
Functional Organization
in Molecular Systems

and the λ-calculus

Dissertation
zur Erlangung des akademischen Grades

Doctor rerum naturalium

Eingereicht an der
Formal- und Naturwissenschaftlichen Fakultät

der Universität Wien

von
Stefan Müller

Institut für Theoretische Chemie und
Molekulare Strukturbiologie

Wien, im Juli 1999



Meinen Eltern

Before we begin:
Thank you, thank you, thank you, . . .

Walter. Was soll man zu diesem Mann noch sagen?
Den Meisterdenkern Peter und Peter. Und Ivo.
Den Gesellen Christoph, Stephan und Alex.
Den Lehrlingen Thomas, Bärbel, Ronke, Susi,
Martin, Jan, Christian, Stefan,
Andreas, Günther, Roman,
Kurt, Wolfgang, Dagmar und Michael.



Zusammenfassung

Biologische Evolution wird in ihrer mathematischen Formalisierung als dy-
namischer Prozeß von Allelen (Genvarianten) gesehen, der von Fitness und
Transmissionsregeln beherrscht wird. Der gegenwärtige Ansatz vernachläs-
sigt, daß Konzepte wie Gen oder Fitness entscheidend vom funktional organi-
sierten Kontext des Phänotyps abhängen. Diesem Zusammenhang kommt
jedoch bei Fragestellungen, die die Entstehung des Lebens oder die großen
Übergänge in seiner Entwicklung betreffen, zentrale Bedeutung zu. Es ist
deshalb notwendig, die Theorie dynamischer Systeme um eine Theorie funk-
tionaler Organisation zu erweitern, deren Anwendungsbereich auf der Ebene
chemischer Reaktionsnetzwerke beginnen sollte.

Die Untersuchung von Entstehung und Entwicklung molekularer Organisa-
tion erfordert eine adäquate Formalisierung der Chemie. In einem ersten dies-
bezüglichen Schritt bedienen wir uns einer Korrespondenz zwischen Grund-
begriffen der Chemie und Konzepten des sogenannten λ-Kalküls, eines syn-
taktischen Systems aus der Theorie der Berechenbarkeit. Moleküle werden
als symbolische Strukturen dargestellt, die ihrerseits mathematische Funktio-
nen repräsentieren; Reaktionen werden als Funktionsanwendungen aufgefaßt,
die weitere Funktionen erzeugen. Diese Modellchemie liefert unter den dy-
namischen Bedingungen eines stochastischen Flußreaktors Organisationen,
die an molekulare Reaktionsnetzwerke erinnern.

Unter einer Organisation verstehen wir dabei eine kinetisch selbsterhaltende
algebraische Struktur. Die Konstituenten einer so definierten Organisation
erhalten einander durch wechselseitige Erzeugung im Reaktor und lassen sich
durch syntaktische sowie algebraische Gesetzmäßigkeiten charakterisieren.
Für den Fall hinreichend einfacher Anfangsbedingungen können die ent-
sprechenden Organisationen mit analytischen Methoden erzeugt werden.

Obwohl grundlegende Eigenschaften der realen Chemie vorläufig vernachläs-
sigt werden, läßt die Vielfalt der generierten Organisationen weitere Un-
tersuchungen vielversprechend erscheinen. Wir präsentieren verschiedene
Ansätze zu einer realistischeren Formalisierung der Chemie. Diese betref-
fen vor allem Wechselwirkungsspezifität, Symmetrie, Reversibilität, Massen-
erhaltung und Mehrproduktreaktionen. Außerdem skizzieren wir mögliche
Modifikationen der dynamischen Aspekte unseres Modells.



Abstract

The current mathematical framework of evolutionary theory lacks a theory
of functional organization. The evolutionary process is codified as a prob-
lem in the dynamics of alleles (gene variants) governed jointly by fitness and
transmission rules. Yet concepts like gene and fitness depend on a function-
ally organized context known as phenotype. To address problems like the
origin of life or the major transitions in evolution, the traditional dynamical
systems approach has to be extended with a theory of functional organiza-
tion. At the most basic level such a theory must apply to molecular reaction
networks.

The study of the emergence and evolution of molecular organization requires
an adequate formalization of chemistry. In the absence of such a formalism,
we start out by exploring a formal metaphor for chemistry called λ-calculus, a
syntactical system at the core of computation theory. Molecules are regarded
as symbolic structures denoting mathematical functions. Chemical reactions
appear as functional applications constructing new functions. Placing this
model chemistry in the dynamical setting of a stochastic flow-reactor gene-
rates a diversity of organizations reminiscent of molecular reaction networks.

The main conceptual result is a useful working definition of what we mean by
an organization. An organization is a kinetically self-maintaining algebraic
structure. The members of an organization maintain each other in the reactor
by mutual production, and they can be characterized by syntactical and
algebraic regularities. As a consequence, we apply analytical methods to
determine the organizations generated by sufficiently simple seeding sets.

Despite doing violence to chemistry-as-we-know-it, the kinds of organiza-
tions generated in our model invite further investigation. We outline several
approaches to a more faithful formalization of chemistry. In particular, we
address issues pertaining to interaction specificity, symmetry, reversibility,
mass conservation, and multiple product reactions. We also discuss modifi-
cations to the dynamical setting of our model.
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1 Introduction

It is the teleonomic apparatus, as it functions when a mutation
first expresses itself, that lays down the essential initial conditions
for the admission, temporary or permanent, or rejection of the
chance-bred innovative attempt. It is teleonomic performance,
the aggregate expression of the properties of the network of con-
structive and regulatory interactions, that is judged by selection;
and that is why evolution itself seems to be fulfilling a design,
seems to be carrying out a “project” [...].

Jacques Monod
Chance and Necessity

1.1 Biology’s missing theory

Biology can claim two theories: Darwin’s natural selection and Mendel’s
rules of genetic transmission. Both are correct, and their joint operation can
be nicely formalized. Yet together they are insufficient to account for the
history of life as we know it.

Consider what is lacking. The formalization of Mendelism and Darwinism,
known as the “Modern Synthesis”, codified the evolutionary process as a
problem in the dynamics of alleles (gene variants) governed jointly by fitness
and transmission rules [15, 26, 56]. Yet concepts like gene and fitness depend
on a functionally organized context known as organism (phenotype). Our
current formal framework for theorizing about evolution assumes, therefore,
the prior existence of organisms, that is, the very entities it is meant to ex-
plain. Such a theory cannot be reasonably expected to account for the origin
of biological organization, nor for the transitions to new organizational grades
– from self-reproducing molecules to self-maintaining metabolisms (or vice
versa), to modern cells containing organizational elements that once were
autonomous simple cells, to multicellular units with cellular differentiation,
to cognizing entities. Evolution is not a process that solely shifts allele fre-
quencies, it also is a process that constructs, modifies and repackages the
phenotypic organizations that these alleles give rise to and relative to which
they “make sense”. Reasoning about the origin and evolution of phenotypes
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requires at least an adequate representation (and a fortiori a definition) of
“organization”.

These remarks are not meant to downplay the achievement of the Modern
Synthesis. The genius of its crafters consisted precisely in abstracting away
the organism. They recognized that the synthesis of natural selection and ge-
netics need not await a “theory of the organism” which could not be achieved
in the 1930s. That theory is still unavailable, and the broader goal of this
thesis is to explore the mathematical framework enabling such a theory to
be developed.

This is new territory, and we cannot refer to a widely agreed upon and shared
understanding of the problem. We begin, therefore, with a more detailed
introduction emphasizing how we have come to understand its nature.

1.2 The methodological problem

A theory of biological organization must be grounded in a representation of
what organisms are composed of. At its lowest level the theory must be
grounded in chemistry. Chemistry is an illuminating level of analysis for
locating the formal difficulties towards a theory of organizaton in biology.

The central mathematical tool employed in population biology and genet-
ics is dynamical systems theory. Quite generally, when reasoning about the
world in terms of dynamical systems, we associate with each relevant entity a
variable that holds the value of a quantifiable property. For example, in the
context of a chemical reaction network one such quantity is the concentration
of molecules. The interactions among entities are viewed as causing their as-
sociated quantities to change. In our example a chemical reaction causes the
concentrations of specific molecules to change. Formalizing these changes as
coupled systems of nonlinear differential equations (or difference equations)
requires the explicit advance specification of the relevant variables and their
couplings. In chemistry this means knowledge of which reactants generate
which products, as well as the advance knowledge of all molecules partici-
pating in a chemical reaction network. The collective phenomena captured
by this methodology are self-sustaining patterns of quantitative change, such
as, fixed points, limit cycles, or strange attractors in phase space (that is,
concentration space in the chemical example).
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The very success of dynamical systems theory is based on a serious limita-
tion: the entities constituting the system are kept outside of the theoreti-
cal description. What the formalism describes is the endogenous change of
quantities associated with the entities, but never any change of the entities
themselves. The formal machinery of dynamical systems does not permit
the constituent entities of a system to modify each other to generate new
constituents that have not been specified in advance; the formalism is not
equipped for handling situations in which new variables are generated from
within the system, and hence is not equipped for reasoning about innovation.
The dynamical systems formalization requires the constituents to be already
in place, and, hence, cannot be used to theorize about their formation.

To make this even more explicit, suppose that we wish to study the con-
sequences of adding a new molecule to an existing network. At the level
of the dynamical systems formalism there is clearly no way to deduce the
cascade of new molecules (and hence new variables) that may be generated.
Consequently, there is no way to formally reason about whether and how the
network organization is going to be affected by this perturbation. We would
have to actually perform the experiment in a real system, figure out the
chemical network consequences, and translate them back into a set of cou-
pled differential equations describing the kinetic behavior of the innovated
network. This is post hoc story telling.

Traditional dynamical systems can give rise to new units of aggregation, or
collective phenomena, such as vortices in turbulent flow, which express dy-
namical feed-backs among the constituent parts of a system. However, if
dynamical systems are extended to include constructive dependencies, we
should expect new kinds of aggregates expressing invariant relationships of
mutual production among the components. Phenomena of this kind do cap-
ture aspects of biological organization which cannot be represented with tra-
ditional dynamics alone. Chemistry is but the simplest physical level where
this situation is realized. We have come to call such systems constructive
dynamical systems.

1.3 Adaptation and organization

To place this framing in an evolutionary perspective, contrast it with ap-
proaches to adaptation based solely on population genetics or various flavors
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of genetic algorithms [40], classifier systems [28] or genetic programming [35].
Like chemistry, many natural or artificial adaptive systems consist of a pop-
ulation dynamics involving objects of a combinatorial nature. These objects
might be RNA sequences [19], neural networks, cellular automata [10], as-
sembler code programs [46], strategies in a game [37] or any other kind of
discrete structure. The combinatorial nature of these objects makes the set
of possible variations astronomically large, such that typical population sizes
can realize only a vanishingly small fraction of all possibilities. The standard
approach to innovation is randomization, where new objects are generated
from old by random modification. As a consequence, the process of adap-
tation (which includes optimization) becomes a search engine driven by a
population dynamics which sorts and filters objects according to a perfor-
mance (or fitness) criterion.

Yet at the phenotypic level biological objects do not vary in the same uncon-
strained fashion as their underlying genotypes. To understand the process
of innovation requires a representation of the phenotype. The innovation
of molecular networks is a case in point. Their constrained variation de-
rives from the generative character of chemistry, the consequence of which
is the endogenous and specific (as opposed to random) generation of fur-
ther molecular components in response to a random perturbation (such as
the modification of an existing molecule, or the import of a new one). Seen
from this perspective, chemistry has the flavor of a “logic” characterized
by a consequence relation enabling new predicates to be inferred from old.
Chemistry emphasizes an algebra of objects whose internal structure causes
specific action yielding further objects that enable further action. The closure
of such generative action establishes a concept of organization that permits
to distinguish the random origin of a perturbation from its far less random
consequences. An organization differs from an arbitrary collection of entities
to the extent that it channels change along specific “directions” while being
resilient along others. Organizations can adapt, but both the emergence and
innovation of organization need not always be adaptations. To address these
issues requires a framework where organizations are outcomes of a process
rather than being assumed to begin with.
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1.4 An abstraction of chemistry

To produce a theory of molecular organizations, how they arise and how they
evolve, we must formalize chemistry appropriately (chemical kinetics alone is
insufficient). Chemistry comes complete with its own theoretical structure.
Yet quantum mechanics is inadequate for our purposes, because it does not
formalize molecules as agents of transformation. From the vantage point of
quantum mechanics a molecule is a probability amplitude for electrons and
nuclei. The point of view we take is one of chemistry as a set of structures
which are at the same time “functions” from that set into itself. By fail-
ing to formalize molecules as structure-action relations, quantum mechanics
misses the algebraic aspect of chemistry which makes it a medium for the
organizations we are seeking. What molecular biology lacks is a high level
description of chemistry capable of abstracting molecular actions, of plugging
them together (like electronic components), and of generating and analyzing
the network closures of these actions under a variety of boundary conditions.

Identifying an appropriate level of abstraction for chemistry that is useful to
molecular and evolutionary biology is a daunting task. It is equally clear,
however, that the utility of such an abstraction goes well beyond the pur-
poses described here, and its implications are limited solely by our imag-
ination (think of “industrial metabolisms”). Yet it is not certain whether
such a theory is attainable. In particular, it is not obvious which aspects of
chemistry must be abstracted.

Our research tactic follows two guidelines. First, we seek a model that has
“theoretical appeal”. The value-added of a scientific theory consists in con-
necting chemistry (and entailed natural phenomena) with powerful math-
ematical concepts and their associated mathematical theories. We aim at
generality. The point here is explicitly not to concoct one’s arbitrary private
chemistry for the sole purpose of imitating a particular biological organi-
zation on a computer. Second, we begin with rather general features of
chemistry, attempting refinements and adjustments as the research program
proceeds. We explore the consequences of already existing and familiar for-
malisms when used as if they were chemistry. This implies that we produce
generalized chemistries which do violence to chemistry-as-we-know-it. We try
to understand why extant formalisms fail, and we suggest ways of modifying
them or defining new ones.
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1.5 Organization of this work

We continue with a brief sketch of our approach and the current status of
research. We discuss the analogy between chemistry and the λ-calculus, and
present a base model of functional organization (chapter 2).

The λ-calculus is the canonical mathematical theory about functions as rules
of computation. We give an introduction to its syntax and basic theory, and
consider determinacy and reduction strategy (chapter 3).

Our exploration of organization space starts with an exhaustive enumeration
of λ-terms. Next, we consider iterated actions within a set of λ-terms, thereby
switching off the dynamical aspect of the base model. As our main result,
we present a variety of organizations generated by simple λ-terms (chapter
4).

After drawing the conclusions from our results (chapter 5), we outline sev-
eral approaches to a more faithful formalization of chemistry, and discuss
modifications to the dynamical aspect of the base model (chapter 6).



2 A model of functional organization

In the following we provide an executive summary of the published work
which established this area of research [16, 17, 18].

2.1 Chemistry as a calculus

Chemistry deals with structures that encode potential actions. The reactive
interaction of one structure with another triggers a specific joint action which
yields further structures. Chemists have developed a variety of symbolisms
and a suite of informal rules to express these structures and their combinatory
relationships. If we turn to mathematics for a theory concerned with an
analogous situation, we are invariably led to the theoretical foundations of
computation.

At its most basic level computation requires a collection of mechanisms (de-
vices with predictable local behavior) for constructing syntactical objects and
for establishing equivalences between syntactical objects by means of rewrite
rules1. A representation of computation in this spirit is provided by a formal-
ism known as the λ-calculus, which is a theory of symbolic structures that
encode possible transformations of just such symbolic structures.

λ-calculus

The λ-calculus, a syntactical system, is a convenient means to reason about
functions as rules of computation. Symbolic structures (λ-terms) which are
defined inductively are intended to denote mathematical functions. The defi-
nitions are inspired by basic computational concepts, such as the declaration
(abstraction) of a variable, or the application of a function. An elementary
calculation is represented by a rewrite rule (reduction) that replaces a vari-
able in the function term by the argument term (substitution). A term that
cannot be rewritten anymore is said to be in normal form, it corresponds
to the result of an evaluation. Reduction strategy, i.e. the order of applying
the rewrite rule, does not affect the resulting normal form - if it exists. See
Chapter 3 for a detailed presentation.

1Arithmetics, for example, establishes equality between syntactically distinct objects
such as 6 + 5 − 4 and 3 × 2 + 1 by lawfully rewriting them into syntactically identical
objects.
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The basic idea underlying our ansatz is to cartoon molecules as symbolic
representations of functions expressed in λ-calculus. Such functions act on
each other to produce new functions. The analogy between chemistry and
the λ-calculus can be summarized as follows:

chemistry . . . λ-calculus

physical molecule . . . symbolic representation of a function

molecule’s behavior . . . function’s action

chemical reaction . . . evaluation of a functional application

It is helpful to make a distinction between being a function and having a
function. The latter, more intuitively semantic notion, emerges within the
context of other objects that are functions and a population dynamics (see
below). Our model makes this distinction explicit: molecules are functions
to begin with; which functions they can have is but a restatement of the
question about the structure of molecular organization.

2.2 Why λ-calculus?

The choice of the λ-calculus as a toy-theory of chemistry is motivated by its
role in the wider context of computation and logic.

• The most important analogy to chemistry is that the λ-calculus imple-
ments a set Λ of elements (λ-terms) such that every element can be
rigorously and consistently interpreted as a function from Λ into Λ.

• In the λ-calculus there is no syntactical distinction between a “func-
tion” and an “argument”. Each λ-term can be in both roles.

• The λ-calculus is a formal bridge between computation and logic. It
represents (in conjunction with a type system) a proof-theory of con-
structive logic in natural deduction style. This connection suggests
an interpretation of a chemical reaction as a kind of deduction, and
chemical synthesis (e.g., several reactions in a row) as a kind of proof
construction.
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2.3 The base model

A base model was implemented to explore the consequences of this ansatz
[16, 17, 18].

