
The barrier of objects:

From dynamical systems to bounded

organizations

Walter Fontana1

Theoretical Chemistry
University of Vienna
Währingerstraße 17

A-1090 Vienna, Austria
and

International Institute for Applied
Systems Analysis (IIASA)

Schloßplatz 1
A-2361 Laxenburg, Austria

walter@santafe.edu

Leo W. Buss

Department of Biology
and

Department of Geology and
Geophysics

Yale University
New Haven, CT 06520-8104, USA

leo.buss@yale.edu

This work has appeared without appendices in:
“Boundaries and Barriers”

John Casti & Anders Karlqvist, eds.
pp. 56–116, Addison-Wesley, Reading MA, 1996

1 author’s present address: Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501 USA

Contents

Overview 3

1 The barrier of objects 4

2 Towards a specification language for chemistry 8

1 Minimal Chemistry Zero . 11

1.1 Ontological commitment, resultant metaphor and formal
representation . 11

1.2 Model . 12

1.3 Main results . 14

1.4 Main limits . 20

2 Minimal Chemistry One . 21

2.1 Shape and action . 21

2.2 What is a type? . 23

2.3 Improved metaphor . 24

2.4 Model and preview of results 25

3 Minimal Chemistry Two . 25

3.1 From λ-calculus to proof-theory 27

3.2 Ontological commitment, resultant metaphor, and formal
representation . 29

3.3 Addressing prior limits in the linear logic framework . . . 33

4 A Roadmap from chemistry to proof-theory 38

3 From dynamical systems to bounded organizations: The thread
from chemistry . . . 40

1 . . . to the “object problem” . 41

2 . . . to the foundations of mathematics 42

3 . . . to concurrency and self-organization 47

4 . . . to biology and beyond . 50

References 52

1

Appendix 59

A λ-calculus for tourists 59

1 Conceptual . 59

2 Instant Syntax and Semantics . 60

3 Beyond λ . 64

B Types for tourists 66

1 The chemistry of types . 66

2 Polymorphism . 67

3 Type inference . 68

C Logic background 69

1 The Curry-Howard isomorphism 69

2 Sequent calculus . 72

3 Linear logic for tourists . 76

3.1 The rules of the game . 80

3.2 Proof-nets . 81

2

Overview

Self-maintaining natural systems include the global climate system, all living or-
ganisms, many cognitive processes, and a diversity of human social institutions.
The capacity to construct artificial systems that are self-maintaining would be
highly desirable. Yet, curiously, there exists no readily identifiable scientific tra-
dition that seeks to understand what classes of such systems are possible or to
discover conditions necessary to achieve them. Given the ubiquity of such sys-
tems naturally and the desirability of self-maintenance as a feature of design, any
credible approach to establishing such a tradition merits serious attention.

We have recently developed and implemented a framework for approaching the
problem [26, 27]. It is based on the premise that the constituent entities of a self-
maintaining system characteristically engage in interactions whose direct outcome
is the construction of other entities in the same class. Self-maintenance, then,
is the consequence of a constructive feed-back loop: it occurs when the construction
processes induced by the entities of a system permit the continuous regeneration
of these same entities [88]. The specific functional relationships between entities
which collectively insure their continuous regeneration, we define as an orga-
nization. A theory of organization, so defined, is a theory of self-maintaining
systems. A prototypical instance of entities are molecules. And organisms are a
particularly interesting class of self-maintaining systems generated by their con-
structive interactions. The atmosphere is another example. And so, perhaps, is
the sun at the nuclear level.

The overarching long-term goal of our program is to develop a formal under-
standing of self-maintaining organizations. Our efforts in doing so, which we
summarize here, have led us to appreciate a fundamental problem in methodol-
ogy: the traditional theory of “dynamical systems” is not equipped for dealing
with constructive processes. Indeed, the very notion of “construction” requires a
description that involves the structure of objects. Yet, it was precisely the elimi-
nation of objects from the formalism that make dynamical systems approaches so
tremendously successful. We seek to solve this impasse by connecting dynamical
systems with fundamental research in computer science, whose theoretical foun-
dations are about “objects” and their constructive interrelations. Our long-term
goal, then, becomes equivalent to the task of expanding dynamical systems theory
to include object construction, to become what we have come to call constructive
dynamical systems [26].

