalities for each case

Ri,i+1 > Ri−1,i for all i (4)

Ri,i−1 > Ri+1,i for all i (5)

Rij < Rik for all k > j > i (6)

Rij < Rik for all k < j < i (7)

Ri,i+1 < Ri,i−1 for all i < i∗ (8)

Ri,i−1 < Ri,i+1 for all i > i∗ (9)

where i∗ depends on the case that we prove (defined below). First for both cases (i) and (ii) we
observe that (4) and (5) follow from (f(ai))2 > f(ai−1)f(ai+1) and a2

i > ai−1ai+1 and (6) and (7)
follow from the definition of ai and the fact that f is decreasing.
Next we show (8)∼(9) in case (i) of M = N. Let δ > 0.Then there exists i∗N such that ai∗N f(ai∗N ) ≥
aif(ai) for all i. We set i∗ := i∗N in (8) and (9). For i < i∗, we have ai+1f(ai+1) > aif(ai). (8)
follows from ai+1f(ai+1) > aif(ai), and a2

i > ai−1ai+1 since in case (i)

Ri,i+1 < Ri,i−1 if and only if ai−1f(ai) < aif(ai+1)

and
aif(ai+1)
ai−1f(ai)

>
a2
i

ai−1ai+1
> 1

Similarly when i > i∗, we have ai−1f(ai−1) > aif(ai), so (9) follows from ai−1f(ai−1) > aif(ai),and
(f(ai))2 > f(ai−1)f(ai+1).
We establish (8)∼(9) in case (ii) of λ = 1.Again fix δ > 0 and choose i∗G such that (ai∗G)M (f(ai∗G))N >

(ai)M (f(ai))N for all i. We set i∗ := i∗G in (8) and (9), and define

Dδfi :=
f(ai+1)− f(ai)

δ

Then we have the following lemma which is proved in the end of proof.

for i < i∗, Mf(ai) +NaiDδfi > 0 (10)

and
for i > i∗, Mf(ai) +NaiDδfi−1 < 0 (11)

Equation (8) follows from (10) and the fact that Ri,i+1 < Ri,i−1 if and only if NaiDδfi > −Mf(ai)
and similarly equation (9) follows from (11), that Ri,i−1 < Ri,i+1 if and only if NaiDδfi < −Mf(ai)
in case (2) and Dδfi−1 > Dδfi (by the concavity of f).
Now (6)∼(9) imply that the naive minimization tree consists of edges in the left of i∗ pointing to
the right and edges in the right of i∗ pointing to the left (see figure below).

Also (4)∼(5) shows the tree contains the unique cycle having maximal resistance over all edges.
Since ai∗N , ai

∗
N+1, ai∗N−1 → a∗N (case (i)) and ai∗G , ai

∗
G+1, ai∗G−1 → a∗G (case (ii)) as δ → 0, we

conclude the results of the proposition.

Lemma 2. For i < i∗G,Mf(ai) +NaiDδfi > 0 and for i > i∗G,Mf(ai) +NaiDδfi−1 < 0
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Figure 1: Selection of i∗

Proof. Let i < i∗G. Then we have aMi (f(ai))N < aMi+1(f(ai+1))N , hence
(
i+1
i

)M (f(ai+1)
f(ai)

)N
> 1.

Also since f(ai+1) = f(ai) + δDδfi implies f(ai+1)
f(ai)

= 1 + δDδfif(ai)
and x ≥ log(1 + x), x ∈ R, we have

Mf(ai) +NaiDδfi = if(ai)
(
M

1
i

+N
δDδfi
f(ai)

)
≥ if(ai)

(
M log

(
1 +

1
i

)
+N log

(
1 +

δDδfi
f(ai)

))
= if(ai)

(
M log

(
1 +

1
i

)
+N log

(
f(ai+1)
f(ai)

))
> 0

Now let i > i∗G.Then we have aMi−1(f(ai−1))N > aMi (f(ai))N which gives
(
i−1
i

)M (f(ai−1)
f(ai)

)N
> 1.

Also since f(ai−1)
f(ai)

= 1− δDδfi−1

f(ai)
, we have

−(Mf(ai) +NaiDδfi−1) = if(ai)
(
−M 1

i
−N δDδfi−1

f(ai)

)
≥ if(ai)

(
M log

(
1− 1

i

)
+N log

(
1− δDδfi−1

f(ai)

))
= if(ai)

(
M log

(
1− 1

i

)
+N log

(
f(ai−1)
f(ai)

))
> 0

5 Proof of Proposition 1 (i)

Equations (4) ∼ (7) still hold for λ ≤ 1 and M 6= N. First we define a function φδ:

φδ(t) :=
t− λ(t− 1)

t+ (1− λ)(t− 1)
f(δt) + (1− λ)f(δ(t+ 1))
f(δt)− λf(δ(t+ 1))

for t ∈ R+ (12)

Then it is easily seen that

Ri,i+1 < Ri,i−1 if and only if
N

M
< φδ(i)

We first note that

φδ(1) =
1 + (1− λ)f(δ)

1− λf(δ)
> 1 and (13)

φδ(
1− δ
δ

) =
1− δ − λ(1− 2δ)

1− δ + (1− λ)(1− 2δ)
< 1 (14)
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Next we study the sign of derivative of (12)

φ′δ(t) = − 1
(1− 2t+ (t− 1)λ)2 (f(δt)− λf(δt+1))2

×f2(δt) + (1− 2λ)f(δt)f(δt+1)− (1− λ)λf2 (δt+1)︸ ︷︷ ︸
I

+
{

(2− 3λ+ λ2)t+ (−1 + 4λ− 2λ2)− 1
t
λ(1− λ)

}
︸ ︷︷ ︸

II

(
f ′(δt)f(δt+1)− f ′(δt+1)f (δt)

)︸ ︷︷ ︸
III

δt


where we use notations δt := δt, δt+1 := δ(t+ 1). Then using f(δt) > f (δt+1) , we have

I = f2(δt) + (1− 2λ)f(δt)f(δ(t+1))− (1− λ)λf2(δt+1)

> f(δt)f(δt+1) + (1− 2λ)f(δt)f(δt+1)− (1− λ)λf2(δt+1)
> 2(1− λ)f(δt)f(δt+1)− (1− λ)λf2(δt+1)
> (1− λ)f2(δt+1)
> 0

Next for t ≥ 1, since 2− 3λ+ λ2 > 0

II = (2− 3λ+ λ2)t+ (−1 + 4λ− 2λ2)− 1
t
λ(1− λ)

> (2− 3λ+ λ2) + (−1 + 4λ− 2λ2)− λ(1− λ)
> 0

Finally from the fact that f is decreasing and concave, we have −f ′(δt+1) > −f ′(δt) > 0 and so
−f ′(δt+1)f(δt) > −f ′(δt)f(δt) > −f ′ (δt) f(δt+1). Thus

III = f ′(δt)f(δt+1)− f ′(δt+1)f(δt) > 0

so we find φ′δ(t) < 0 for t > 1.Therefore from (13), (14) and φ′δ(t) < 0,there exists a unique t∗ such
that

for t < t∗,
N

M
< φδ(t), and for t > t∗,

N

M
> φδ(t)

and t∗ increases as M increases and decrease as N increases. The existence and properties of i∗ in
the proposition follow from the existence and properties of t∗.
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