The base model has two core ingredients. As outlined above, the first consists
in a rough analogy between, on the one side, molecules and their construc-
tive interactions, and, on the other side, λ-terms representing functions and
their mutual application. The second core ingredient consists in a simple
constrained dynamics mimicking a well-stirred flow reactor. In the present
context this means an ensemble of functions meeting randomly and inter-
acting by application. The interacting functions are treated here as “cat-
alysts”, remaining unchanged themselves, yet inducing change (generating
a new function as the value of the application). The dynamical constraint
results from imposing a finite lifetime on each function in the system, after
which it disappears. The behavior of such a reactor is explored by means of
computer experiments.

The main observation is that self-maintaining invariant sets of functions
emerge with time. A set is self-maintaining, if the pairwise application of
all functions in the set regenerates at least that set2. Self-maintenance is
here the consequence of a constructive feed-back loop which occurs when the
constructive actions induced by the components of a system lead to the con-
tinuous regeneration of these same components. In our model the invariant
properties of a self-maintaining set turn out to consist in (i) a specific gram-
mar defining the syntax of all members of the set, thus separating “inside”
(member objects) from “outside” (non-member objects) despite the absence
of space, and (ii) a collection of algebraic laws which axiomatize the mutual
actions among the members. Hence, once convergence to a self-maintaining
(fixed-point) collective has occurred, a concise description of it can be given
independently of the generic λ-calculus within which the convergence took
place. (To understand the biochemistry of the liver, a medical student need
not understand the evolution of livers, let alone all of chemistry.) The al-
gebraic structure together with its kinetic persistence define our notion of
“organization”.

2Such a set reproduces itself at the set level without necessarily involving individual
elements that are self-reproducing.
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A random aggregation of functions (or molecules) would track every exoge-
nous change imposed on them. An organization, in contrast, is a collection of
functions distinguished by both a resistance to change and a capacity to chan-
nel change in specific ways. These properties are captured by the algebraic
laws characterizing an organization, and which constrain an organization’s
response to “subtractive” and “additive” perturbation. By subtractive per-
turbation we mean the removal of a subset of functions participating in an
organization, and by additive perturbation we refer to the exogenous intro-
duction of new functions.

Organizations arising in the base model are robust. They resist subtractive
perturbations, because the remaining functions restore lost members. Such
“generating sets” implement a constructive version of redundancy and fault-
tolerance. Organizations also resist additive change, because the permanent
inclusion of a newly added function requires that its interactions spawn path-
ways which eventually feed back to secure its own production. Such pathways
are highly constrained by the laws specific to an organization. However, when
permanent inclusion occurs, the algebraic laws of the old organization are not
destroyed, but rather extended with additional equations. Finally, different
organizations can be combined into higher level organizations, while main-
taining their autonomy. When this occurs, their coexistence is structural,
because it is mediated by a “glue” consisting of cross-interaction products
which do not belong to either component organization.



3 λ-calculus

In this presentation of the λ-calculus we follow the encyclopaedic book by
Barendregt [3], as well as the excellent textbook by Hankin [27].

3.1 History

The λ-calculus is a theory about functions as rules, rather than as graphs.
“Functions as rules” is the old fashioned notion of function and refers to the
process of going from argument to value, a process coded by a definition. The
idea, usually attributed to Dirichlet, that functions could also be considered
as graphs, that is, as set of pairs of argument and value, was an important
mathematical contribution. Nevertheless the λ-calculus regards functions
again as rules in order to stress their computational aspects.

For example, we may think of functions given by definitions in ordinary
English applied to arguments also expressed in ordinary English. Or, more
specifically, consider functions as given by programs for machines applied
to, that is, operating on, other such programs. In both cases we have a
type free structure, where the objects of study are at the same time function
and argument. This is the starting point of the type free λ-calculus. In
particular a function can be applied to itself. For the usual notion of function
in mathematics, as in Zermelo-Fraenkel set theory, this is impossible.

There are three aspects of the λ-calculus:

• Foundations of mathematics
• Computations
• Pure λ-calculus

3.1.1 Foundations of mathematics

The founders of the λ-calculus and the related theory of combinatory logic
had two aims in mind:

(1) To develop a general theory of functions, dealing, for example, with
formula manipulations.
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(2) To extend that theory with logical notions providing a foundation for
logic and (parts of) mathematics.

The first point was explicitly stressed by Schönfinkel and Curry, the founders
of combinatory logic, and it was also implicit in the work of Church founding
the λ-calculus.

Unfortunately all attempts to provide a foundation for mathematics failed.
Church’s original system [7] was inconsistent as shown by Kleene and Rosser
[30]. As was pointed out in [1], Frege’s well known inconsistent theory [21]
essentially contains the λ-calculus; so that was in fact another failure.

Curry [11] did provide a consistent theory fulfilling the first point above
(pure combinatory logic), but the logical part of this theory is too weak to
be adequate as a foundation.

After the Kleene-Rosser paradox Church was discouraged in his foundational
program. Church [8] gave a consistent (as shown by the Church-Rosser the-
orem) subtheory of his original system dealing only with the functional part.
This theory is the λI-calculus.

Curry on the other hand did not want to “run away from the paradoxes”. He
proposed to extend pure combinatory logic in order to fulfil the second aim
and to give at the same time an analysis of the paradoxes [12, 13]. Although
Curry’s program has not been completed, some progress has been made; see
[50, 52, 1].

There are also relations between the λ-calculus and proof theory. The λ-
calculus used in this context is, however, the typed λ-calculus.

3.1.2 Computations

Recursion theory

The part of the λ-calculus dealing only with functions turned out to be quite
successful. Using this theory Church proposed a formalization of the notion
“effectively computable” by the concept of λ-definability. Kleene [29] showed
that λ-definability is equivalent to (partial) recursiveness and in the mean-
time Church formulated his thesis, stating that recursiveness is the proper
formalization of effective computability. Turing [54, 55] gave an analysis of
machine computability and showed that the resulting notion (Turing com-
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putability) is equivalent to λ-definability.

After the discovery of the paradoxes, Kleene translated results on λ-definability
and obtained several fundamental recursion theoretic theorems; see [9].

Computer Science

The rise of the computer in the last few decades resulted in an extensive
development of programming languages. The λ-calculus possesses several
features of programming languages and their implementations. For eaxmple,
bound variables in the λ-calculus correspond to formal parameters in a pro-
cedure; and the type free aspect corresponds to the fact that for a machine
a program and its data are the same, namely a sequence of bits.

By the analysis of Turing it follows that in spite of its very simple syn-
tax, the λ-calculus is strong enough to describe all mechanically computable
functions. Therefore the λ-calculus can be viewed as a paradigmatic pro-
gramming language. This certainly does not imply that one should use it
to write actual programs. What is meant is that in the λ-calculus several
programming problems, specifically those concerning procedure calls, are in
a pure form. A study of these can bear some fruits for the design and analysis
of programming languages.

For example, several programming languages have features inspired by λ-
calculus (perhaps unconsciously so). In Algol or Pascal, procedures can be
arguments of procedures. In LISP the same is true and moreover a procedure
can be the output of a procedure. For relations between λ-calculus and
programming languages, see [36, 42, 24].

Because of the similarities of λ-calculus and some programming languages,
ideas for the semantics of the former may be applied to the latter. Landin
gave a semantics of Algol by translating this language in λ-calculus and by
describing an operational semantics for the latter. For further work on this
kind of semantics, see [44, 45, 43, 5].

In the meantime there was a need for a denotational semantics of program-
ming languages (in order to express what is the functional meaning of a
program). A similar problem had occurred in a pure form in the λ-calculus.
Due to the type free character it was not clear how to construct models for
that theory. One would want a set X in which its function space can be
embedded, i.e. X ∼= X→X; for cardinality reasons this is impossible. The
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difficulty was overcome by Scott, who constructed λ-calculus models by re-
strictingX→X to continuous functions onX (with a proper topology). Only
then did it become clear how to develop a denotational semantics for pro-
gramming languages. This is because Scott’s method is powerful enough to
give also a meaning to the following two features of programming languages:
recursion and data types. See [51, 38, 53, 25].

3.1.3 Pure λ-calculus

λ-calculus, as treated in the rest of this section, is not directed towards
applications as above, but is studied for its own interest.

The formal (type free) λ-calculus, a theory denoted by λ, studies functions
and their applicative behaviour. Therefore application is a primitive oper-
ation of λ. The function f applied to the argument a is denoted by fa.
Complementary to application there is abstraction. Let t(x) be an expres-
sion possibly containing x. Then λx.t(x) is the function f that assigns to
the argument a the value t(a). That is

(λx.t(x))a = t(a). (β)

That one considers only application and abstraction for unary functions is
reasonable, following an observation of Schönfinkel [49]. He remarked that
functions of several variables could be reduced to unary functions. If f(x, y)
is e.g. a binary function, then define fx = λy.f(x, y) and a = λx.fx. Then
one has (ax)y = fxy = f(x, y).

The theory λ has as terms the set Λ (λ-terms) built up from variables using
application and abstraction. The statements of λ are equations between λ-
terms, and λ has as its only mathematical axioms the scheme (β). (Some
trivial identifications like λx.x = λy.y have to be made however.)

As was mentioned above, the λ-calculus studies functions as rules. Because
of this intensional character, the linguistic means to describe these functions,
the λ-terms, play a central role. By the theory λ some of these λ-terms
are identified (so-called convertible terms). But it is important to note that
the theory λ is itself not the focus of interest; it is just a way to generate
the principal objects, namely the terms modulo convertibility. Only then
does the real λ-calculus start: the study of these objects using all possible
mathematical tools.
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The following questions show how these objects are studied:

(1) What kind of functions (on terms) are definable (as term)?

(2) Let M,N be non-convertible terms. Is it reasonable to identify M and
N (taking a less intensional view)?

(3) What is the correspondence between the applicative behaviour and the
syntactic form of terms?

Some typical answers to question (1) are as follows:

• Restricted to numerals exactly the recursive functions are definable.
• The range of all definable functions on terms is always infinite or a
singleton.

• There is a natural topology on terms, the so-called tree topology.
The topology is obtained by associating to terms so-called Böhm trees
and then translating the Scott topology on these trees to terms.

Question (2) can be approached by either giving consistency proofs of natural
extensions of λ or by constructing models for λ and considering the set of
equations true in these models. The theory λη (extensional λ-calculus) is
obtained by the first method. The theories B (which identifies terms with
the same Böhm tree) and K∗ (which identifies solvably equivalent terms) are
formed by the second method.

With regard to question (3), let F be a λ-term. One has e.g. the following:

• F is solvable iff F has a head normal form.

This relates the syntactical notion of head normal form, i.e. F =
λx1 . . . xn.xiM1 . . .Mm, to solvability, which indicates applicative be-
haviour, i.e. ∃n ∃P1 . . . Pn : FP1 . . . Pn = I ≡ λx.x.

• F is βη-invertible iff F is a finite hereditary permutation.

Here βη-invertibility means that there exists a λ-term G such that in
the extensional λ-calculus F ◦ G = G ◦ F = I, where ◦ denotes the
composition of functions. The finite hereditary permutations are some
syntactically defined class of λ-terms.

Now that we have seen the questions and some results, let us indicate how
the subject is treated. There is some connection between pure λ-calculus and



λ-calculus 16

number theory. The connection is superficial, in that methods and results are
totally different, but it is nevertheless good to indicate it in order to obtain
some feeling of how the theory λ is organized.

An interesting aspect of number theory is that results about Z and Q are
sometimes proved via results about R or C . Similarly results about λ-terms
are sometimes proved via “continuous” models. In this context the Böhm
trees play an important role. These possibly infinite trees may be compared
to the continued fraction of the reals. Each tree is the limit of finite trees.
A natural topology on λ-terms can be defined using the Böhm trees. With
respect to this topology the λ-calculus operations are continuous. This con-
tinuity theorem has several applications. Thus the introduction of models
and continuity considerations make the theory really λ-calculus.

3.2 Notation and basic theory

We now start our study of the λ-calculus. First, we turn to the question of
notation and present the inductive definition of λ-terms and some auxiliary
notions such as bound and free variables and sub-terms. Next, we present
the theory λ. Central to the theory is the notion of substitution – the driv-
ing force behind function application. The theory λ is a theory of equality
between terms; as already indicated, we are trying to capture intensional
equality, but we also show how the theory can be extended to capture exten-
sional equality. Finally, we consider the consistency and completeness of the
theories presented.

3.2.1 Notation

λ-terms are constructed from variables, the symbol λ and parentheses:
x1, x2, . . .
λ
(, )

Of course, this does not define the class of λ-terms; however, it does define
the alphabet which can be used. We now give the inductive definition of
λ-terms.
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Definition 3.1 (λ-terms)
The class Λ of λ-terms is the least class satisfying the following conditions,
where x denotes an arbitrary variable:

(1) x ∈ Λ
(2) M ∈ Λ ⇒ (λxM) ∈ Λ
(3) M,N ∈ Λ ⇒ (MN) ∈ Λ

Terms of the form (λxM) are called abstractions; they correspond to func-
tions in programming languages. The variable following the abstractor λ
corresponds to the formal parameter of a function, whereas M corresponds
to the function body. Thus

(λxx)
should be compared to

(LAMBDA (x) (x))

in LISP, or to
FUNCTION id(x:integer):integer;

BEGIN id:=x END;

in PASCAL3.

Terms of the form (MN) are called applications; the function term M is
applied to the argument term N .

To avoid the proliferation of parentheses, we will use the following nota-
tion constantly. It results from Schönfinkel’s reduction of functions of many
variables to those of one variable.

Definition 3.2 (Notation)
Let the symbol ≡ denote syntactic equality. With �x ≡ x1, . . . , xn and �N ≡
N1, . . . , Nn we define:

(1) λx1 . . . xn.M ≡ λ�x.M ≡ (λx1(λx2 . . . (λxnM) . . . ))

(2) MN1 . . . Nn ≡ M �N ≡ (. . . ((MN1)N2) . . .Nn)

3The λ-term and the LISP program are type-free. This is in contrast to the PASCAL
function which is strongly typed. Both the λ-term and the LISP program are actually
equivalent to a whole set of PASCAL functions with an element for every type.
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Example 3.3
The following are λ-terms:

(i) λx.x ≡ (λxx)
(ii) xy ≡ (xy)
(iii) λxy.yx ≡ (λx(λy(yx)))
(iv) λxy.yx(λz.xz) ≡ (λx(λy((yx)(λz(xz)))))

The symbol λ acts as a variable binder in a similar fashion to
∫
. . . dx in

integral calculus and the quantifiers ∃ and ∀ in predicate calculus. A variable
x occurs bound in a λ-term M if x is in the scope of a λx; x occurs free
otherwise.

Definition 3.4
BV (M) is the set of bound variables in M and can be defined inductively as
follows:

BV (x) = {}
BV (λx.M) = BV (M) ∪ {x}
BV (MN) = BV (M) ∪ BV (N)

FV (M) is the set of free variables in M and can be defined inductively as
follows:

FV (x) = {x}
FV (λx.M) = FV (M) \ {x}
FV (MN) = FV (M) ∪ FV (N)

When FV (M) is the empty set {}, M is said to be closed. Closed terms are
sometimes called combinators and the class of all such terms is Λ0.

In the following, we also make use of the notion of subterm. A subterm of a
λ-term M is some part of the term which is itself a λ-term.

Definition 3.5
Sub (M) is the set of subterms of M and can be defined inductively as follows:

Sub (x) = {x}
Sub (λx.M) = Sub (M) ∪ {λx.M}
Sub (MN) = Sub (M) ∪ Sub (N) ∪ {MN}

When we want to prove something about λ-terms we will often use the tech-
nique of structural induction. A proof by structural induction has a very
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similar structure to a proof by mathematical induction. The basis consists of
a demonstration that the predicate holds for each of the primitive terms and
the inductive step includes a separate case for each type of composite term
in the language (using a hypothesis which states that the predicate is true
for the immediate subterms of the composite term). To be more concrete,
we give a simple example of a λ-term property.

Example 3.6
Every term in Λ has balanced parentheses.

Proof
Basis:
Variables – trivial since variables contain no parentheses.

Inductive Step:
Consider the abstraction λx.M ≡ (λxM). By the inductive hypothesis we
have that M is balanced. Thus λx.M is also balanced.

Consider the application MN ≡ (MN). By the inductive hypothesis twice,
we have that both M and N are balanced. Thus MN is also balanced. �

We conclude this section by defining the class of λ-contexts. Often we will
need the notion of a partially specified term, that is a term with “holes” in
it. Such a term gives a context into which we can put other terms (to fill the
holes). The ability to construct contexts will clarify some definitions (e.g.
the notion of compatibility) and generalize some results (e.g. the Substitution
Lemma). We give an inductive definition of contexts for λ-terms:

Definition 3.7 (Contexts)
The class ΛC of λ-contexts is the least class satisfying:

(1) x, [] ∈ ΛC

(2) C[] ∈ ΛC ⇒ (λxC[]) ∈ ΛC

(3) C1[], C2[] ∈ ΛC ⇒ (C1[]C2[]) ∈ ΛC

If C[] ∈ ΛC and M ∈ Λ, then C[M ] denotes the result of placing M in the
holes of C[]. In this act free variables of M may become bound in C[M ].

Example 3.8
Let C[] ≡ λx.x(λy.[]y) and M ≡ λz.xz. Then:
C[M ] ≡ λx.x(λy.(λz.xz)y)
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3.2.2 The theory λ

We can construct formulas from the terms; a theory then establishes certain
formulas as axioms and provides rules of inference which enable us to derive
new formulas. The true formulas (either axioms or formulas that can be
derived from the rules) are called theorems.

We now present a theory of equality (or convertibility) between λ-terms.
There are a number of reasonable requirements for such a theory:

(1) An application term should be equal to the result obtained by applying
the function term to the argument term.

For example, suspending your knowledge of PASCAL, imagine that
PASCAL functions can be higher-order (take functions as arguments
and produce them as results) and that we have defined a higher-order
variant of id. Then id(fun) should surely be the same function as fun
(for any appropriate parameter fun).

(2) Equality should be an equivalence relation.

(3) Equal terms should be equal in any context.