3

1 The barrier of objects

The vast bulk of knowledge base of classical physics has been earned by applica-
tion of the tools of dynamical systems theory. It began with Newton, and became
a powerful tool-kit with Hamilton, Jacobi, and Poincaré. Like all major perspec-
tives in science, its power derives from a useful decision about what constitutes
“the system” and what belongs to “the rest of the world.” The characteristic
feature of dynamical systems theory is to conceptualize “the system” as existing
exclusively in terms of quantifiable properties (e.g., position, concentration) of
interacting entities (real or abstract). The distinction in representing interaction
between entities via their properties as opposed to some appropriate theory of the
entities themselves will play a major role in what follows. The point is subtle. In
a dynamical system, it is not the interacting entities that participate as objects in
the formal constitution of “the system”, but rather their quantitative properties
and couplings. As a consequence, interaction is understood as the temporal or
spatial change in the numerical value of variables. This change is captured by
a set of (deterministic or stochastic) differential (or difference) equations. The
solutions of these equations may then be viewed as a flow in phase space. Ana-
lytical and numerical tools exist which permit the characterization of that flow
and its change as parameters are varied (e.g., invariant subspaces, attractors and
repellors, basins of attraction, bifurcations). In the centuries since Newton, our
own century most prominently, the power and efficacy of this cognitive style has
been established beyond all question.

The success of this framing in physical systems has fueled an inexorable export
of the dynamical systems approach from physics to virtually every domain of
biological, cognitive and social science. The record of achievement in these other
domains has been mixed at best. To what may we attribute this apparent “limit
to scientific knowledge”? A variety of attributions to both specific and general
failure are so commonplace as to have become tiring to once again repeat. Many
failures in domains of biological (e.g., development), cognitive (e.g. organization
of experience), social (e.g., institutions), and economic science (e.g., markets)
are nearly universally attributed to some combination of high dimensionality and
nonlinearity. Either alone won’t necessarily kill you, but just a little of both is
more than enough. This, then, is vaguely referred to as “complexity”.

Laying the blame for scientific limits in this common waste bin, however, has an
uncomfortably facile texture. After all, there are examples of wildly successful
application of dynamical systems approaches to problems that must have seemed
no less daunting at the time than, say, predicting the evolution of the telecom-
munications market or the global climate looks today. Consider the efforts of
R. A. Fisher, whose application of dynamical systems to the problem of com-
bining Mendel’s genetics with Darwin’s evolution yielded his “genetical theory of

4

natural selection” (i.e., what we now know as the field of population genetics).
Fisher accomplished his task via an act of abstraction. His genius was to claim
that organisms were an utter distraction and irrelevancy, simply not a part of the
problem. The concordance of Darwinism and Mendelism required only a pop-
ulation and genes; the concentration of the latter in the former is the relevant
variable, and its behavior may be had by solving differential equations wherein
the frequency of a gene is jointly determined by Mendel’s transmission rules and
Darwin’s selection. Fisher’s accomplishments belie the conventional mantra of
“too complex”. Perhaps the “limits to scientific knowledge” are simply a deficit
of genius. None of us retain into adulthood a capacity to seriously attend for
prolonged intervals to an imagined system of abstract entities; whereas every
youngster quite seriously attends to the closetful of monsters that appear each
nightfall. We rightly celebrate as genius the (first) man who saw genes disem-
bodied from the organism!

In seeking to understand why dynamical systems have had only modest impact in
some sciences, the usual explanations are, in some considerable degree, internal
to a dynamical systems representation itself. The failures are cast as failures in
applying the dynamical systems approach - either a failure of insight in imagining
abstract entities appropriate to the system or a failure in tools for the qualitative
analysis of high-dimensional, nonlinear differential equations. However, no less
real a limit is our ability to stand outside a dynamical systems perspective for
a moment and to seriously ask what is it good at and what is it not. Perhaps,
then, we might augment the cognitive style itself to render it more tractable in
those domains where its achievements have been heretofore limited. This is our
intent.

What is left out of thinking about the physical universe as one massive dynam-
ical system with our understanding of it limited solely by insights in framing
abstractions well-suited to carving off soluble subsystems? Perhaps what is be-
ing too easily overlooked is the fact that dynamical systems never deal with
objects themselves [83]. Objects are never represented as entities with a distinct
internal structure giving rise to behavior. Rather, objects disappear into arrays
of structureless variables confined to holding numerical values that quantify prop-
erties of an object class, such as the frequency of a gene, the concentration of
a chemical, the density of an electromagnetic field, the position and velocity of
an aircraft, the pressure of a gas, the earnings of a firm. The moon, for exam-
ple, is never represented as an object in the equations that express its orbit; the
“moon” is defined as a time-dependent vector of numbers specifying position and
momentum. Numerical values are indeed an appropriate abstraction, but only
as long as objects don’t change. Planets interacting gravitationally or Fisher’s
genes interacting in accord with transmission and selection serve as examples.
The situation is quite different when objects possess an internal structure that is

5

subject to change, particularly when that change is endogenous to the universe
of objects considered, i.e., when the internal structure of an object causes specific
actions to occur that modify (or create) other objects.

Conventional dynamical systems, then, are well-suited to treat changes in the
magnitudes of quantitative properties of fixed object species, but ill-suited to
address interactions that change the objects themselves. The latter is challenging
in the dynamical systems context. The relevant “variables” would have to hold
objects, rather than the familiar numerical values. But if the objects become
the variables of the system, we would need a “calculus of objects” like we have
a differential calculus for numerical values. This places a high premium on the
difficult task of abstracting objects without losing the link between their action
and structure (i.e., without losing the objects). Perhaps herein lies our seeming
deficit of genius.

In Nature, interaction involves objects directly and never by a numerical value
describing them. Stepping outside of conventional dynamical systems requires
taking this observation seriously. Stated less rhetorically, the occurrence of ob-
jects that possess a distinct internal structure of a combinatorial kind has two
implications. First, there are substantially more possible objects than can be
realized at any given time. It is this which gives meaning to the notion of a
“space of objects”1. Second, and most importantly, when the interaction among
objects causes the construction of further objects, relations of production tied to
their internal structure become possible. This never appears in a conventional
setting: it can only arise as a consequence of a causal linkage between the inter-
nal structure of an object and the actions through which it participates in the
construction of others. A theory of such linkage is what a “calculus of objects”
would have to accomplish. If we throw out the constructive component, we throw
out the capacity of a system to endogenously induce a motion in its “space of
possible objects”2.

What is gained may be seen by analogy to conventional dynamical systems. We
imagine construction relations (the analogue of the differential operator) to in-
duce a flow in a “space of possible objects ” (the analogue of phase space). The
intuition is that this flow will have a structure where collectives of objects imple-
menting particular production relations form “attractors” (i.e., “fixed-points”,
“limit-cycles”, and the like) with corresponding “basins”. If so, then objects

1Eigen [21, 22] has introduced this notion for the special case of nucleic acid sequences - the
“sequence-space”. Maynard-Smith [60] thought of the same in the context of proteins.

2Throwing out construction still leaves room for chance events, such as mutation, to induce
a motion in object space. The deeper theoretical and conceptual issues arise when the con-
struction of objects derives from the interaction among existing ones, not from their variation
by chance. The former makes the motion in object space endogenous, while the latter makes
it exogenous to the system. Mutation is to construction like perturbation is to dynamics.