These requirements go some way to motivating the following theory λ:

Definition 3.9
The theory λ has formulas of the form M = N , with M,N ∈ Λ, and the
following axioms and rules:

(1) (λx.M)N =M [x := N ] (β)

(2) M =M
M = N ⇒ N =M
M = N, N = L ⇒ M = L

(3) M = N ⇒ MZ = NZ
M = N ⇒ ZM = ZN
M = N ⇒ λx.M = λx.N (ξ)

The axiom (β) corresponds to function evaluation. The notation M [x := N ]
should be read “replace free occurrences of x in M by N” (some care must
be taken – we return to this in the next section). Readers should compare
the axiom (β) to their intuitive understanding of function calls in a familiar
programming language.
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The rule (ξ) is sometimes called the rule of weak extensionality. The classical
presentation of the theory also included two additional axioms: (α) which
allows a change of bound variable names and (η) which introduces extensional
equality; see the next sections for a discussion.

We write λ � M = N to mean that M = N is a theorem of λ and read the
theorem as “M and N are convertible”. The notation of the last section and
this theory are variously called λ-calculus, λβ-calculus and λK-calculus.

The following quite useful theorem gives an illustration of what can be proved
in λ.

Theorem 3.10 (Fixed Point Theorem)

∀F ∈ Λ ∃X ∈ Λ : FX = X

Proof
Let W ≡ λx.F (xx) and X ≡WW . Then:

X ≡ WW ≡ (λx.F (xx))W = F (WW ) ≡ FX �

X is called a fixed point of F ; if we apply F to X, the resulting term is
convertible with X. In a more familiar context, for example, 1 is a fixed
point of the squaring function. The Fixed Point Theorem may seem quite
surprising at first sight; It says that all terms have fixed points. For some
terms, such as λx.x, which is the idendity function, this is obvious (all terms
are fixed points of the identity) but for others it is not so clear. However,
the proof of the Fixed Point Theorem is constructive; it gives a recipe for
constructing a fixed point of any term.

Example 3.11
Let F ≡ λxy.xy. Then the above construction leads to:

W ≡ λx.(λxy.xy)(xx) = λx.λy.(xx)y ≡ λxy.xxy

The required fixed point is thus X ≡ (λxy.xxy)(λxy.xxy). We check this by:

X ≡ (λxy.xxy)(λxy.xxy) = λy.(λxy.xxy)(λxy.xxy)y

FX ≡ (λxy.xy)((λxy.xxy)(λxy.xxy)) = λy.((λxy.xxy)(λxy.xxy))y
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Fixed points are important in Computer Science. They play a fundamental
role in the semantics of recursive definitions. For example, the factorial
function

F (N) =

{
1 if N = 0

N ·F (N − 1) otherwise

can be λ-defined by

fac n = if (zero n)1 (×n(fac(pred n)))

which leads to the following fixed point equation:

fac = (λfn.if (zero n)1 (×n(f (pred n)))) fac

Of course, we must be careful about reading too much into this equation: if,
zero, 1, ×, pred are just formal symbols, they have no deeper significance in
the λ-calculus which we have defined so far. We shall return to this point
later.

3.2.3 Substitution

We now return to the substitution operation used in the axiom (β). A
naive approach to defining this operation leads to the problem of “variable
capture”. This problem occurs when we naively substitute a term containing
a free variable into a scope where the variable becomes bound. For example:

(λxy.xy)y �= λy.yy

The free variable y in the left hand term is analogous to a global parameter in
programming; in the right hand side it has become confused with the bound
variable y (formal parameter). We will consider two different approaches to
this problem before selecting the latter for use in the rest of this section.

The Classical Approach

The first approach is based on Church’s original treatment of substitution.
We use the following definition:
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(1) x[x := N ] ≡ N
(2) y[x := N ] ≡ y, if x �≡ y
(3) (λx.M)[x := N ] ≡ λx.M
(4) (λy.M)[x := N ] ≡ λy.(M [x := N ]), if x �∈ FV (M) or y �∈ FV (N)
(5) (λy.M)[x := N ] ≡ λz.(M [y := z])[x := N ], otherwise, z new
(6) (M1M2)[x := N ] ≡ (M1[x := N ])(M2[x := N ])

We consider the rules 3 to 5 in a bit more detail. Rule 3 applies when the
variable being substituted is bound at the outermost level; in this case there
will be no free occurrences of x in the remainder of the expression and thus
the substitution has no effect. Rule 4 is applicable when variable capture
cannot occur: either x does not occur free in the body (in which case the
substitution is a void operation again) or the variable that is bound at the
outermost level does not occur in the term being substituted (no capture);
in either case the substitution can be pushed through the λ to apply to the
body. The final rule 5 applies when variable capture does occur, that is when
substitution does take place and the variable bound at the outermost level
does occur free in the term being substituted; in this case, we rename the
bound variable to a completely new variable.

Rule 5 is valid under the assumption that terms which are similar, having the
same free variables and differing only in their bound variables, are equivalent.
This is reasonable if we think about programming languages:

FUNCTION id(y:integer):integer;

BEGIN id:=y END;

is clearly the same function as the earlier one with the same name; we have
only changed the formal parameters. In Church’s original presentation of
the λ-calculus there was an additional axiom (α) which formalizes the above
discussion:

(α) λx.M = λy.M [x := y], y �∈ FV (M)

The Variable Convention

For our second definition of the substitution operation we use the following
strategy:

• Identify two terms if one can be transformed into the other by a re-
naming of bound variables.

• Consider a λ-term as a representative of its equivalence class.
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• Interpret substitution as an operation on the equivalence classes, using
representatives according to a variable convention.

We start with two definitions:

Definition 3.12 (Change of Bound Variables)
M ′ is produced from M by a change of bound variables if M ≡ C[λx.N ] and
M ′ ≡ C[λy.(N [x := y])] where y does not occur at all in N and C[] is a
context with one hole.

Definition 3.13 (α-congruence)
M is α-congruent to N, written M ≡α N , if N results from M by a series of
changes of bound variables.

Example 3.14
According to the above definitions, we have:

(i) λx.x ≡α λy.y
(ii) λx.xy ≡α λz.zy �≡α λy.yy
(iii) λx.x(λx.x) ≡α λx′.x′(λx.x) ≡α λx′.x′(λx′′.x′′)

In contrast to the classical approach, we prefer to identify equivalent terms
on a syntactic level. We also adopt a convention about the choice of bound
variables.

Definition 3.15 (Congruence Convention)
Terms that are α-congruent are identified: M ≡α N ⇒ M ≡ N

Definition 3.16 (Variable Convention)
If M1, . . . ,Mn occur in a certain context then in these terms all bound vari-
ables are chosen different from free variables.

Definition 3.17 (Substitution)
With the above conventions, we can define substitution as follows:

(1) x[x := N ] ≡ N
(2) y[x := N ] ≡ y, if x �≡ y
(3) (λy.M)[x := N ] ≡ λy.(M [x := N ])
(4) (M1M2)[x := N ] ≡ (M1[x := N ])(M2[x := N ])

The variable capture problem has disappeared! A free occurrence of y in N
in the context

(λy.M)[x := N ]
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would breach the variable convention, so we would have to use a different
representative of the α-equivalence class of λy.M (this is precisely what rule
5 in the classical approach makes explicit).

In the following, we will adopt this convention of substitution because it
is easier to work with (there are less cases to consider in proofs). As an
illustration of its use, we return to our first example:

(λxy.xy)y ≡ (λxz.xz)y = λz.yz

We now present a result which allows us to reorder substitutions:

Lemma 3.18 (Substitution Lemma)
If x �≡ y and x �∈ FV (L), then:

M [x := N ][y := L] ≡M [y := L][x := N [y := L]]

Proof
By induction on the structure of M . �

A major property of functional languages is referential transparency, which
allows equals to be substituted with equals. The formulation of this property,
also referred to as Leibniz’ Law, is:

Lemma 3.19 (Referential Transparency)
Let C[] be a context. Then:

N = N ′ ⇒ C[N ] = C[N ′]

Proof
By induction on the structure of C[]. �

3.2.4 Extensionality

Convertibility covers intensional equality; two terms are equal if they encode
the same algorithm in some sense. This does not equate some terms which
we might naturally think of as equal. For example, λx.Mx andM both yield
the same result MN when applied to a term N (provided that x does not
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occur free in M). According to the classical notion of extensional equality
λx.Mx is equal to M , but the formula λx.Mx =M is not a theorem of λ.

There are two ways we can extend λ to make the above formula a theorem.
Firstly, we can add a new rule, giving the new theory λ + ext:

(ext) Mx = Nx ⇒ M = N, x �∈ FV (MN)

Alternatively, we can add a new axiom, giving the theory λη (as proposed
by Church):

(η) λx.Mx =M, x �∈ FV (M)

In fact, we have the following result:

Lemma 3.20
λ + ext and λη are equivalent.

Proof
First we show λ + ext � η:
Indeed, (λx.Mx)x = Mx by (β). Hence if x �∈ FV (M), then λx.Mx = M
by (ext).

Now we show λη � ext:
Let Mx = Nx with x �∈ FV (MN). Then λx.Mx = λx.Nx by (ξ) and
M = N by (η) twice. �

The calculus extended with (ext) or (η) is called the λη-calculus. Practically,
from the point of view of functional programming, the λη-calculus is not as
important as the λ-calculus since the axiom (η) is not normally implemented.
The term λx.Mx is a weak head normal form and is thus distinguishable from
M ; the former is a value, the latter may lead to a non-terminating computa-
tion. However, the λη-calculus does have some theoretical significance which
we shall return to later.

3.2.5 Consistency and completeness

For a theory to be useful, there must be some theorems and not all closed
formulas should be theorems. The former is satisfied provided that the theory
has at least one axiom. The latter is slightly trickier and is quite a fragile
property; a theory which satisfies this property is called consistent.
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To formalize the concept, we start with some definitions:

Definition 3.21
An equation is a formula of the form M = N with M,N ∈ Λ.
An equation is closed if M,N ∈ Λ0.

Definition 3.22 (Consistency)
If T is a theory then T is consistent, written Con(T ), if it does not prove
every closed equation.
If E is a set of equations then λ+ E is formed by adding the equations of E
as axioms to λ. E is consistent, also written Con(E), if Con(λ+ E).

Both of the theories that we have dealt with, λ and λη, are consistent (see
corollary 3.53).

The property of consistency is fairly fragile; it can be disturbed by adding a
single equation. This motivates the following definition.

Definition 3.23 (Incompatibility)
M,N ∈ Λ are incompatible, written M#N , if ¬Con(M = N).

Example 3.24
x(yz)#(xy)z, i.e. application is not associative.

Proof
Assume that x(yz) = (xy)z, then:

λxyz.x(yz) = λxyz.(xy)z by ξ three times
⇒ (λxyz.x(yz))MNO = (λxyz.(xy)z)MNO for arbitrary M, N, O
⇒ M(NO) = (MN)O by β three times
⇒ LM(NO) = L(MN)O for arbitrary L
⇒ M = MN choosing L ≡ λxy.x
⇒ λx.x = N choosing M ≡ λx.x

Since N was arbitrary, all terms are equal to λx.x. �

Before we turn to the notion of completeness, we need some more definitions:

Definition 3.25 (Normal Forms)
If M ∈ Λ, then M is a β-normal form, written β-nf or nf, if M has no
subterms of the form (λx.R)S.
M has a β-nf if there exists an N such that M = N and N is a β-nf.
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Example 3.26
Consider the following λ-terms:

(i) λx.x is a nf
(ii) (λxy.x)(λx.x) has λyx.x as a nf
(iii) (λx.xx)(λx.xx) does not have a nf

Definition 3.27
If M ∈ Λ, then M is a βη-nf if M has no subterms of the form (λx.R)S or
λx.Tx with x �∈ FV (T ).
M has a βη-nf if there exists an N such that M = N and N is a βη-nf.

We now state several facts about normal forms:

Fact 3.28
M has a β-nf. ⇔ M has a βη-nf.

Proof
See corollary 15.1.5 in [3]. �

Fact 3.29
If M,N ∈ Λ are distinct β-nfs then λ ��M = N .
(Similarly, if M,N ∈ Λ are distinct βη-nfs then λη ��M = N .)

Proof
See theorem 3.2.10 (3.3.11) in [3]. �

Fact 3.30
If M,N ∈ Λ are distinct βη-nfs then M#N .

Proof
See corollary 10.4.3 in [3]. �

The use of βη-nfs in fact 3.30 is essential; λx.yx and y are distinct β-nfs but
not incompatible – they are η-equivalent.

We can now proof the completeness of λη for terms having a nf:

Theorem 3.31 (Completeness)
Suppose M and N have nfs.
Then either λη �M = N or λη + (M = N) is inconsistent.

Proof
By fact 3.28 the terms M and N have βη-nfs, say M ′ and N ′.
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Case M ′ ≡ N ′.
Then λη �M =M ′ ≡ N ′ = N .

Case M ′ �≡ N ′.
Then by fact 3.30 one has M ′#N ′, hence λη + (M = N) is inconsistent. �

3.2.6 Summary

The convertibility relation, being an equivalence relation, partitions the class
of λ-terms. When dealing with equivalence classes, it is convenient to use
canonical representatives. The obvious representatives to use in our study of
the λ-calculus are the normal forms. (Take care: What about terms, such
as Ω ≡ (λx.xx)(λx.xx), which have no normal form? If we equate them we
get an inconsistent theory; see later.) In the next section, we will study the
notion of reduction, in which terms are successively simplified towards normal
form. The computational motivation for this study is the correspondence
between the process of reduction and the familiar notion of evaluation used
in functional programming languages.

3.3 Reduction

Convertibility is a symmetric relation and therefore does not correspond very
closely to our intuitions about computing with terms. In this section we
study reduction, a relation on terms which better fits our intuitions. Having
introduced the basic concepts, we present the Church-Rosser Theorem; this
is a central theorem in the λ-calculus and we study it in some detail. The
other key theorem is the Standardization Theorem; before presenting this we
require the notion of head normal form.

3.3.1 Introduction

We have suggested that normal forms should be used as canonical representa-
tives for the convertibility equivalence classes. In a more computational view
normal forms are regarded as “results” produced from λ-term “programs”.
This view is justified by observing that the calculation of the β-normal form
of a term consists in the repeated use of the axiom (β); subterms of the form
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(λx.R)S – hencefort called β-redexes (reducible expressions) – are replaced by
R[x := S]. We have already identified this process with function application
in functional languages. We will pursue this view further.

We motivate the following material by considering again the example of the
factorial function. We saw that the factorial function can be λ-defined by
fac which is the fixed point of a term:

fac = (λfn.if (zero n)1 (×n(f (pred n)))) fac

Following the construction used in the proof of the Fixed Point Theorem, we
obtain a term Y which computes the fixed point of a given term:

Y ≡ λf.(λx.f(xx))(λx.f(xx))

The factorial of 0, for example, may thus be translated into the following
λ-term program:

(Y(λfn.if (zero n)1 (×n(f (pred n))))) 0

Consider now the normal form of this term. We can produce the β-normal
form by repeatedly applying the axiom (β); in outline, we perform the fol-
lowing steps4:

(Y(λfn.if . . . )) 0 = (λfn.if . . . )(Y . . . ) 0

= (λn.if (zero n)1 (×n((Y . . . )(pred n)))) 0

= if (zero 0 )1 (×0 ((Y . . . )(pred 0 )))

= if true 1 . . .

= 1

Throughout this derivation we have used the convertibility relation intro-
duced in the last section. Convertibility is symmetrical, indeed it is an
equivalence relation, but we have used it in a non-symmetrical way. The
factorial of 0 is 1, so we are happy to consider the term 1 as the result of
the above computation, but it is a little harder to see the original program
as the value of 1 . The latter view would associate an infinite set of values
with terms such as 1 .

4In the first step we used a defining property of fixed point combinators such as Y:
YF = F (YF )
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In this section, we will study some new relations between λ-terms, notably
→β (one-step β-reduction) and �β (β-reduction), the reflexive, transitive
closure of →β. We will see that �β is closely related to = but is not sym-
metric; each = in the above derivation, other than the one in the first step,
could be replaced by →β.

In performing reduction, we are faced with a problem of strategy. For exam-
ple, after the first step of the above derivation there are two subterms of the
form (λx.R)S:

(λfn.if . . . )(Y . . . )

and

(Y . . . )

We chose to reduce the first term but consider what would happen if we con-
sistently chose to reduce the subterm involving the fixed point combinator:
we would never get to the result, we would merely construct a larger and
larger term!

Making the wrong choice is not always so catastrophic, for example:

(λxy./(+ x y)2 )((λz.+ z 1 )4 )6 →β (λy./(+((λz.+ z 1 )4 )y)2 )6

→β /(+((λz. + z 1 )4 )6 )2

→β /(+(+ 4 1 )6 )2

but also:

(λxy./(+ x y)2 )((λz.+ z 1 )4 )6 →β (λxy./(+ x y)2 )(+ 4 1 )6

→β (λy./(+(+ 4 1 )y)2 )6

→β /(+(+ 4 1 )6 )2

The above discussion should pose two questions in the reader’s mind:

• Given a term and a number of reduction sequences from that term
which all terminate in a normal form, is it possible that some of the
sequences might terminate with different normal forms?
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• Given that some choices of reduction strategy appear to be better than
others in some situations (for example the bottomless pit of (Y . . . )),
is there a best way of choosing what to do next?

The first question is closely related to the issue of determinacy; computa-
tionally, the question amounts to asking if we can get different results from a
program depending on how we execute it. A corollary of the Church-Rosser
Theorem, which we will present below, guarantees that the answer to this
question is no.

The second question is less precisely formulated; the Standardization The-
orem, also presented below, addresses the question by giving a reduction
order which is guaranteed to terminate with normal form if any reduction
sequence does, but if best is also meant to be optimal then the question is
more complicated – see [14] for a more detailed discussion of this topic.

3.3.2 Notions of reduction

Reduction may be viewed as a special form of relation on λ-terms. Why
special? Recall the discussion of the constraints on equality in section 3.2.2;
it is reasonable to place some of the same constraints on reduction. For
example, if one term reduces to another, then it should do so in any context.
On the other hand, bearing in mind our earlier discussion, we should not
expect a reduction relation to be an equivalence. We make the following
definitions:

Definition 3.32
R ⊆ Λ× Λ is compatible if

(M,M ′) ∈ R ⇒ (C[M ], C[M ′]) ∈ R

for all M,M ′ ∈ Λ and all contexts C[] with one hole.

Definition 3.33
R ⊆ Λ× Λ is an equality relation if it is a compatible equivalence relation.

Definition 3.34
R ⊆ Λ×Λ is a reduction relation if it is compatible, reflexive and transitive.
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We now turn to describing how a one-step reduction relation, a reduction
relation and an equality relation can be defined from a given relation. The
basic technique is to take closures of the given set; to make the set satisfy
some property, we add elements, in an appropriate way, until the set does
satisfy the property. For example, consider a subset of A × A for some set
A; to make the subset a reflexive relation on A, we add the pair (a, a) for all
a ∈ A – this generates the reflexive closure of the original subset.

We call an arbitrary relation on Λ, a notion of reduction. For example, the
notion of reduction that we will be particularly interested in is:

β = {((λx.M)N,M [x := N ]) | M,N ∈ Λ}

Given two notions of reduction, R1 and R2, we sometimes write R1R2 for
R1 ∪R2; notably in the case that R1 is β and R2 is η, we write βη.

The one-step reduction relation induced by some notion of reduction R, writ-
ten→R, is the compatible closure of R. The closure is explicitly constructed
as follows:

Definition 3.35 (One-step R-reduction)

(M,N) ∈ R ⇒ M →R N

M →R N ⇒ MZ →R NZ
M →R N ⇒ ZM →R ZN
M →R N ⇒ λx.M →R λx.N

The notation M →R N should be read as “M R-reduces to N in one step”
or “N is an R-reduct of M”. We have already seen the relation →β, in this
case we often say that “M reduces to N in one step” or “N is an reduct of
M”.

The reduction relation, written �R, is the reflexive, transitive closure of
the one-step reduction relation. While, as its name implies, the one-step
reduction relation allows a single step of reduction, the reduction relation
allows many (including zero – allowed by reflexivity). The reflexive transitive
closure is defined formally as follows:
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Definition 3.36 (R-reduction)

M →R N ⇒ M �R N

M �R M
M �R N, N �R L ⇒ M →R L

For the notation M �R N , read “M R-reduces to N”.

Finally, we consider R-equality (also called R-convertibility), written =R.
This is the equivalence relation generated by �R. To generate the equiv-
alence relation, we must take the symmetric closure of the relation. But
care must be taken; given some reflexive, transitive relation, the symmetric
closure is lo longer transitive in general. Thus, having taken the symmetric
closure, it is necessary to take the transitive closure again:

Definition 3.37 (R-convertibility)

M �R N ⇒ M =R N

M =R N ⇒ N =R M
M =R N, N =R L ⇒ M =R L

For the notation M =R N , read “M is R-convertible to N”.

We have the following result for these relations:

Proposition 3.38
→R, �R and =R are all compatible.

Proof
For →R, the proof is immediate from the definition.
For �R and =R, the proof is by induction on the definition. Since we have
not seen this kind of induction before, we illustrate the proof for �R:

Basis:
M �R N because M →R N :
Since →R is compatible we have C[M ] →R C[N ] and thus C[M ] �R C[N ]
by definition.

M �R N because M ≡ N :
Trivial.

Inductive Step:
M �R N because M �R L and L�R N :
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By the inductive hypothesis twice we have C[M ] �R C[L] and C[L] �R

C[N ], and thus C[M ]�R C[N ] by definition. �

We now turn to the notion of redex and normal form:

Definition 3.39
An R-redex is a term M such that (M,N) ∈ R for some term N ; in this
case N is called an R-contractum of M .
A term M is called an R-normal form (R-nf) if it does not contain any
R-redex; a term N is an R-nf of M if N is an R-nf and M =R N .

In the following we will need a result which gives some constraints on the
form of terms which are related by the one-step reduction relation:

Proposition 3.40
M →R N ⇔ M ≡ C[P ], N ≡ C[Q] and (P,Q) ∈ R for some P,Q ∈ Λ
where C[] has one hole.

Proof
(⇒)
By induction on the definition of →R:

M →R N because (M,N) ∈ R:
Trivial with C[] = [].

M →R N because M ≡ SZ, N ≡ TZ and S →R T :
The induction hypothesis applies to the reduction from S to T , and thus
there is a context C[] such that S ≡ C[P ] and T ≡ C[Q] with (P,Q) ∈ R.
Thus we can take the context C[]Z to complete the proof.

The other cases are similar.

(⇐)
By the compatibility of →R. �

This proposition motivates the following definition:

Definition 3.41
Let M ≡ C[∆] where C[] has one hole. Write

M
∆→R N

if ∆ is an R-redex with contractum ∆′ and N ≡ C[∆′].
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A corollary of the above proposition gives us some, not unexpected, results
relating reduction and normal forms:

Corollary 3.42
Let M be an R-nf, then:

(1) There is no N such that M →R N .
(2) M �R N ⇒ M ≡ N

Proof
(1) By the above proposition and the definition of R-nf.
(2) By (1), since �R is the reflexive, transitive closure of →R. �

We are now ready to present the Church-Rosser Theorem.

3.3.3 The Church-Rosser Theorem

We start by introducing the diamond property:

Definition 3.43 (Diamond Property)
Let � be a binary relation on Λ, then � satisfies the diamond property,
written � |= 3, if for all M,M1,M2:

M �M1 ∧M �M2 ⇒ ∃M3 :M1 �M3 ∧M2 �M3

If there are two diverging �-steps from some term and� satisfies the diamond
property, then there is always a way to converge again.

Definition 3.44 (Church-Rosser)
A notion of reduction R is said to be Church-Rosser (CR) if �R |= 3.

We then have the following theorem:

Theorem 3.45 (Church-Rosser Theorem)
Let R be CR, then:

M =R N ⇒ ∃Z :M �R Z ∧N �R Z

Proof
By induction on the definition of =R:
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M =R N because M �R N :
Choose Z ≡ N .

M =R N because N =R M :
Trivial.

M =R N because M =R L and L =R N :
By the inductive hypothesis twice we have:

∃Z1 :M �R Z1 ∧ L�R Z1 and ∃Z2 : L�R Z2 ∧N �R Z2

Therefore, by the fact that R is CR:

∃Z3 : Z1 �R Z3 ∧ Z2 �R Z3

By transitivity of �R we get the desired result:

M �R Z3 and N �R Z3 �

The Church-Rosser Theorem has a useful corollary:

Corollary 3.46
Let R be CR, then:

(1) If N is an R-nf of M then M �R N .
(2) A term can have at most one R-nf.

Proof
(1) Let M =R N , where N is a R-nf. Then by the Church-Rosser Theorem
there is a Z such that M �R Z and N �R Z. But since N is an R-nf, we
have N ≡ Z by corollary 3.42 (2).
(2) Let N1 and N2 both be R-nfs of M . Then M =R N1 and M =R N2 and
so N1 =R N2. By the Church-Rosser Theorem there is a Z to which both
R-nfs reduce, thus N1 ≡ Z ≡ N2 by corollary 3.42 (2). �

Therefore, if we can demonstrate that β is CR, we will have answered our
first question. In fact the above corollary tells us more; not only does it
guarantee unicity of normal forms, it also guarantees that if a term has a
normal form then it will be possible to reduce the term to it.

To demonstrate that β is CR we must show that �β |= 3. First some
notation: if � is some binary relation on a set A then we write �∗ for its
transitive closure and we have:

� |= 3 ⇒ �
∗ |= 3
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This result can be justified by consideration of the following diagram:

-

?

The axes represent diverging reductions, the side of each small square rep-
resents a single step. The small internal squares, some of which are shown
with dashed lines, can all be completed by appealing to the CR property of
�. So if we could show that the reflexive closure of→β satisfied the diamond
property, we would have finished. Alas, this approach is too simple; consider
the following term:

(λx.xx)((λx.x)(λx.x))

We have the following two diverging reductions:

(λx.xx)((λx.x)(λx.x)) →β ((λx.x)(λx.x))((λx.x)(λx.x))

(λx.xx)((λx.x)(λx.x)) →β (λx.xx)(λx.x)

In the second case there is only one redex after the next reduction:

(λx.xx)(λx.x) →β (λx.x)(λx.x)

But there is no way of converging to this term by one step in the first case. So
we cannot directly apply the above result to show that β is CR. The approach
that we will take involves introducing a new relation which is “sandwiched”
by the reflexive closure of →β and �β and which has �β as its transitive
closure.

We define the relation �1. This relation is reflexive and allows multiple →β

steps in one big step. We read M �1 N as “M grand reduces to N”.

Definition 3.47 (Grand Reduction)

M �1 M

M �1 M ′ ⇒ λx.M �1 λx.M ′

M �1 M ′, N �1 N ′ ⇒ MN �1 M ′N ′

M �1 M ′, N �1 N ′ ⇒ (λx.M)N �1 M ′[x := N ′]
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It is easy to see that→β is included in�1. In the above example both of the
diverging →β steps are also�1 steps. There are two more possible�1 steps
from (λx.xx)((λx.x)(λx.x)): the first just states reflexivity and the second
results in the term (λx.x)(λx.x).

Evidence that �1 is weaker than �β is furnished by the fact that:

(λx.xx)((λx.x)(λx.x)) �β λx.x

But the corresponding grand reduction requires at least two steps.

Lemma 3.48
�1 |= 3
Proof
By induction on the definition of M �1 M1:
We show that for all M2 such that M �1 M2 there is an M3 such that
M1 �1 M3 and M2 �1 M3.

M ≡M1:
Choose M3 ≡M2.

M ≡ λx.P , M1 ≡ λx.P ′ with P �1 P ′:
By the definition of Grand Reduction M2 must be of the form M2 ≡ λx.P ′′

with P �1 P ′′. By the induction hypothesis P ′ and P ′′ have a common
reduct, say P ′′′. Choose M3 ≡ λx.P ′′′.

M ≡ PQ, M1 ≡ P ′Q′ with P �1 P ′, Q�1 Q′:
By the definition of Grand Reduction M2 can have two forms.

M2 ≡ P ′′Q′′ with P �1 P ′′, Q�1 Q′′:
By the induction hypothesis P ′ and P ′′ (respectively Q′ and Q′′) have
a common reduct, say P ′′′ (respectively Q′′′). Choose M3 ≡ P ′′′Q′′′.

M2 ≡ R′′[x := Q′′], P ≡ λx.R with R�1 R′′, Q�1 Q′′:
By the definition of Grand Reduction P ′ ≡ λx.R′ with R �1 R′.
By the induction hypothesis R′ and R′′ (respectively Q′ and Q′′) have
a common reduct, say R′′′ (respectively Q′′′). It follows that M1 ≡
(λx.R′)Q′

�1 R′′′[x := Q′′′] and M2 ≡ R′′[x := Q′′] �1 R′′′[x := Q′′′]
(the latter by induction on the definition of R′′

�1 R′′′).

M ≡ (λx.P )Q, M1 ≡ P ′[x := Q′] with P �1 P ′, Q�1 Q′:
Again M2 can have two forms: M2 ≡ (λx.P ′′)Q′′ or M2 ≡ P ′′[x := Q′′]. The
appropriate argumentation is similar to the previous case. �
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Lemma 3.49
�β is the transitive closure of �1.

Proof
It is easy to see that the reflexive closure of →β is included in �1; it is also
easy to see that �1 is included in �β. Since �β is the transitive closure of
the reflexive closure of →β, it is also the transitive closure of �1. �

Finally, we have the result that we have been waiting for:

Theorem 3.50
β is CR.

Proof
By the above lemmata:

Since �1 |= 3, we also have �∗
1 |= 3. That is, �β |= 3. �

Therefore, using the corollary of the Church-Rosser Theorem, we know that
β-nfs are unique and that, if a term has a β-nf, it is possible to reduce the
term to that β-nf. This allows us to prove the consistency of the theory λ.
But first, we need to prove the following two propositions:

Proposition 3.51

M =β N ⇔ λ �M = N

Proof
(⇒) By induction on the definitions of the relations involved.
(⇐) By induction on the length of the proof of M = N . �

Proposition 3.52
If M,N ∈ Λ are distinct β-nfs, then λ ��M = N .

Proof
Suppose λ � M = N , i.e. M =β N . Then M would have two β-nfs, M and
N , which contradicts the corollary of the Church-Rosser Theorem. �

Corollary 3.53 (Consistency)
The theory λ is consistent.

Proof
By the previous proposition one has λ ��M = N for distinct β-nfs M,N . �
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We can also define a notion of reduction which is related to the extensional
theory λη:

η = {(λx.Mx,M) | M ∈ Λ, x �∈ FV (M)}
We can define one-step η-reduction, η-reduction and η-convertibility in the
standard way. It is then possible to address the question, if η is CR; however,
a more interesting question is whether the derived notion βη is CR. It turns
out that both η and βη are CR (see theorems 3.3.7 and 3.3.9 in [3]). The
consistency of λη follows by an argumentation similar to the case of λ.

We now continue our study of the notion of reduction β. In the following,
we omit the symbol β in →β, �β, =β, β-redex, β-nf and simply write →,
�, =, redex, nf.

3.3.4 Head normal forms

We now introduce a variant of normal form: head normal form. Head normal
forms play an important role in the theory and they are much closer to the
concept of “result” employed in lazy functional programming languages, as
we shall see.

We start with some formal definitions:

Definition 3.54
M ∈ Λ is a head normal form (hnf) if M is of the form

λx1 . . . xn.xM1 . . .Mm

where n,m ≥ 0. In this case x is called the head variable.
If M is of the form

λx1 . . . xn.(λx.M0)M1 . . .Mm

where n ≥ 0, m ≥ 1 then (λx.M0)M1 is called the head redex of M .
A redex is internal if it is not a head redex.

Example 3.55
The following λ-terms are head normal forms:

(i) x
(ii) xx, xy
(iii) λx.x, λx.y
(iv) λxy.x((λz.z)y)
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Definition 3.56
If M

∆→ N and ∆ is the head redex of M, then we write M →h N and we
also write �h for the many-step reduction relation.

Similarly, if M
∆→ N and ∆ is an internal redex of M, then we write M →i N

and we also write �i for the many-step reduction relation.

Definition 3.57
If P and Q are two redexes in an expression M and the first occurrence of
λ in P is to the left of the first occurrence of λ in Q then we say that P is
to the left of Q. If P is a redex in M and it is to the left of all the other
redexes then P is the leftmost redex.

Notice that the head redex of a term is always the leftmost redex, but not
conversely. Consider:

λxy.x((λz.z)y)

This term is a hnf (i.e. it has no head redex) and so the the leftmost redex
is the internal redex:

(λz.z)y

Unlike normal forms, a term does not usually have a unique head normal
form. For example:

(λx.x(II))z where I ≡ λx.x

has hnfs:

z(II) and zI

However, since any term has only one head redex, every term which has a
hnf also has a principal head normal form. It is obtained by reducing the
head redex at each stage until the hnf is reached. The principal head normal
form of the above example is z(II).

Head normal forms play a crucial role in the computability theory associated
with the λ-calculus. There must be some way of coding partial functions
– functions which are undefined for some elements in the domain. In do-
main theory, partial functions can be made into total functions by adding
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an undefined element ⊥ to the co-domain. In the λ-calculus, the solution
is to use a class of terms to represent the undefined element. The first at-
tempt at solving this problem involved equating all the terms without normal
form and then using some canonical representative. However, this leads to
inconsistency because neither

λx.xIΩ where I ≡ λx.x and Ω ≡ (λx.xx)(λx.xx)

nor

λx.xKΩ where K ≡ λxy.x

has a nf, but it is easy to show that λx.xIΩ#λx.xKΩ:

λx.xIΩ = λx.xKΩ ⇒ (λx.xIΩ)K = (λx.xKΩ)K

⇒ KIΩ = KKΩ

⇒ I = K

in contradiction to I#K by proposition 3.52.

Instead, we equate all terms which do not have a head normal form (this is
a proper subclass of the class of terms without normal form). This leads to
no inconsistency, a canonical representative is Ω.

Practical lazy functional programming systems even stop some way short of
hnf. Most lazy systems evaluate terms to weak head normal form.

Definition 3.58
M ∈ Λ is a weak head normal form (whnf) if M is of the form:

xM0 . . .Mn or λx.M ′

That is, lazy systems do not evaluate inside λs.

3.3.5 The Standardization Theorem

In the following we will need to trace a redex through a reduction sequence.
Of course the redex may be transformed through the sequence. For example,
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in the following sequence

(λxy.(λvw.xv)y)M)N

→ (λy.(λvw.Mv)y)N

→ (λvw.Mv)N

→ λw.MN

the underlined redexes are clearly related though different. A descendant of
a redex is called a residual. In the above example there is no residual of
the original redex in the final term; it has been reduced in the final step. A
formal treatment of residuals can be found in [31].

Definition 3.59
A reduction sequence

M0
∆0→M1

∆1→M2
∆2→ . . .

is a standard reduction if ∀i ∀j < i : ∆i is not a residual of a redex to the
left of ∆j (in the term Mj).

An alternative description of a standard reduction is as follows: after the
reduction of a redex ∆, all the λs to the left of ∆ are marked indelibly; no
redex whose first λ is marked can be further reduced.

Definition 3.60
If there is a standard reduction from some term M to some other term N ,
then we write M �s N .

Notice that any head reduction sequence is a standard reduction sequence.

Before we can prove the Standardization Theorem, we must state a result
which allows us to factor reductions into a sequence of head reductions fol-
lowed by a sequence of internal reductions.

Proposition 3.61

M � N ⇒ ∃Z :M �h Z �i N

Proof
See Lemma 11.4.6 in [3]. �
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The details of the proof use some additional theory which is beyond the scope
of this treatment; it relies on two observations:

• If M →i M ′
�h N , then there is an equivalent reduction sequence

M �h M ′′
�i N .

• Any reduction sequence M � N is of the form:

M �h M1 �i M2 �h M3 �i . . .�i N

The intuition behind the first observation is the difference between call-by-
value and call-by-name; an internal redex is an argument, so if we pre-
evaluate it we only need to do it once, whereas if we do not pre-evaluate
it then it may be duplicated. Since any reduction is either a head reduction
or an internal reduction, the second observation is straightforward.