6

which change one another upon interaction - as surely is the habit of elemen-
tary particles, molecules, neurons, firms and governments - have the potential
of being characterized and studied as organized collectives of construction rela-
tions. The question becomes: Do such organized collectives exist? If so, what
are they and what are their properties? Are some self-maintaining, self-repairing,
and capable of extension? Is their extension constrained by their internal struc-
ture, their history of extension, or both? Are they helpful in filling the void that
steadfastly remains in the biological and social sciences, despite the wholesale
importation of dynamical systems approaches into domains so manifestly rich in
object construction and transformation?

The issue posed above mandates that the constructive aspect of interaction be
brought into the picture. This necessarily requires the representation of objects.
In seeking formalisms appropriate to facing the issue of object construction and
transformation, one is invariably drawn to the foundations of computation. The
computational sciences deal explicitly with syntactical entities, and, thus, with
the possible representations of objects and their construction. This defines, then,
our specific approach to the general problem. We are obligated to define objects,
using formalisms borrowed (at least at the outset) from theoretical computer
science, to animate their interaction in an appropriate dynamical setting, and to
thereby generate a “motion in a space of objects”, the features of which we desire
to explore.

All that follows is but a progressive refinement of research tactics we are em-
ploying in an attempt to explore this larger question in a specific instance. We
concern ourselves with the biological domain, specifically thinking of organisms
as self-maintaining chemical collectives. Hence we treat molecules-as-objects and
search a corresponding “space of objects” for self-maintaining collectives. We
first motivate this choice and show how the simplest abstraction of molecules as
agents of construction does indeed generate collectives with a distinctively bio-
logical flavor. From this basis, we outline progressive refinements in our abstract
chemistry in the form of alternative syntactical systems with the aim of clos-
ing the distance from our simplest abstraction of chemistry to something more
respectful of chemistry as we know it. After documenting a concrete implementa-
tion of the broader perspective in the specific instance of chemistry, we return in
conclusion to the larger issues. The reader is urged not to lose sight of the larger
goal while immersed in the specific instance: the long chemical excursion is but
a logbook of data in support of the utility of the broader view. The proffered
“motion in a space of objects” and associated universe of organizations composed
of such objects is hardly exclusive to the objects of chemistry and their resultant
biological organizations. To make substantive progress - whether in biology or
in much of what is beyond biology - we must distinguish and capture the fun-
damentally different consequences that arise when change is about the objects

7

themselves, as opposed to the magnitude of prespecified quantitative properties
describing them.

2 Towards a specification language for chem-

istry

Our overall goal is more readily grasped and the methodological challenges more
concretely framed when stated in the context of a specific class of objects-that-
change-objects and a specific organized collective of such objects. Our starting
point will be chemistry; the relevant entities are molecules and organizations are
self-maintaining chemical collectives. Our motivation in this choice is twofold.
First, we chose chemistry because it is solid ground: we know molecules and
their interactions far better than any other object class claimed to participate
in the construction of self-maintaining organizations (contrast the challenge of
molecules versus the challenge of cognitive entities generating markets or firms,
for example). Second, we believe that biology, particularly molecular biology, has
a pressing need for support from a new kind of theoretical chemistry. Current
quantum and structural chemistry are burdened with information that is not
relevant to the molecular biologist. The level of detail and the kind of descrip-
tion offered by these approaches necessarily put the focus on single molecules or
individual reactions and away from their functional context within organized sys-
tems of molecules or reactions. What chemistry lacks is a high level specification
language focused on the abstract operational aspect of molecules and capable of
describing reaction networks and their algebraic behavior. The molecular biol-
ogist needs a tool for abstracting molecular actions, for plugging them together
(like electronic components), and for generating and analyzing the network clo-
sures of these actions under a variety of boundary conditions.

While absence of such a specification will be all-too-apparent to biologists, an
example may prove useful to others. Let us consider the role that a yet-unrealized
theory of network construction and maintenance might play in understanding how
self-maintaining molecular organizations evolve. The scenario is conventional: a
mutation occurs, which results in a new1 gene sequence coding for a new2 protein
whose interaction with the chemical machinery of the cell, set up by the remaining
gene products, triggers a cascade of new3 chemical reactions resulting in a new4
extension of a metabolic pathway which enables the utilization of a new5 resource.