We then have the Standardization Theorem:

Theorem 3.62 (Standardization Theorem)

M � N ⇒ M �s N

Proof
By induction on the length of N :
Let M � N . By the previous result, we have:

∃Z :M �h Z �i N

There are two cases to consider:

Case 1.
N is a variable, say x. Then Z ≡ N and soM �h N . Since a head reduction
is standard, we are done.

Case 2.
N ≡ λx1 . . . xn.N0N1 . . . Nm with n +m > 0.
Then Z is of the form λx1 . . . xn.Z0Z1 . . . Zm with Zi � Ni for 0 ≤ i ≤ m.
By the induction hypothesis Zi �s Ni and the result follows. �

Thus we are able to answer the second question posed in the introduction:
since we know from the corollary of the Church-Rosser Theorem that if M
has a normal form N then M � N , then by the Standardization Theorem
we know that a standard reduction sequence will lead to the normal form.
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3.3.6 Summary

In this section we have studied various aspects of reduction. We have seen
how this concept is related to the usual notion of evaluation used in func-
tional languages. The two key results are the Church-Rosser Theorem for
β-reduction, which guarantees determinacy of the evaluation process, and
the Standardization Theorem which identifies a canonical evaluation order
for the reduction process.



4 An exploration of organization space

4.1 Notation

In this chapter we will use a nonconventional way of parenthesizing λ-terms
due to Revesz [48].

Definition 4.1 (λ-terms)
The class Λ of λ-terms is the least class satisfying the following conditions,
where x denotes an arbitrary variable:

(1) x ∈ Λ
(2) M ∈ Λ ⇒ λx.M ∈ Λ
(3) M,N ∈ Λ ⇒ (M)N ∈ Λ

Example 4.2
The following are λ-terms:

(i) λx.x
(ii) (x)y
(iii) λx.(y)x
(iv) λx.λy.((y)x)λz.z

The traditional way of putting the arguments of a function between parenthe-
ses has been suggested by the process of function evaluation. In the so-called
applicative order of evaluation, the argument of a function is computed be-
fore application. The conventional λ-notation has already departed from the
traditional notation by using (MN) instead of M(N). Here we go one step
further by using (M)N , which reflects the so-called normal order evaluation
strategy, where the function itself is analyzed before the argument.

However, the main reason for using this notation is its simplicity. The conven-
tional λ-notation often requires the use of parentheses both in the function
and in the argument part of a λ-term. That may become quite confusing
when dealing with complicated λ-terms.

Our syntax also represents a context-free grammar for λ-terms, which is very
useful for the development of an efficient predictive parser. Every application
starts with a left parenthesis, and every abstraction starts with a λ. Every
left parenthesis can thus be treated as a prefix application operator with
the corresponding right parenthesis being just a delimiter. The syntactic
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structure of a λ-term is defined by its parse tree with respect to the grammar.
This grammar is unambiguous, hence, every λ-term has a unique parse tree.
The parsing mechanism can be summarized as follows:

λ-term M . . . parse tree TM

x . . . x

λx.M . . .

λx

TM

(M)N . . .

TM TN

The subtrees of the parse tree correspond to the subterms of the given λ-term.
For an illustration of the mechanism, consider the following example:

λx.λy.((y)x)λz.z . . .

λx

λy

y x

λz

z
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4.2 An exhaustive enumeration of λ-terms

In our base model, molecules are viewed as symbolic representations of func-
tions, or more precisely, as closed λ-terms in normal form. We use normal
forms since they represent the values of functional applications. We use
closed λ-terms since only bound variables encode possible functional actions.
Closed λ-terms in normal form are abstractions.

A chemical reaction is viewed as the evaluation of a functional application:
Two λ-terms M,N interact by forming the redex (M)N ≡ (λx.M ′)N , such
that M assumes the role of a function and is applied to N , which assumes
the role of an argument. The following β-reduction of (M)N to normal form
yields the value of the interaction.

To get an impression of the variety of functions expressible in λ-calculus, we
calculate the number of closed λ-terms in normal form which have a parse
tree of a certain depth. The calculation involves a complicated recursion on
the structure of parse trees. We begin with the following observations:

• As mentioned above, a closed λ-term in normal form starts with an
abstraction. Hence, its parse tree is of the form:

λx

TM

• Additionally, a λ-term in normal form does not contain any redex,
which implies that its parse tree does not contain any subtree of the
form:

λx

TM

TN

That is, the left subtree of a branching must not start with an abstrac-
tion.
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Now let Tn
d denote a parse tree (of a closed λ-term in normal form) with n

prefix abstractions followed by a subtree Sn
d of depth d:

Tn
d ≡

λx1

λx2

λxn

Sn
d

Sn
d may signify a variable (d = 0), or start with an abstraction or a branching

(d ≥ 1). Consequently, Tn
d starts with at least n abstractions; its total depth

is n+ d.

If the subtree itself does not start with an abstraction, we denote the parse
tree by T̃n

d and the subtree by S̃
n
d . Consequently, T̃

n
d starts with exactly n

abstractions.

What is the number T n
d of parse trees T

n
d (and subtrees S

n
d respectively)? in

particular, we are interested in T 1
d , the number of closed λ-terms in normal

form which have a parse tree of depth 1 + d.

To begin with, we calculate the number T̃ n
d of parse trees T̃n

d (and subtrees
S̃n

d respectively): T̃ n
d is the number of parse trees of depth n+d with exactly

n prefix abstractions; it is equal to the difference between T n
d (the number of

parse trees of depth n+ d with at least n prefix abstractions) and T n+1
d−1 (the

number of parse trees of depth n+ d with at least n+1 prefix abstractions):

T̃ n
d = T n

d − T n+1
d−1

Our argumentation is valid for d ≥ 1, that is for parse trees T̃n
d with subtrees

S̃n
d of minimal depth 1.
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For d = 0, a parse tree Tn
0 looks like:

Tn
0 ≡

λx1

λx2

λxn

Sn
0 ≡ xi

(1≤i≤n)

The subtree Sn
0 signifies a variable (which implies that it does not start with

an abstraction). Hence, we may also denote the parse tree by T̃n
0 and the

subtree by S̃n
0 .

Obviously, T̃ n
0 (the number of parse trees of depth n with exactly n prefix

abstractions) is equal to T n
0 (the number of parse trees of depth n with at

least n prefix abstractions):

T̃ n
0 = T n

0

From the above diagram we can read the basis of our recursion: Since
there are n prefix abstractions, the variable xi may take n different values
x1, x2, . . . , xn. That is:

T n
0 = n
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We now turn to the recursion. The following diagram shows the three possible
structures of a parse tree Tn

d :

(1) (2) (3)

Tn
d ≡

λx1

λx2

λxn

Sn
d

:

λx1

λx2

λxn

λxn+1

S
n+1
d−1

λx1

λx2

λxn

S̃n
d−1 Sn

d′

λx1

λx2

λxn

S̃n
d′ Sn

d−1

(0≤d′≤d−1) (0≤d′≤d−2)

The subtree Sn
d of the parse tree T

n
d has depth d. In each case it is specified

by subtrees of smaller depth:

(1) Sn
d consists of an abstraction followed by a subtree S

n+1
d−1 of depth d−1.

(2) Sn
d is a branching tree. We choose the left subtree to be of depth d−1.

Since the left subtree of a branching must not start with an abstraction,
we have to use S̃n

d−1. The depth of the right subtree S
n
d′ may vary from

0 to d− 1.
(3) Similar to (2), except that we choose the right subtree to be of depth

d − 1. The depth of the left subtree may vary from 0 to d − 2. (The
case of both subtrees being of depth d−1 has already been dealt with.)

From the diagram we can read the following recursion:

T n
d = T n+1

d−1 + T̃ n
d−1

d−1∑
d′=0

T n
d′ + (

d−2∑
d′=0

T̃ n
d′)T

n
d−1
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The above argumentation is valid for d ≥ 1, except that for d = 1 case (3)
does not occur. Instead, we get the following equation:

T n
1 = T n+1

0 + T̃ n
0 T n

0

Using T̃ n
0 = T n

0 = n and T̃ n
d = T n

d − T n+1
d−1 for d ≥ 1, the recursion may be

restated as follows:

d = 0 : T n
0 = n

d = 1 : T n
1 = T n+1

0 + (T n
0 )

2

d = 2 : T n
2 = T n+1

1 + (T n
1 − T n+1

0 ) (T n
0 + T n

1 ) + T n
0 T n

1

d ≥ 3 : T n
d = T n+1

d−1 + (T
n
d−1 − T n+1

d−2 )
d−1∑
d′=0

T n
d′ + (T

n
0 +

d−2∑
d′=1

(T n
d′ − T n+1

d′−1))T
n
d−1

As mentioned above, we are particularly interested in T 1
d , the number of

closed λ-terms in normal form which have a parse tree of depth 1 + d. To
calculate T 1

d , we have to start our recursion with T 1+d
0 . As an example,

consider d = 2:

T 3
0 = 3

T 2
0 = 2

T 2
1 = T 3

0 + (T
2
0 )

2 = 7

T 1
0 = 1

T 1
1 = T 2

0 + (T
1
0 )

2 = 3
T 1

2 = T 2
1 + (T

1
1 − T 2

0 )(T
1
0 + T 1

1 ) + T 1
0 T

1
1 = 14

In the following table, we list the values of T 1
d for d ≤ 6. (The recursion is

approximately quadratic.)

T 1
0 = 1

T 1
1 = 3

T 1
2 = 14

T 1
3 = 217

T 1
4 = 42 325

T 1
5 = 1 647 464 882

T 1
6 = 2 686 232 153 187 877 131
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To conclude this section, we explicitly construct T1
d for d ≤ 2:

T1
0

λx1

x1

T1
1

(1) (2)

λx1

λx2

x1

λx1

λx2

x2

λx1

x1 x1

T
1
2

(1)

λx1

λx2

λx3

x1

λx1

λx2

λx3

x2

λx1

λx2

λx3

x3

λx1

λx2

x1 x1

λx1

λx2

x1 x2

λx1

λx2

x2 x1

λx1

λx2

x2 x2



An exploration of organization space 55

(2)

λx1

x1 x1

x1

λx1

x1 x1

λx2

x1

λx1

x1 x1

λx2

x2

λx1

x1 x1 x1 x1

(3)

λx1

x1 λx2

x1

λx1

x1 λx2

x2

λx1

x1

x1 x1

4.3 Iterated set actions

The base model has two core ingredients. As outlined in the previous section,
the first consists in a rough analogy between, on the one side, molecules and
their constructive interactions, and, on the other side, λ-terms and their mu-
tual application. The second core ingredient consists in a simple constrained
dynamics mimicking a well-stirred flow reactor. In the present context this
means an ensemble of λ-terms meeting randomly and interacting by appli-
cation.

For our computer experiments, we use the following procedure:

(0) Fill reactor

Produce an initial (multi-)set of n λ-terms. In the simplest case, gen-
erate n instances of a starting λ-term A.
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(1) Collide

Choose two of the n λ-terms at random. Let the first λ-term be M ,
and the second one N .

(2) React

Compute the normal form L of the application (M)N according to
β-reduction.

If no normal form is reached within a certain number of reduction steps,
the collision is elastic, and the procedure continues with step (1).

(3) Add product

Add the normal form L to the reactor. Choose one λ-term X at ran-
dom, and eliminate it (compensatory outflow).

(4) Apply flow (optional)

Add one element of the initial set to the reactor (constant inflow).
Choose one λ-term at random, and eliminate it (compensatory out-
flow).

(5) Iterate

The procedure continues with step (1).

The interacting λ-terms are treated here as “catalysts”, remaining unchanged
themselves, yet inducing change (generating a new term as the value of the
application):

M +N −→M +N + L

L is the normal form of (M)N , that is (M)N �β L. This way, the total
number of λ-terms in the reactor is increased by one with each reactive
collision.

Each time a new λ-term L has been produced, a randomly chosen one X is
eliminated:

X −→ {}

The overall number n of λ-terms is thereby kept exactly constant. This
means that each λ-term has a finite lifetime, even though it is not consumed
at the moment of a reaction.
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To motivate the constant inflow from the initial set, consider the following
situation: All instances of the starting λ-term A are consumed after several
iterations, and A is not reproduced by any reaction of two other λ-terms.
In this case, it is necessary to add one instance of A with each iteration, to
produce as many reactive consequences of A as possible.

Since any two λ-terms interact to produce a particular λ-term with a fre-
quency proportional to their concentration, the above reaction scheme acts
to favor convergence to a population of λ-terms whose relations of production
yield λ-terms extant within the reactor. The motion in object space settles
upon a set of objects that produce one another.

The reaction scheme, however, does obvious violence to the chemical analogy.
Indeed, the present analogy and its instantiation through λ-calculus have a
number of limitations which we discuss further in chapter 6.

We now switch off the dynamical aspect of the base model by considering
only iterated actions within a set of object species. Doing so permits us to
introduce concepts that prove useful in later studies. We proceed to define a
few simple set valued iterated maps.

Definition 4.3
Let M and N be subsets of Λ. The action of M on N is the set L ⊆ Λ
defined as:

L =M◦N ≡ {L | (M)N �β L, (M,N) ∈M×N , L in nf }

Two set valued iterated maps are of special interest. The first is a quadratic
map that replaces the old set at each iteration.

Definition 4.4
Let A be an initially given set. The map m induces the following iteration:

A0 = A
An+1 = m(An) = An ◦ An, n ≥ 0

We also write:

An = mn(A) ≡m(m(. . .m(︸ ︷︷ ︸
n

A) . . . ))
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A variant of the quadratic map keeps the previous set. The resulting sequence
of sets is non-decreasing.

Definition 4.5
Let A be an initially given set. The map M induces the following iteration:

A0 = A
An+1 = M(An) = (An ◦ An) ∪ An, n ≥ 0

We also write:

An = Mn(A) ≡M(M(. . .M(︸ ︷︷ ︸
n

A) . . . ))

This procedure turns out to be equivalent to refreshing the initial set at each
iteration.

Proposition 4.6
Let M and M̃ induce the following iterations:

A0 = A
An+1 = M(An) = (An ◦ An) ∪ An, n ≥ 0

Ã0 = A
Ãn+1 = M̃(Ãn) = (Ãn ◦ Ãn) ∪ A, n ≥ 0

Then, the iterations are equivalent. That is:

An = Ãn

Proof
Basis:
A0 = Ã0 = A
Inductive step:

An+1 = (An ◦An)∪An
IH
= (An ◦An)∪Ãn = (An ◦An)∪ (Ãn−1 ◦ Ãn−1)∪A IH

=

(An ◦ An) ∪ (An−1 ◦An−1) ∪A = (An ◦An) ∪A IH
= (Ãn ◦ Ãn) ∪A = Ãn+1 �

The set Mn(A) contains all terms that result from n collision events among
elements of A, whereas it contains only particular terms among those that
result from 2n − 1 collision events. This motivates the following definition.
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Definition 4.7
Let A be an initially given set. The nth set in the sequence

s0(A) = A
sn(A) =

⋃
0≤i≤n−1

si(A) ◦ sn−i−1(A), n ≥ 1

is the set of all terms that can be generated by exactly n collisions among
elements of A, and

Sn(A) =
⋃

0≤i≤n

si(A), n ≥ 0

is the sequence of sets of all terms produced by up to n collisions in A.

The latter non-decreasing sequence generates the object horizon that is ac-
cessible from the initial set of objects.

Definition 4.8
The closure A∗ of A is defined as:

A∗ = lim
n→∞

Sn(A) =
∞⋃
i=0

si(A)

We are now able to prove the following result.

Proposition 4.9
Iteration of the map M yields the closure A∗ of the initial set A. That is:

lim
n→∞

Mn(A) = A∗

Proof
Notice that:

Sn(A) ⊆Mn(A) ⊆ S2n−1(A)

With

lim
n→∞

S2n−1(A) = lim
n→∞

Sn(A) = A∗

the result follows. �
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For later use we introduce the following definitions.

Definition 4.10
Any set B ⊆ A∗, for which

lim
n→∞

Mn(B) = A∗

is a termed a generator of A∗.
Any set B ⊆ A∗, for which

lim
n→∞

mn(B) = A∗

is a termed a seeding set of A∗.

These definitions emphasize a distinction. There are subsets of the closure
for which the replacement mapm behaves effectively like the cumulative map
M. For a seeding set to generate the closure under the replacement map,
that set must clearly be regenerated at some point.

Finally, we note that there can be initial sets yielding the closure A∗ under
the replacement map m which are not subsets of A∗. The totality of these
sets constitutes a kind of “basin of attraction” for the closure A∗. We want
to distinguish the collection of such sets from the collection of seeding sets,
because the latter are associated with a kind of “stability” ofA∗ underm with
respect to the removal of subsets. Clearly, a rigorous discussion of the range of
possible dynamical behaviors of the replacement map under arbitrary initial
conditions is desirable, but requires a suitable topology which is not yet
available.

The iterated map framework proves to be conceptually useful, despite the
fact that the base model includes an asynchronous stochastic process where
the iterations undergone by an object species are frequency dependent.

4.4 Organizations generated by simple λ-terms

In our base model, the motion in object space settles upon self-maintaining
sets of objects. As interactions proceed in the reactor, new λ-terms are
generated, while others are eliminated randomly. Depending on the initial
conditions, and after many interactions have occurred, the system frequently
converges on a population of λ-terms that



An exploration of organization space 61

• maintain each other in the system by mutual production, and that

• share syntactical and algebraic regularities.

This means that the contents of the reactor have reached a particular (pos-
sibly infinite) subset of Λ that is invariant under interaction.

Syntactical regularities are made explicit by parsing λ-terms into two kinds
of building blocks, called terminal elements and prefixes. Terminal elements
are closed λ-terms in normal form. Prefixes are not λ-terms themselves,
however prefixes form λ-terms when they precede a terminal element. The
invariant subspace contains only λ-terms that are made from a characteristic
set of such building blocks.