Each time the word “new” denotes a different kind of novelty, because each time
different kinds of constraints are in effect:

1. novelty1: A sequence is a combinatorial object with the simplest possible
structure: a linear concatenation of symbols. The syntactic category of

8

“sequence” entails a space of possible variations. A chain of 200 positions
over an alphabet of four symbols has 4200 (= 10120) realizations - more than
the number of bosons in the universe. At this level the generation of novelty
is virtually unconstrained. Any random replacement of any symbol at any
position yields a new1 sequence.

2. novelty2: A protein is more than a sequence of symbols. It is a sequence that
folds into a shape as a consequence of interactions between symbols along
the chain. Three-dimensional space and the nature of intramolecular forces
severely constrain which shapes are possible. At chemically relevant levels
of resolution these constraints result in considerably fewer stable shapes
than sequences. Not every novelty1 is a novelty2.

3. novelty3: The types of functional groups and their disposition within a
molecule define its “domain of interaction” - its capacity to participate in
specific chemical action (i.e., the breaking and making of bonds). Novelty3
is a matter of chemistry.

4. novelty4: The constraints and opportunities of interaction within a given
network of chemical pathways determine which new4 network roles a new3
molecular agent can participate in. How (or, even, whether) a network
forms depends on its molecular components, the types of reactions induced
by them, the connectivity of these reactions and their kinetics.

5. novelty5: The innovated4 metabolic network is characterized by constituent
molecules and their relationships. What is regarded, however, as a new5
“resource” or as new5 “waste” is a matter of the coupling between this
network and other such networks either within the same, or between it and
other, levels of biological organization. Indeed, it is the joint construction
and maintenance of a chemical reality composed of a large number of linked
metabolic networks which defines the biotic element of an environment.

It is plain that novelty5 cannot occur unless novelty1 occurs. There is, however,
a gap between novelty1 and novelty5 which theory is presently unable to bridge.
We perfectly understand the “abstract space of possibilities” for novelty1: it’s
the space of words over an alphabet. Yet we have basically no clue as to even
the nature of the abstract space of possibilities for novelty5. The two loose ends
of the problem circulate in biology under the key-words “genotype” (novelty1)
and “phenotype” (noveltyi>1). The evolutionary process is perceived roughly
as the conjunction of two factors: the modification of “phenotypes” by chance
events at the level of “genotypes”, and a dynamics which results in the selec-
tive amplification of “genotypes” based on the differential reproductive success
conveyed by their “phenotypes”. Novelty1 is as simple as a throw of the dice.
However, once it has occurred, we lack utterly the capacity to assess its likelihood

9

of giving rise to novelty5. Yet, this likelihood is defined by a molecular society,
the constituent interactions of which have a lawful - even largely deterministic -
character grounded in physics and chemistry. Might there not be an abstraction
of chemistry appropriate to such questions?

We claim that any serious attempt to mathematize such questions requires an
abstract characterization of chemical processes. This stance defines our more
specific goals:

• to develop an “abstract chemistry” in which molecules are viewed as com-
putational processes supplemented with a minimal reaction kinetics, and

• to develop a theory of the self-organization, maintenance, and variation of
networks based on such processes.