Algebraic laws are a description of the specific actions associated with each
building block. These actions may, of course, depend on the context of a
building block within a λ-term. The characterization of the functional rela-
tionships among building blocks yields a system of rewrite rules [2, 32]. This
system can, in many cases, be exhaustively specified using Knuth-Bendix
completion techniques [33, 34]. Rewrite systems which complete, permit a
finite specification of all interactions among the elements of the subspace.
This way they implicitly determine a grammar for its elements.

The rewrite system cast in terms of building blocks is a description of the
converged reactor in which all reference to the underlying λ-calculus has
been removed. In other words, the generic λ-calculus can be replaced by
another formalism specific to the self-maintaining population of λ-terms in
the reactor, that is, a particular algebraic structure.

The elements of the invariant subspace are the carrier set of the algebraic
structure. Very often, but not always, that set is infinite. Although the
reactor has only small capacity (up to 10000 λ-terms), the algebraic structure
persists through a fluctuating, yet stably sustained, finite (multi-)set of λ-
terms. This occurs whenever the connectivity of the transformation network
is such that it channels the production flow towards a core set of λ-terms.
This we call kinetic confinement .

The main conceptual result is a useful working definition of what we mean by
an organization. An organization is a kinetically self-maintaining algebraic
structure. Self-maintenance here has two aspects:

• Algebraically, a network of mutual production pathways is invariant
under applicative interaction.
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• Kinetically, the concentrations of the λ-terms in the network remain
positive.

The former is a necessary, but not a sufficient condition for the latter. A
network can be algebraically self-maintaining, i.e. every λ-term is produced
in the network, but its particular connectivity may not suffice to sustain non-
zero concentrations of its core components under flow-reactor conditions.

Organizations based on differing algebraic structures are obtained by varying
the initial (multi-)set of λ-terms. An infinity of organizations is possible. If
the initial set is sufficiently simple, we may use analytical methods to generate
the respective organizations. In particular, we are interested in initial sets
containing only one object species.

Methods

As a first step, we switch off the dynamical aspect of the base model by
considering iterated set actions. We start with an initial set A consisting of
a single λ-term A:

A = {A}

We then determine the object horizon that is accessible from the initial set.
As we have seen in the previous section, the closure A∗ of the initial set A
may be obtained by iterated application of the cumulative map M:

A∗ = lim
n→∞

Mn(A)

where

M(Ã) = (Ã ◦ Ã) ∪ Ã

For actual calculations, we use a variant of the above iteration. First, we
parse the newly generated λ-terms into building blocks, and thereby we in-
duce a classification of λ-terms according to their building blocks. Next,
we characterize the functional relationships among building blocks by a sys-
tem of rewrite rules. If the rewrite system completes, it represents a finite
specification of all interactions among elements of the closure. Finally, we
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determine the closure itself by iterated application of the rewrite rules to the
initial set. The iteration converges after a finite number of steps.

To obtain the organizations generated by the initial set A, we determine all
subsets B of the closure A∗ that are self-maintaining.

Definition 4.11
Let B be a subset of Λ. B is self-maintaining if:

B ⊆ B ◦ B

Every element of a self-maintaining set is produced by at least one interaction
within the set. Still, for a self-maintaining set to represent an organization,
the respective multi-set must be also kinetically self-maintaining. That is,
the connectivity of the self-maintaing set with respect to mutual production
must suffice to sustain non-zero concentrations of its core elements under
flow-reactor conditions. A rigorous discussion of kinetic self-maintenance
requires an analytical criterion, which is not yet available. Consequently, we
consider the question of kinetic self-maintenance separately for each possible
organization.

Results

For the sake of simplicity, our initial λ-terms A contain only one or two
variables. Before we discuss both cases in detail, we introduce the following
abbreviation for prefix abstractions that do not refer to a variable:

λk.M ≡ λx1. · · ·λxk.M where x1, . . . , xk �∈ FV (M)

λk. is the simplest example for a prefix building block. If we apply a λ-term
of the form λk.M to an arbitrary λ-term N , we obtain the corresponding
rewrite rule:

(λk.M)N ≡ (λx1. · · ·λxk.M)N

→ λx2. · · ·λxk.M [x1 := N ]

≡ λx2. · · ·λxk.M

≡ λx1. · · ·λxk−1.M

≡ λk−1.M
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λ-terms with one variable

We now consider the class of λ-terms that contain one variable and an arbi-
trary number n of abstractions.

Definition 4.12

An
i ≡ λx1. · · ·λxn.xi

(1≤i≤n)

Depending on whether the first abstraction refers to a variable, we may
distinguish the following two cases:

(i) An
i ≡ λx1. · · ·λxn.xi (1<i)

(ii) An
1 ≡ λx1. · · ·λxn.x1

In case (i), the first i− 1 abstractions of An
i do not refer to a variable. More

precisely, we have the following equivalence:

An
i ≡ λx1. · · ·λxn.xi

≡ λx1. · · ·λxi−1.λxi. · · ·λxn.xi

≡ λi−1.λxi. · · ·λxn.xi

≡ λi−1.λx1. · · ·λxn−i+1.x1

≡ λi−1.An−i+1
1

The applicative behavior of An
i ≡ λi−1.An−i+1

1 is determined by the above
rewrite rule:

(An
i )X ≡ (λi−1.An−i+1

1 )X

→ λi−2.An−i+1
1

≡ An−1
i−1

That is, An
i loses one prefix abstraction when applied to an arbitrary λ-term.

If the result of such an application is again applied to an arbitrary λ-term,
then, after a total of i− 1 iterations, the final result An−i+1

1 belongs to case
(ii).
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In case (ii), the first abstraction of An
1 ≡ λx1. · · ·λxn.x1 does refer to a

variable. An
1 exhibits the following applicative behavior:

(An
1 )X ≡ (λx1. · · ·λxn.x1)X

→ λx2. · · ·λxn.X

≡ λn−1.X

That is, An
1 adds n − 1 prefix abstractions to an arbitrary λ-term X. A1

1 is
the identity function.

We are now ready to present the organizations generated by initial λ-terms
with one variable. As a basis, we list the relevant rewrite rules and the
resulting closure. To render the rewrite rules more comprehensible, we use
the notation X ◦ Y for the application (X)Y :

A ≡ An
i ≡ λi−1.An−i+1

1

An−i+1
1 ◦ Y � λn−i.Y

λk.X ◦ Y � λk−1.X (k>0)

A = {A}

A∗ = {λk.A1
1 | 0≤k≤n−1} (i=n) UC

A∗ = {λk.An−i+1
1 | k≥0} (i<n) PA

Depending on the initial λ-term, we obtain two different closures:

UC (Universal Copier)

The identity function A1
1 makes the finite closure A∗ = {λk.A1

1 | 0≤k≤n−1} self-
maintaining. The other elements of the closure lose one prefix abstraction
with each application:

A1
1 ◦ Y � Y

λk.X ◦ Y � λk−1.X
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Prefixes are not regenerated by any reaction. At best, the respective λ-terms
are copied as a whole. Under flow-reactor conditions, the closure converges on
the kinetically self-maintaining subset O = {A1

1}, the simplest organization
possible.

PA (Prefix-Adder)

The infinite closure A∗ = {λk.An−i+1
1 | k≥0} is self-maintaining. The terminal

element An−i+1
1 adds prefix abstractions to other λ-terms, which in turn lose

one prefix with each application. Under flow-reactor conditions, finite subsets
O ⊂ A∗ are kinetically self-maintaing.

λ-terms with two variables

We now consider the class of λ-terms that contain two variables and an
arbitrary number n of abstractions.

Definition 4.13

Am,n
i,j ≡ λx1. · · ·λxm.(xi)λxm+1. · · ·λxn.xj

(1≤i≤m≤n, 1≤j≤n)

Depending on whether the first abstraction refers to a variable, we may
distinguish the following four cases:

(I) Am,n
i,j ≡ λx1. · · ·λxm.(xi)λxm+1. · · ·λxn.xj (1<i, 1<j)

(II) Am,n
1,j ≡ λx1. · · ·λxm.(x1)λxm+1. · · ·λxn.xj (1<j)

(III) Am,n
i,1 ≡ λx1. · · ·λxm.(xi)λxm+1. · · ·λxn.x1 (1<i)

(IV) Am,n
1,1 ≡ λx1. · · ·λxm.(x1)λxm+1. · · ·λxn.x1

In case (I), the first p = min(i, j) − 1 abstractions of Am,n
i,j do not refer to a

variable. Hence, we may also write

Am,n
i,j ≡ λx1. · · ·λxp.A ≡ λp.A

where the first abstraction of A does refer to a variable. In other words, A
is of the form (II) – (IV).
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Am,n
i,j exhibits the following applicative behavior:

(Am,n
i,j )X ≡ (λp.A)X → λp−1.A

That is, Am,n
i,j loses one prefix abstraction when applied to an arbitrary λ-

term. If the result of such an application is again applied to an arbitrary
λ-term, then, after a total of p − 1 iterations, the final result A belongs to
one of the cases (II) – (IV).

In the following, we give an exhaustive presentation of organizations gener-
ated by initial λ-terms of the form (II) – (IV). The details of the calculations
(and the consequent distinction of sub-cases) can be found in the appendix.

In case (II), we obtain organizations that are also generated by initial λ-
terms with only one variable. In each sub-case, we first list the relevant
rewrite rules and the resulting closure:

II.2′

A ≡ Am,n
1,n (m<n)

A ◦ A � λm+n−4.A1
1

A ◦ A1
1 � λn−2.A1

1

A ◦ λk.X � λk+m−2.X (k>0)

A1
1 ◦X � X

A = {A}

A∗ = {A} ∪ {λk.A1
1 | 0≤k≤n−2} (m≤2) UC

A∗ = {A} ∪ {λk.A1
1 | k≥0} (m≥3) UC

UC (Universal Copier)

Depending on the initial λ-term, the closure A∗ may be finite or infinite. In
both cases, the presence of the identity function A1

1 makes the closure self-
maintaining. Still, the initial λ-term A is not regenerated by any reaction, at
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best it is copied. Under flow-reactor conditions, it is removed from the reactor
by the constant outflow. The remaining subset of the closure converges on
the kinetically self-maintaining set O = {A1

1}.

II.2′′

A ≡ Am,n
1,j (m<n, m+1≤j<n)

A ◦ A � λm+j−4.An−j+1
1

A ◦ An−j+1
1 � λn−2.An−j+1

1

A ◦ λk.X � λk+m−2.X (k>0)

An−j+1
1 ◦X � λn−j.X

A = {A}

A∗ = {λk.A | k≥0} ∪ {λk.An−j+1
1 | k≥0} PA

PA (Prefix-Adder)

The infinite set {λk.An−j+1
1 | k≥0} is self-maintaining. The terminal element

An−j+1
1 adds prefix abstractions to other λ-terms, which in turn lose one prefix

with each application. Under flow-reactor conditions, finite subsets O ⊂
{λk.An−j+1

1 | k≥0} are kinetically self-maintaining, and consequently referred
to as PA-organizations.

The infinite set {λk.A | k≥0} is self-maintaining, but not closed (as can be seen
by self-application of the initial λ-term A). Under flow-reactor conditions,
the set is subject to an effective drain, and consequently not kinetically self-
maintaining.
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II.3

A ≡ Am,n
1,j (m<n, 1<j≤m)

A ◦ A � λj−2.Am−1+n−j
1

A ◦ An′
1 � λj−2.An′+n−j

1

A ◦ λk.X � λk+m−2.X (k>0)

An′
1 ◦X � λn′−1.X

A = {A}

A∗ = {λk.A | k≥0} ∪ {λk.A
m−1+l(n−j)
1 | k≥0, l≥1}

PAG

PAG (Prefix-Adder Generator)

The core of the self-maintaining set {λk.A
m−1+l(n−j)
1 | k≥0, l≥1} is formed by the

infinite sequence of prefix-adders A
m−1+l(n−j)
1 . Under flow-reactor conditions,

we might expect a meta-organization consisting of different PA-organizations.
But as a matter of fact, a fight between the PA-organizations sets in and only
one of them survives.

The infinite set {λk.A | k≥0} is self-maintaining, but not closed (as can be seen
by self-application of the initial λ-term A). Under flow-reactor conditions,
the set is subject to an effective drain, and consequently not kinetically self-
maintaining.
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II.1′

A ≡ An,n
1,n (1<n)

A ◦ A � λn−2.A

A ◦ λk.X � λk+n−2.X (k>0)

A = {A}

A∗ = {A} (n=2) SC

A∗ = {λk.A | k≥0} (n≥3) OPA

Depending on the initial λ-term, we obtain two different closures:

SC (Self-Copier)

The closure A∗ consists only of the initial λ-term A, which acts as a self-
copier. As a consequence, the closure is also kinetically self-maintaining, and
hence an organization.

OPA (Other Prefix-Adder)

The infinite closure A∗ = {λk.A | k≥0} is self-maintaining. The initial λ-term
A adds prefix abstractions to other λ-terms, which in turn lose one prefix with
each application. Under flow-reactor conditions, finite subsets O ⊂ A∗ are
kinetically self-maintaining. These organizations are structurally equivalent
to PA-organiztions.
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II.1′′

A ≡ An,n
1,j (1<j<n)

A ◦ A � λj−2.A2n−j,2n−j
1,n

An′,n′
1,j′ ◦ A

n′′,n′′
1,j′′ � λj−2.A

n′′+(n′−j′),n′′+(n′−j′)
1,j′′+(n′−j′)

An′,n′
1,j′ ◦ λk.X � λk+n′−2.X (k>0)

A = {A}

A∗ = {λk.A
n+l(n−j),n+l(n−j)
1,j+l(n−j) | k≥0, l≥0} RQ

RQ (Red Queen)

The infinite sequence of λ-terms Al ≡ A
n+l(n−j),n+l(n−j)
1,j+l(n−j) forms the core of

the self-maintaining closure A∗. Hence, we may restate the above results as
follows:

Al ◦ Al′ � λj−2.Al′+1

Al ◦ λk.X � λk+n+l(n−j)−2.X

A∗ = {λk.Al | k≥0, l≥0}

Reactions among elements of the sequence Al increase the index l by 1,
whereas elements with lower indices are not regenerated by any reaction.
Under flow-reactor conditions, none of the subsets O ⊂ A∗ is kinetically
self-maintaining.

The ever changing population of λ-terms in the reactor rather reminds of
the continuing evolution in complex ecosystems (the so-called Red Queen
dynamics). Just like the Red Queen in Lewis Carroll’s Through the Looking
Glass, the RQ-“organization” is forced to keep running to stay in the same
place.
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Not until case (III), we obtain organizations that are structurally different
from the organizations generated by initial λ-terms with one variable. Again,
we first list the relevant rewrite rules and the resulting closure:

III.1

A ≡ An,n
i,1 (1<i)

p ≡ λx1.λ
n−i.(x1)

A ◦X � λi−2.pX

pX ◦ A � λn−2.pX

pX ◦ λk.Y � λk+n−i−1.Y (k>0)

pX ◦ pY � λ2n−2i.(X ◦ Y )

A = {A}

A∗ = {A} ∪ {λk0 .p · · ·λkN .pA | 0≤kl≤n−2, N≥0}
(i=n) CPG

A∗ = {A} ∪ {λk0 .p · · ·λkN .pA | kl≥0, N≥0}
(i<n) PG

The initial λ-term A adds two kinds of prefixes to other λ-terms: prefix
abstractions and the newly generated prefix p. Depending on the initial
λ-term, we distinguish two different closures:

CPG (Cycle from a Prefix-Generator)

The infinite closureA∗ contains λ-terms starting with an alternating sequence
of the two kinds of prefixes and ending with the terminal element pA. The
sequence of prefixes may be infinite, but the number of successive prefix
abstractions is finite. The initial λ-term A itself is not regenerated.

Under flow reactor conditions, the closure converges on the finite subset
O = {λk.pA | 0≤k≤n−2}. This set represents a kinetically self-maintaining
“cycle”, and hence a structurally new organization.
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PG (Prefix-Generator)

The infinite closureA∗ contains λ-terms starting with an alternating sequence
of the two kinds of prefixes and ending with the terminal element pA. Both
the sequence of prefixes and the number of successive prefix abstractions may
be infinite. The initial λ-term A is not regenerated.

Under flow reactor conditions, the closure converges on the infinite subset
{λk.pA | k≥0}. Finite subsetsO ⊂ {λk.pA | k≥0} are kinetically self-maintaining.
These organizations are structurally equivalent to PA-organiztions.

III.2

A ≡ Am,n
i,1 (1<i, m<n)

p ≡ λx1.λ
m−i.(x1)

A ◦X � λi−2.pλn−m.X

pX ◦ A � λm−2.pλ2n−2m.X

pX ◦ λk.Y � λk+m−i−1.Y (k>0)

pX ◦ pY � λm+n−2i−1.X

A = {A}

A∗ = {λk0.pλk1 . · · ·pλkN .A | kl≥0, N≥0} OPG

OPG (Other Prefix-Generator)

The initial λ-term A adds two kinds of prefixes to other λ-terms: prefix ab-
stractions and the newly generated prefix p. The infinite closure A∗ consists
of λ-terms starting with an alternating sequence of the two kinds of prefixes
and ending with the terminal element pA. Both the sequence of prefixes and
the number of successive prefix abstractions may be infinite.

Under flow-reactor conditions, finite subsets O ⊂ A∗ are kinetically self-
maintaing. These organizations are structurally more complex than PA-
organizations.



An exploration of organization space 74

In case (IV), we obtain organizations that have already been generated in
the previous cases. Again, we first list the relevant rewrite rules and the
resulting closure:

I ⇒ IV.1

A ≡ An,n
1,1

Ã ≡ λp.A (p>0)

A ◦ A � elastic !

A ◦ λk.X � λk+n−2.X (k>0)

{A}∗ = {A}

A = {Ã}

A∗ = {λk.A | 0≤k≤p} (n≤2) SA

A∗ = {λk.A | k≥0} (n≥3) OPA

Since interactions between initial λ-terms A of the form (IV.1) are elastic,
we consider λ-terms Ã ≡ λp.A of the form (I) instead. Depending on the
structure of the initial λ-term, we distinguish two different closures:

SA (Self-Applicator)

The finite closure A∗ = {λk.A | 0≤k≤p} is self-maintaining. Still, there is
no reaction that regenerates lost prefix abstractions. Under flow-reactor
conditions, the closure converges on the kinetically self-maintaining subset
O = {A}, where the λ-term A is not self-interacting.

OPA (Other Prefix-Adder)

The infinite closure A∗ = {λk.A | k≥0} is self-maintaining. The initial λ-term
A adds prefix abstractions to other λ-terms, which in turn lose one prefix with
each application. Under flow-reactor conditions, finite subsets O ⊂ A∗ are
kinetically self-maintaining. These organizations are structurally equivalent
to PA-organiztions.
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IV.2

A ≡ Am,n
1,1 (m<n)

A ◦ A � λn+m−3.A

A ◦ λk.X � λk+m−2.X (k>0)

A = {A}

A∗ = {λk.A | 0≤k≤n+m−3} (m≤2) CSA

A∗ = {λk.A | k≥0} (m≥3) OPA

Depending on the structure of the initial λ-term, we distinguish two different
closures:

CSA (Cycle from a Self-Applicator)

The finite closure A∗ = {λk.A | 0≤k≤n+m−3} is self-maintaining. The initial λ-
termA adds prefix abstractions to other λ-terms, which in turn lose one prefix
with each application. Under flow-reactor conditions, the closure represents
another kinetically self-maintaining “cycle”.

OPA (Other Prefix-Adder)

The infinite closure A∗ = {λk.A | k≥0} is self-maintaining. The initial λ-term
A adds prefix abstractions to other λ-terms, which in turn lose one prefix with
each application. Under flow-reactor conditions, finite subsets O ⊂ A∗ are
kinetically self-maintaining. These organizations are structurally equivalent
to PA-organiztions.



5 Conclusions

From the “object problem” . . .

Whenever a particular level of analysis of Nature is populated with objects
whose internal structure engenders specific action capable of changing or cre-
ating other objects, the dynamical systems methodology encounters a funda-
mental limit. The reason is that the formal machinery of dynamical systems
is geared to handle changes in quantities, but not changes in object structure.
We believe that a formal understanding of such a level of Nature requires a
theory that combines variables that can take objects as values with the more
familiar variables that hold quantitative values (such as concentrations). To
convey an intuitive flavor of this, think of action as “parametrized” by struc-
ture, and imagine a “derivative” in object space giving information about the
change of object action resulting from a change in object structure. Clearly,
being able to meaningfully define such a thing puts stringent conditions on
how structure is coupled to action. To even start thinking about this requires
a powerful formal machinery capable of expressing the coupling of structure
to action for the objects pertinent to a particular domain of application. This
is the “object problem”.

. . . to a “theory of chemistry”

The “object problem” is nowhere seen more crisply than in chemistry. Chem-
ical reactions are events in which both concentrations (i.e., quantities) and
objects (i.e., structures) change. The projection of a chemical reaction in-
volving large numbers of molecules on a phase-space of concentrations is
known as reaction kinetics. To set up a chemical reaction as a dynamical
system in concentration space, one only requires knowledge of the proper cou-
plings among the concentrations of reactants and products. It is sufficient if
these are known as empirical facts; knowledge of the chemical identity and
properties of reactants and products is not necessary. Cranking the tools of,
say, infintesimal calculus yields the time evolution of reactant and product
concentrations. Remove kinetics for a moment by considering just the infor-
mation conveyed by a chemical reaction when it is notated on paper. We
are left with a reaction arrow, “→”, expressing a relation among molecular
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structures. A general method capable of describing the time evolution of
the contents of a reaction vessel for an arbitray initial mixture of molecular
species would require nothing less than a formal system implicitly represent-
ing the space of molecular objects and the relation “→” over them. That is
a formal theory of chemistry.

Where do we get a formal theory of chemistry? The answer is crucial to our
approach. To date we do not have a formal, axiomatized theory of chemistry
that is useful in everyday practice, despite the fact that quantum mechanics
successfully grounds chemistry in the behavior of electrons and nuclei. The
problem is one of choosing the “right” level of description. With respect to
both molecular biology and industrial metabolisms alike, quantum mechanics
is far too fine grained, and, aside from issues of feasibility, does not convey
a satisfactory understanding of “what chemistry is actually doing”; it is too
close to the trees to see the forest. To put it provokingly, our understanding
of life will derive in large measure from how we understand chemistry. It is
clear, then, that identifying a coarser grain of analysis capable of hosting a
formal theory of chemistry would be of tremendous practical import and by
no means limited to the foundations of theoretical biology.

The stance we took in this work, is based on the intuition that at some level
of description the reactive processes of chemistry are analogous to manipu-
lations (rewrites) of syntactical objects. This puts us right into the domain
of the computational sciences, chapter 3. In the present context, the reader
is well advised to detach from an all-too narrow notion of computation as
“number crunching”. Much effort in the computational sciences goes into
devising formal systems of syntactical constructs (we call “objects”) that
are interrelated by operations of transformation defined on them. It is in
this sense that “computation” is the science of the construction of abstract
objects with structure-specific “behavior”.

What is crucial in the present context is how object behavior is synthesized
from basic elements, as it is here that insights into fundamental mechanisms
of “construction” or “interaction” are revealed, and can be compared with
empirical facts. For what is desired in a theory of objects is not just a
formalism and the theorems that accompany it, but a transparency of in-
terpretation in the intended application domain. In a chemical application,
one wants to capture at least the twin facts that (i) product molecules are
lawfully constructed from substitution of parts of reactant molecules and (ii)
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that the same product can be produced by a diversity of different reactants.
One wants, therefore, a theory of combinational structures and substitution
together with the resultant theory of equality . Indeed, this is what drew us
originally to λ-calculus. A great variety of alternative formal systems - Tur-
ing machines, Petri nets, Post systems, cellular automata, to mention but a
few - allow expression of the same set of functions on the natural numbers,
and, thus, may be regarded as being equivalent in that respect . It should
be clear by now, however, that what is needed here is not merely a member
of this universality class, but a member whose features are germane to the
chemical problem at hand.

Identifying λ-calculus as a plausible candidate for a chemical interpretation
hardly qualifies λ-terms as anything but the most metaphorical of molecules.
Yet, we do not require a one-to-one mapping between some formalism ex-
pressing computational processes and real-world molecules with their chem-
ical reactions. The map should not be confused with the territory; we do
not want to “simulate” chemistry. We take the computational perspective as
one enabling a different - logical - level of description of chemistry which is
distinct from one that accounts for its actual physical implementation. The
latter is the domain of quantum physics. For example, whether the actual
protein folding process belongs to the class of computable functions is entirely
irrelevant to us. For all we need to capture is the logic of the connection be-
tween structure and action specificity, not the physical process by which this
connection is implemented. Herein lies the point of a specification language
for chemistry.

. . . to a “theory of functional organization”

The core of our model is a theory of object construction - rather than the
imitation of particular chemicals. This is what gives us the capacity to specify
what the “organization” of an emerging collective of objects is in terms of a
mathematical formalism. Three broad consequences follow.

(1) The abstraction of molecules in the base model as symbolic functions
allows organization to be detected as a closure of interaction, mani-
fested by invariant syntactical regularities and invariant algebraic laws
characterizing the action of those objects maintained in the collective.
It cannot be overemphasized that this characterization can be made
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by an observer of the system who is ignorant of λ-calculus. Indeed,
an organization can be specified as an algebraic rewrite system that is
independent from λ-calculus, and, thus, the process by which it origi-
nated. With the theory of objects comes whole-cloth a quite different
theory of the collective.

(2) A formal theory of objects makes transparent which features of the
collective organization derive from the underlying theory of objects, and
which features are curiosities derived from particular initial conditions,
parameter settings, or a particular chemical stance. The distinction is
between what has been called “digital naturalism” [20] and the claim
for a theory of self-maintenance.

(3) As emphasized at the outset, an abstract theory of objects plays a role
analogous to that of differential equations. The analysis of a dynamical
system cast in terms of differential equations yields the characterization
of manifolds in phase space that govern the set of its possible trajec-
tories. Consider the base model and imagine we seeded our reactor
with one λ-term known to be a basis for all λ-calculus. Imagine further
that the container is itself infinite in size and the reactor would then be
capable of holding all possible (normal form) expressions. When we im-
pose a dynamics on the objects (which, in our case, is a scheme coupled
to the reactor size), we sieve particular “trajectories” in object space.
Recall that our kinetic scheme is designed to favor the maintenance of
objects that are constructed by the extant population of objects. As a
consequence “trajectory” in object space “converges” to an “attractor”
- a self-maintaining organization.

This casting emphasizes the need for a theory of the “motion” in “object
space” induced by the object constructors (here, functional application
or logical inference) under the continously updating kinetics imposed by
the extant network of objects. How might such a motion change under a
different dynamics ? Or with equivalent dynamics and different object-
constructors? Is there a meaningful formal concept of a “trajectory”
in “object space”? What is “continuity”? Is there a useful definition
of “distance” between “attractors” (in our case, algebraic structures in
λ-space)? Questions like these require a theory of objects, not only to
be answered, but even to be asked.
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The value is apparent. Consider just one instance. A methodological impera-
tive of the dynamical systems approach is the a priori choice of the pertinent
entities and their functional couplings defining the system. The fact that the
choice must be made a priori has the consequence that the dynamical systems
methodology can never be used to address the origin of that same system, a
profound limitation to the existence problem in biology [16]. It is apparent
in the base model that our reactor in settling upon a self-maintaining set of
objects has settled upon a fixed system of variables and functional couplings
between them; thus, particular dynamical systems appear as limiting cases
(such as “fixed points”) of constructive dynamical systems. Are constructive
dynamical systems “generators” of dynamical systems? If so, a formaliza-
tion of the motion in such a space holds promise as a methodology to address
scientific questions which include the phrase “the origin of ...”.

. . . to a “theory of the organism”

Biology has only two claims to theories unto itself - Mendel’s theory of
transmission and Darwin’s theory of natural selection. Fisher, Haldane, and
Wright demonstrated that no conflict existed between the two theories. Still,
the tools employed to show that the great theories of biology were concor-
dant required casting the problem in a fashion that threw out the constructive
aspects of biology, rendering the problem tractable as one in dynamical sys-
tems. Throwing out construction meant throwing out the organism; trying
to put the organism back in is fair epitome of the intellectual history ever
since. The claim is that biology requires a trinity of theories; we have two of
them; we lack only a “theory of the organism”. The claim we make is that the
self-maintaining organizations we derive hold promise as that missing theory.
Indeed, such a theory need not await a global solution to the specification
language for chemistry. The fact that our organizations can be described in
a formalism distinct from that in which they were generated (i.e., as abstract
rewrite systems rather than λ-terms) leaves their terms (like those of any
syntax) open to interpretations other than chemical. From this realization
flows a diversity of potential applications.

Given a universe of self-maintaining abstract rewrite systems, the uses are
limited solely by the properties of the particular rewrite system and the in-
terpretation given to its terms. An interpretation of the terms as engineering
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functions in a machine might be route to a self-repair mechanism, an inter-
pretation as a semiotic unit as a device for natural language interpretation,
and interpretation of terms-as-molecules as germane to a blueprint for the
design of a self-maintaining chemical manufacturing process [4], as it is to
a metabolic cycle in a cell or a system of cell-cell communications defin-
ing an organ. The origin of such specifications from a research program in
artifical chemistry or in experimental λ-calculus is irrelevant. It cannot be
overemphasized that herein lies the significance of the characterization of our
organizations in an alternative formalism.



6 Outlook

The architecture of the base model consists in joining a formal calculus with
a dynamical system. The organizations generated by the base model exhibit
properties – such as regeneration, structural extension, capacity for hierar-
chical nesting – akin to properties of living organisms. Yet both the formal
calculus and the dynamical system must be improved to narrow the gap to
molecular biology.

6.1 Modifying the formal system

In our minimalist abstraction of chemistry, molecules are treated as discrete
structures, defined inductively. A molecule is an atom or a combination of
molecules. Reactions are seen as events where such structures interact to
construct new structures. The basic mechanism of a reaction is the exchange
of one substructure by another, i.e. a substitution.

This abstraction of chemistry coincides with the description of a mathemat-
ical function as a rule, rather than a set. (In the former case a function is
a suite of computations that generates an output when applied to an input;
in the latter a function is a set of input-output pairs.) The canonical system
that formalizes the notion of a function as a rule is the λ-calculus. To ex-
press rules, so-called λ-terms are defined inductively. Functions are applied
to arguments, which can themselves be functions, returning a new function
as a result. The evaluation of a functional application is done by repeated
substitutions.

Still λ-terms are far from molecules and its organizations far from organisms.
Some of the major violations of chemistry-as-we-know-it are highlighted in
the following.

• Shape

Molecules interact selectively, but λ-terms can act on one another in-
discriminately.

• Symmetry

A chemical reaction is a symmetric event, but functional application is
not commutative in λ-calculus.
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• Multiple products

Chemical reactions can yield several molecules on the product side.
This cannot occur in λ-calculus, because functions yield a single object
as value.

• Reversibility

A chemical reaction is a reversible event, but the application of a func-
tion is typically not invertible.

• Mass conservation

Molecules are resources and are used up when they react. Moreover,
atom types and numbers are conserved during a reaction event. This
is violated in the dynamical systems component of the base model,
because we do not use up the reactants at the time of the reaction (a
function has a finite lifetime, which, however, is not linked to its reactive
interactions). Conservation laws are also violated in the formal calculus
component of the base model, due to terms in which a bound variable
occurs more than once (“nonlinearity”). “Mass conservation” refers
here to an accounting of terms. To clarify this informally, consider
supplying the argument 5 to the function f(x) = x2+2x+3. The term
5 gets used twice; once when substituting it in x2 and once in 2x. If
terms are treated as resources, we must account for the second instance
of 5.

• Rate constants

Chemical reactions proceed with different velocities leading to a sepa-
ration of time scales in reaction networks. This fact is neglected in the
base model where reduction to normal form of an applicative interac-
tion is considered to occur in one “instant of time”.

These limitations are substantial and motivate the improvements to which
we now turn.

We believe that some aspects of molecular shape are appropriately formal-
ized by the concept of a “type system”, which is a rather natural notion in
the context of λ-calculi. In typed λ-calculus a term is augmented with a
notation expressing the “kind” of terms on which it can act, as well as the
“kind” of terms resulting from this action. For example, a term denoting a
function acting on terms of type A and returning terms of type B is itself
of type A → B. Such a function is prevented from acting on objects other
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than of type A. This may also prove useful in addressing the issue of sym-
metry by preventing one of the possible applications, fg or gf , between two
terms f and g from occurring. Type theory is a very active field of research
in computer science, and a number of useful type systems have appeared
in the literature (for a survey see [6]). We plan to study whether certain
constraints of molecular interaction can be modeled by using System F [39]
possibly augmented with union types and subtyping.

Moreover, typed λ-calculus is a proof-theory of intuitionistic logic in natural
deduction style [23]. This connection extends our previous view of chem-
istry to one in which molecular shapes are seen as propositions and phys-
ical molecules as proofs of propositions. A chemical reaction then literally
becomes an inference with the reactants as premisses and the products as
conclusions.

To address the issue of multiple products requires either the modification
of the evaluation process in λ-calculus, or the definition of a new calculus.

In the first case, we note that in our model a chemical reaction starts with a
collision joining (two) terms into a new (“transition”) term which is subse-
quently rewritten to its normal form. We may think of the “splitting” of a
term as an event that reverses a joining collision. More specifically, the colli-
sion of two molecules is represented by the formation of a reducible expression
(redex) upon application of two λ-terms. A splitting occurs when an inter-
mediate term arises during normalization whose form is that of a “collision
redex”, (λx.A)B. At this point the two well-defined subterms (λx.A) and
B may separate into two products. (Upon continuing normalization, each of
these terms might undergo further splitting yielding an overall outcome of
more than two products).

The second case is more audacious. In response to our work, Jonathan
Rees (MIT) has recently devised a quite intriguing and elegant approach to
multiple products [47]. He starts with the issue of reversibility, and notes
that reversibility of the application of a function is weaker than invertibility of
a function. Rees defines an interaction between a term f and an argument x
to produce both the value, fx, and a so-called “residue”, written f/x, which
is a term such that its interaction with the argument fx yields x as the value
and f as its residue. Nothing is said about the interaction of f/x with terms
other than fx. In Rees’ notation the definition of interaction looks like



Outlook 85

-@
@

�
�

�
�

@
@

f

x

f/x

fx

-@
@

�
�

�
�

@
@

f/x

fx

(f/x)/(fx)
!
= f

(f/x)(fx)
!
= x

and yields two equations which are taken as an implicit definition of the
“residue operator”, /. Rees has begun to construct a modification of com-
binatory logic (a computational system related to λ-calculus) whose rules
comply with this definition of interaction. It is worth noting that the rules
cannot be made unambigous unless one considers mass conservation. In
Rees’ version of the calculus the nonlinear S-combinator (whose λ-translation
contains two occurrences of a bound variable) has to be replaced by two linear
versions.

Although still unexplored, the elegance of the Rees-system raises an inter-
esting point: it may be that the issue concerning multiple products may
not be solved in a theoretically appealing way without simultaneously ad-
dressing the issues of mass conservation (e.g., “linearity”, see also [22]) and
reversibility. The calculus proposed by Rees deserves attention, and we plan
to join his efforts in understanding this system and evaluating its utility for
our research agenda.

A proxy for differential reaction rates may be obtained by taking into
account the number of rewrite steps needed to normalize an interaction term.
In other words, the rate constant of an application reflects the time required
to compute it.

Yet even if all these issues were adequately addressed, it still remains unclear
to what degree a faithful translation from real molecules and their actions
into the resultant formal system would be possible. Part of the problem
is understanding to which extent attributes of molecules are “irreducibly
physical” and to which extent they possess an abstract logical counterpart.
For example, what role does energy play in this context? Could it play a
role analogous to an order relation among terms of a formal system?5

6.2 Modifying the dynamical system

The particular population dynamics imposed on the formal calculus in the
base model leaves ample room for improvement. Physical aspects, such as
spatial extension, may simply be added to current logical formalisms.