Situating these specific goals in the broader perspective, we believe that an ade-
quate abstraction of chemistry is as crucial in extending the theoretical founda-
tions of biology as was an adequate abstraction of motion in founding a formal
basis for physics. The parallel, however daunting, is one we make seriously.
Roughly, “motion” in physics is conceived as the temporal change in the value
of a state variable (the position, say). This motion is formalized by infinitesimal
calculus; a theory of the derivative d · /dt. We would like to think of chemical
reactions as a kind of “motion” as well - but as a motion in a space of objects. The
key difference is that, mathematically, such objects are not numerical quantities,
they are syntactical entities, to wit: molecules. The chemist denotes that motion
with “−→”, as in CH3OH+CH3COOH−→CH3COOCH3+H2O. The objects on
the left are replaced by those on the right. But these may interact further with
other molecular agents present in the reaction vessel or the cell, thereby keep-
ing its contents changing over time, that is, “moving in object space”. What is
needed is a theory of the motion generator “−→” competent to define a universe
of self-maintaining organizations of such objects. If the broader perspective is
correct and the specific implementation sufficiently exact, within this universe
of organizations will be found specific organizations known to us as living bio-
logical systems. The reader will find grounds in our simplest implementation in
support of the validity of the broad claim, but will find manifest inadequacies in
the precision of the specific chemical implementation presented in section 1. Op-
timism inspired by success in the former has motivated the series of refinements
summarized in sections 2 and 3 in attempt to improve upon the deficits of the
latter.

10

1 Minimal Chemistry Zero

1.1 Ontological commitment, resultant metaphor and formal repre-
sentation

In view of the above discussion, the principal question is “how to frame chem-
istry?” The problem is one of focus – how close-up? how distant? – and one of
scope – how wide? how narrow?. We are forced to make ontological choices. To
begin with, we choose an absolutely minimalist view of chemistry.

1 - Syntactical. Molecules are treated as discrete structures of symbols, defined
inductively. A molecule is an atom or a combination of molecules.

2 - Constructive. Reactions are seen as events where such symbolic structures
“interact” to construct new symbolic structures.

3 - Substitution. The basic mechanism of a reaction is the exchange of one
group of symbols (a substructure) by another, i.e., a substitution.

4 - Equivalence. Different combinations of reactants can yield the same prod-
uct.

5 - Deterministic. When particular functional groups in a molecule initiate a
reaction, the product is determined.

This minimalist view coincides with the description of a mathematical function as
a rule, rather than a set. In the former case a function is a suite of operations that
generate an output when applied to an input. In contrast, the latter case views
a function as a look-up table, i.e., a set of input/output pairs. To express rules,
a syntax is needed (point 1). Functions-as-rules can be applied to arguments
which can themselves be functions, returning a new function as a result (point
2). For example, take a polynomial and “apply” (◦) it to another one: (x2 +
4x + 2) ◦ (y − 1) −→ (y − 1)2 + 4(y − 1) + 2 −→ y2 − 2y + 1 + 4y − 4 + 2 −→
· · · −→ y2 + 2y − 1. This also illustrates that the process of evaluating the
application of a function to an argument is done by repeated substitutions, where
the formal variable of a function is replaced by the literal text of the argument
(point 3). The schemes which govern this process define a calculus. Furthermore,
different function/argument combinations can return the same result. Trivially,
7 + 3 = 20/2, but “7 + 3” is not the same object as “20/2”. To justify the
equality a syntactical manipulation - a computation - must occur that puts each
object into its canonical form: 7+3 −→ 10 ←− 20/2 (point 4). Furthermore, the
application of a particular function to a particular argument always yields the
same result (point 5), although it may proceed via different routes (depending
on which subexpressions are evaluated first).

11

This, then, is summarized by the following metaphor:

chemistry · · · · · · a calculus

physical molecule · · · · · · symbolic representation of an operator

molecule’s behavior · · · · · · operator’s action

chemical reaction · · · · · · evaluation of functional application

To put the metaphor to work, it must be made precise. Any formal system that
is a candidate for an abstraction of chemistry at this level must make the same
ontological choices. The only canonical system known that formalizes the notion
of a function as a rule, and is both based on substitution and naturally yields
a theory of equality is λ-calculus. λ-calculus was invented in the 1930’s [12, 13,
14, 82], and has since become of foundational importance in the computational
sciences. We find it remarkable that there is a system at all - and even such a
central one - that fits so well. The correspondence with λ-calculus will later enable
substantial refinements of the chemistry/calculus metaphor, thereby providing an
ex post justification of this choice.