5Incidentally, a rewrite relation on terms that is confluent and terminating requires the
existence of an order relation, where rewriting lowers the order of a term [2].
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From a dynamical viewpoint the base model was (functionally) closed, since
no functions were supplied from the outside. We can must now turn our
attention to the construction of organizations under a true flow provided
by a controlled supply of some initial set of functions and the withdrawal of
others. Moreover, progress with the “multiple products” issue of the previous
section will enable us to study other kinetic schemes which do not fix the
total number of particles, but where the system size is determined by the
organization itself.

A further natural improvement of our base model is to consider the forma-
tion of organizations in a spatially extended system. Space is obviously
an important constraint on the collision frequency of function-particles. To
explore the effect of differential diffusion rates we could, for example, make
the diffusion coefficient of a term dependent on its length. The Santa Fe
Institute’s SWARM group is developing a public domain platform for the
simulation of agent-based models across research domains. This software
seems well suited for implementing a spatial version of our flow reactor.

The self-maintaining organizations generated in the base model are orga-
nized only in the algebraic sense of production pathways that have attained
closure. They lack, however, a causal structure involving coordinated se-
quences of action, since it only matters who produces what by interaction
with whom without regard to timing. Sequences of actions cannot be stably
maintained in a flow reactor with functional application as the only form of
interaction. Additional modes of interaction, such as functional composition,
need to be considered. However, associations of actions into sequences (first
apply function A, then function B, then...) must also be given the possibil-
ity of disassembling again, to permit the exploration of various patterns of
coordination.

6.3 Analyzing organizations

An exploration of the proposed modifications requires computer simulations.
Aside from the software that must be devloped to implement the proposed
goals, there remains the difficult and tedious problem of analyzing the orga-
nizations arising in any future model of this kind. Up to now the resulting
organizations were “parsed” and analyzed largely by hand, sifting through
screens full of computer generated data. Software is needed for assisting in
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elucidating the grammar and algebraic structure of the organizations. The
extent to which these analyses can be made online determines the complexity
of the phenomena that we can detect. Consider, for example, computer sim-
ulations in which many independently generated organizations are brought
into interaction. It is virtually impossible to keep track of the “glue” and of
the fate of each individual organization by hand.

6.4 Finding a canonical example

By adequately addressing each of the mentioned issues we hope to move closer
to an abstraction of chemistry-as-we-know-it (and that subsequent steps
would suggest themselves more readily as they become more constrained
by previous choices). Yet, even if the desired theory of chemistry does not
exist, explorations like these are necessary. They provide insights into a func-
tional mode of organization that cannot be attained by traditional dynamical
systems alone; they surely will expose the generic and robust properties of
constructive dynamical systems, a class to which molecular systems belong.

The proposed model extensions will generate a variety of organizations, prob-
ably similar in flavor to those encountered in the base model. We have
obviously no way to explore them all, and we are still far from real chem-
istry. Hence many organizations are invariably “nonsense” from the chemical
point of view. However, suppose that we could represent some section of
metabolism in an appropriate formal calculus, and that this representation
would indeed constitute a self-maintaining fixed point under a flow reactor
dynamics. Finding such a canonical example would be highly desirable, since
we were able to demonstrate that a real molecular self-maintaining system
is at least within the domain of discourse of our model universe, even if we
may not know the boundary conditions needed to actually generate it.
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In section 4.4, we determine the closure of initial sets consisting of a sin-
gle λ-term. For this purpose, we require the rewrite rules that specify the
interactions among elements of the closure.

In this appendix, we present the respective calculations for initial λ-terms
A with two variables. After recapitulating the relevant definitions, we first
calculate the result A′ of the self-application (A)A. Thereby, we introduce a
distinction of cases according to the structure of A.

Next, we parse A′ into building blocks, which induces a classification of λ-
terms according to their building blocks. Finally, we characterize the mutual
applications among classes of λ-terms by a system of rewrite rules.

Definitions

An
i ≡ λx1. · · ·λxn.xi

(1≤i≤n)

(i) An
i ≡ λx1. · · ·λxn.xi (1<i)

(ii) An
1 ≡ λx1. · · ·λxn.x1

Am,n
i,j ≡ λx1. · · ·λxm.(xi)λxm+1. · · ·λxn.xj

(1≤i≤m≤n, 1≤j≤n)

(I) Am,n
i,j ≡ λx1. · · ·λxm.(xi)λxm+1. · · ·λxn.xj (1<i, 1<j)

(II) Am,n
1,j ≡ λx1. · · ·λxm.(x1)λxm+1. · · ·λxn.xj (1<j)

(III) Am,n
i,1 ≡ λx1. · · ·λxm.(xi)λxm+1. · · ·λxn.x1 (1<i)

(IV) Am,n
1,1 ≡ λx1. · · ·λxm.(x1)λxm+1. · · ·λxn.x1
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Calculation of (A)A� A′ for the cases (II) – (IV)

II

A ≡ Am,n
1,j ≡ λx1. · · ·λxm.(x1)λxm+1. · · ·λxn.xj

(1<j)

(A)A ≡ (λx1. · · ·λxm.(x1)λxm+1. · · ·λxn.xj)A

→ λx2. · · ·λxm.(A)λxm+1. · · ·λxn.xj

≡ λx2. · · ·λxm.(λy1. · · ·λym.(y1)λym+1. · · ·λyn.yj)λxm+1. · · ·λxn.xj

→ λx2. · · ·λxm.λy2. · · ·λym.(λxm+1. · · ·λxn.xj)λym+1. · · ·λyn.yj

II.1
(1<j, m=n)

(A)A � λx2. · · ·λxm.λy2. · · ·λym.(λxm+1. · · ·λxn.xj)λym+1. · · ·λyn.yj

≡ λx2. · · ·λxn.λy2. · · ·λyn.(xj)yj

≡ λx2. · · ·λxj−1.λxj . · · ·λxn.λy2. · · ·λyj−1.λyj. · · ·λyn.(xj)yj

≡ λj−2.λx1. · · ·λxn−j+1.λ
j−2.λy1. · · ·λyn−j+1.(x1)y1

≡ λj−2.A2n−j,2n−j
1,n

II.2
(1<j, m<n, m+1≤j)

(A)A � λx2. · · ·λxm.λy2. · · ·λym.(λxm+1. · · ·λxn.xj)λym+1. · · ·λyn.yj

→ λx2. · · ·λxm.λy2. · · ·λym.λxm+2. · · ·λxn.xj

≡ λx2. · · ·λxm.λy2. · · ·λym.λxm+2. · · ·λxj−1.λxj . · · ·λxn.xj

≡ λm+j−4.λx1. · · ·λxn−j+1.x1

≡ λm+j−4.An−j+1
1

II.3
(1<j, m<n, j≤m)

(A)A � λx2. · · ·λxm.λy2. · · ·λym.(λxm+1. · · ·λxn.xj)λym+1. · · ·λyn.yj

→ λx2. · · ·λxm.λy2. · · ·λym.λxm+2. · · ·λxn.xj

≡ λx2. · · ·λxj−1.λxj . · · ·λxm.λy2. · · ·λym.λxm+2. · · ·λxn.xj

≡ λj−2.λx1. · · ·λxm+n−j−1.x1

≡ λj−2.Am+n−j−1
1
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III

A ≡ Am,n
i,1 ≡ λx1. · · ·λxm.(xi)λxm+1. · · ·λxn.x1

(1<i)

(A)A ≡ (λx1. · · ·λxm.(xi)λxm+1. · · ·λxn.x1)A

→ λx2. · · ·λxm.(xi)λxm+1. · · ·λxn.A

≡ λx2. · · ·λxi−1.λxi. · · ·λxm.(xi)λxm+1. · · ·λxn.A

≡ λi−2.λx1. · · ·λxm−i+1.(x1)λ
n−m.A

≡ λi−2.λx1.λ
m−i.(x1)λ

n−m.A

IV

A ≡ Am,n
1,1 ≡ λx1. · · ·λxm.(x1)λxm+1. · · ·λxn.x1

(A)A ≡ (λx1. · · ·λxm.(x1)λxm+1. · · ·λxn.x1)A

→ λx2. · · ·λxm.(A)λxm+1. · · ·λxn.A

≡ λm−1.(A)λn−m.A

IV.1
(m=n)

(A)A � λm−1.(A)λn−m.A

≡ λn−1.(A)A (no nf)

IV.2
(m<n)

(A)A � λm−1.(A)λn−m.A

≡ λm−1.(λx1. · · ·λxm.(x1)λxm+1. · · ·λxn.x1)λ
n−m.A

→ λm−1.λx2. · · ·λxm.(λn−m.A)λxm+1. · · ·λxn.λ
n−m.A

≡ λm−1.λm−1.(λn−m.A)λn−m.λn−m.A

→ λm−1.λm−1.λn−m−1.A

≡ λm+n−3.A
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Calculation of (A)A′, . . . for the cases (II) – (IV)

II.1

A ≡ An,n
1,j ≡ λx1. · · ·λxn.(x1)xj

(1<j)

(A)A� A′ ≡ λj−2.A2n−j,2n−j
1,n

II.1′

(j=n)

A ≡ λx1. · · ·λxn.(x1)xn

(A)A� A′ ≡ λn−2.A

(A)λk.A ≡ (λx1. · · ·λxn.(x1)xn)λ
k.A (k>0)

→ λx2. · · ·λxn.(λ
k.A)xn

→ λx2. · · ·λxn.λ
k−1.A

≡ λn−1.λk−1.A

≡ λk+n−2.A

II.1′′

(j<n)

A ≡ An,n
1,j ≡ λx1. · · ·λxn.(x1)xj

(A)A� A′ ≡ λj−2.A2n−j,2n−j
1,n

(An,n
1,j )λ

k.X ≡ (λx1. · · ·λxn.(x1)xj)λ
k.X (k>0)

→ λx2. · · ·λxn.(λ
k.X)xj

→ λx2. · · ·λxn.λ
k−1.X

≡ λn−1.λk−1.X

≡ λk+n−2.X
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(An,n
1,j )A

n′,n′
1,j′ ≡ (λx1. · · ·λxn.(x1)xj)A

n′,n′
1,j′

→ λx2. · · ·λxn.(A
n′,n′
1,j′ )xj

≡ λx2. · · ·λxn.(λy1. · · ·λyn′.(y1)yj′)xj

→ λx2. · · ·λxn.λy2. · · ·λyn′.(xj)yj′

≡ λx2. · · ·λxj−1.λxj . · · ·λxn.λy2. · · ·λyj′−1.λyj′. · · ·λyn′.(xj)yj′

≡ λj−2.λx1. · · ·λxn−j+1.λ
j′−2.λy1. · · ·λyn′−j′+1.(x1)y1

≡ λj−2.An′+n−j,n′+n−j
1,j′+n−j

II.2

A ≡ Am,n
1,j ≡ λx1. · · ·λxm.(x1)λxm+1. · · ·λxn.xj

(m<n, m+1≤j)

A ≡ λx1.λ
m−1.(x1)λ

j−m−1.An−j+1
1

(A)A� A′ ≡ λm+j−4.An−j+1
1

II.2′

(j=n)

A ≡ λx1.λ
m−1.(x1)λ

n−m−1.A1
1

(A)A� A′ ≡ λm+n−4.A1
1

(A)λk.X ≡ (λx1.λ
m−1.(x1)λ

n−m−1.A1
1)λ

k.X (k>0)

→ λm−1.(λk.X)λn−m−1.A1
1

→ λm−1.λk−1.X

≡ λk+m−2.X

(A)A1
1 ≡ (λx1.λ

m−1.(x1)λ
n−m−1.A1

1)A
1
1

→ λm−1.(A1
1)λ

n−m−1.A1
1

→ λm−1.λn−m−1.A1
1

≡ λn−2.A1
1
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II.2′′

(j<n)

A ≡ λx1.λ
m−1.(x1)λ

j−m−1.An−j+1
1

(A)A� A′ ≡ λm+j−4.An−j+1
1

(A)λk.X ≡ (λx1.λ
m−1.(x1)λ

j−m−1.An−j+1
1 )λk.X (k>0)

→ λm−1.(λk.X)λj−m−1.An−j+1
1

→ λm−1.λk−1.X

≡ λk+m−2.X

(A)An−j+1
1 ≡ (λx1.λ

m−1.(x1)λ
j−m−1.An−j+1

1 )An−j+1
1

→ λm−1.(An−j+1
1 )λj−m−1.An−j+1

1

→ λm−1.λn−j.λj−m−1.An−j+1
1

≡ λn−2.An−j+1
1

II.3

A ≡ Am,n
1,j ≡ λx1. · · ·λxm.(x1)λxm+1. · · ·λxn.xj

(m<n, 1<j≤m)

A ≡ λx1. · · ·λxm.(x1)λ
n−m.xj

(A)A� A′ ≡ λj−2.Am+n−j−1
1

(A)λk.X ≡ (λx1. · · ·λxm.(x1)λ
n−m.xj)λ

k.X (k>0)

→ λx2. · · ·λxm.(λk.X)λn−m.xj

→ λx2. · · ·λxm.λk−1.X

≡ λm−1.λk−1.X

≡ λk+m−2.X

(A)An′
1 ≡ (λx1. · · ·λxm.(x1)λ

n−m.xj)A
n′
1

→ λx2. · · ·λxm.(An′
1 )λ

n−m.xj

→ λx2. · · ·λxm.λn′−1.λn−m.xj

≡ λx2. · · ·λxj−1.λxj . · · ·λxm.λn′−1.λn−m.xj

≡ λj−2.λx1. · · ·λxm−j+1.λ
n′−1.λn−m.x1

≡ λj−2.An′+n−j
1
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III

A ≡ Am,n
i,1 ≡ λx1. · · ·λxm.(xi)λxm+1. · · ·λxn.x1

(1<i)

A ≡ λx1. · · ·λxm.(xi)λ
n−m.x1

(A)A� A′ ≡ λi−2.λx1.λ
m−i.(x1)λ

n−m.A

III.1
(m=n)

A ≡ λx1. · · ·λxn.(xi)x1

(A)A� A′ ≡ λi−2.λx1.λ
n−i.(x1)A

(A)X ≡ (λx1. · · ·λxn.(xi)x1)X, X ≡ A,A′, . . .

→ λx2. · · ·λxn.(xi)X

≡ λx2. · · ·λxi−1.λxi. · · ·λxn.(xi)X

≡ λi−2.λx1. · · ·λxn−i+1.(x1)X

≡ λi−2.λx1.λ
n−i.(x1)X

X̃ ≡ λx1.λ
n−i.(x1)X

(X̃)A ≡ (λx1.λ
n−i.(x1)X)A

→ λn−i.(A)X

→ λn−i.λi−2.λx1.λ
n−i.(x1)X

≡ λn−2.λx1.λ
n−i.(x1)X

(X̃)λk.Y ≡ (λx1.λ
n−i.(x1)X)λ

k.Y (k>0)

→ λn−i.(λk.Y )X

→ λn−i.λk−1.Y

≡ λk+n−i−1.Y

(X̃)Ỹ ≡ (λx1.λ
n−i.(x1)X)Ỹ

→ λn−i.(Ỹ )X

≡ λn−i.(λx1.λ
n−i.(x1)Y )X

→ λn−i.λn−i.(X)Y

≡ λ2n−2i.(X)Y � . . .
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III.2
(m<n)

A ≡ λx1. · · ·λxm.(xi)λ
n−m.x1

(A)A� A′ ≡ λi−2.λx1.λ
m−i.(x1)λ

n−m.A

(A)X ≡ (λx1. · · ·λxm.(xi)λ
n−m.x1)X, X ≡ A,A′, . . .

→ λx2. · · ·λxm.(xi)λ
n−m.X

≡ λx2. · · ·λxi−1.λxi. · · ·λxm.(xi)λ
n−m.X

≡ λi−2.λx1. · · ·λxm−i+1.(x1)λ
n−m.X

≡ λi−2.λx1.λ
m−i.(x1)λ

n−m.X

X̃ ≡ λx1.λ
m−i.(x1)λ

n−m.X

(X̃)A ≡ (λx1.λ
m−i.(x1)λ

n−m.X)A

→ λm−i.(A)λn−m.X

→ λm−i.λi−2.λx1.λ
m−i.(x1)λ

n−m.λn−m.X

≡ λm−2.λx1.λ
m−i.(x1)λ

2n−2m.X

(X̃)λk.Y ≡ (λx1.λ
m−i.(x1)λ

n−m.X)λk.Y (k>0)

→ λm−i.(λk.Y )λn−m.X

→ λm−i.λk−1.Y

≡ λk+m−i−1.Y

(X̃)Ỹ ≡ (λx1.λ
m−i.(x1)λ

n−m.X)Ỹ

→ λm−i.(Ỹ )λn−m.X

≡ λm−i.(λx1.λ
m−i.(x1)λ

n−m.Y )λn−m.X

→ λm−i.λm−i.(λn−m.X)λn−m.Y

→ λm−i.λm−i.λn−m−1.X

≡ λm+n−2i−1.X
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IV.1

A ≡ An,n
1,1 ≡ λx1. · · ·λxn.(x1)x1

A ≡ λx1.λ
n−1.(x1)x1

(A)A� A′ ≡ λn−1.(A)A (no nf)

I ⇒ IV.1

Ã ≡ λp.A (p>0)

A ≡ An,n
1,1 ≡ λx1.λ

n−1.(x1)x1

(A)A� λn−1.(A)A (no nf)

(A)λk.A ≡ (λx1.λ
n−1.(x1)x1)λ

k.A (k>0)

→ λn−1.(λk.A)λk.A

→ λn−1.λk−1.A

≡ λk+n−2.A

IV.2

A ≡ Am,n
1,1 ≡ λx1. · · ·λxm.(x1)λxm+1. · · ·λxn.x1

(m<n)

A ≡ λx1.λ
m−1.(x1)λ

n−m.x1

(A)A� A′ ≡ λm+n−3.A

(A)λk.A ≡ (λx1.λ
m−1.(x1)λ

n−m.x1)λ
k.A (k>0)

→ λm−1.(λk.A)λn−m.λk.A

→ λm−1.λk−1.A

≡ λk+m−2.A
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Diplomprüfungen mit Auszeichnung bestanden
Diplomarbeit am Atominstitut der öst. Universitäten
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