Although not strictly necessary to grasp most of the remaining chapter at an
intuitive level, the reader unfamiliar with λ-calculus is invited to appendix A.

1.2 Model

Motivated by biological problems akin to that sketched at the beginning of section
2, we have developed and implemented a toy model aimed at exploring the con-
junction of the two interaction modes – construction and dynamics – introduced
in section 1.

Our abstract molecules are symbolic operators expressed in λ-calculus. We con-
sider a “flow reactor” of N such abstract molecules, each one a λ-expression. In
this setting a given expression may occur in multiple instances, just as in a test
tube a number of molecules may be instances of the same chemical formula. We
think now of the expressions as if they were particles floating within a well stirred
solution where they collide at random. Upon contact, two expressions interact
by functional application, such that one expression assumes the role of operator,
and is applied to the other expression which assumes the role of argument. The
evaluation of this interaction yields as its result a new expression. Thus, the
canonical calculus realizes the desired constructive component – collisions (i.e.,
“applications” followed by reduction to normal form; see 2) are production re-
lations among abstract molecules – and these occur in a particular dynamical
setting (i.e., the flow reactor) such that construction is coupled to changes in the

12

concentration of the expressions.

We omit details of our implemention not essential for the purpose of this overview.
They can be found in [26, 27]. One issue is, however, immediately germane. Re-
call that we wish to induce a “motion in object space”, with that motion settling
upon self-maintaining systems of objects. To achieve the latter, we impose a
generic selection constraint on object motion through a choice of reaction kinet-
ics and a restriction on reactor size. Specifically, we make two assumptions:

random collision

transform into
normal form

remove

@
@@
@

@
@

@
@

@@
@@
@
@@

@

@@
@@@@
@@

@@
@@

@@
@@

@@
@@
@@
@@@@

@@

@
@

@@
@@
@@
@@@@

@
@@

@@
@@@@
@@

@@
@@

@@
@@
@@
@@

@
@

@
@

add

reactor

Figure 1: λ-calculus flow reactor. Two expressions A and B
are chosen at random and a new object, (A)B, is constructed
by “application” (see appendix 2). Putting (A)B into its normal
form by β-reduction (see appendix 2), effectively decides which
object species (i.e., “stable molecular formula”) the new object is
an instance of.

• Reactants are not used up in a reaction:

A + B −→ C + A + B (1)

13

where C is the normal form result that is contingent on the application of operator
A to argument B: (A)B → C in λ-calculus. In this way the total number of
expressions increases by one with each reactive collision.

• Each time a new expression has been produced, a randomly chosen one, X, is
removed from the reactor:

X −→ ∅ (2)

The overall number of expressionsN is thereby kept exactly constant. This means
that each expression has a finite life time, even though it is not consumed at the
moment of a reaction. Moreover, since any two expressions interact to produce a
particular third expression with a frequency proportional to their concentration,
the reaction scheme together with fixed reactor size act to favor convergence to a
population of expressions whose relations of production yield expressions extant
within the reactor – the motion in object space settles upon a set of objects that
produce one another.

The reaction scheme, however, does obvious violence to the chemical metaphor.
Indeed, the present metaphor and its instantiation through λ-calculus have a
number of limitations which we discuss further in section 1.4 and which largely
motivate the refinements in methodology outlined in sections 2 and 3.

1.3 Main results

Self-organized algebras and kinetic confinement

The intended motion-in-a-space-of-objects settling upon self-maintaining-sets-of-
objects was observed [26, 27]. We focus first on the different kinds of λ-expressions
in the reactor. As reactions proceed new expressions are generated, while others
disappear due to the removal flow. Depending on the initial conditions, and after
many interactions have occurred, the system frequently converges on an ensemble
of λ-expressions that

(i) maintain each other in the system by mutual production pathways, and that

(ii) share invariant syntactical and algebraic regularities.

The latter means that the contents of the reactor have reached a particular (pos-
sibly infinite) subset of the space of λ-expressions that is invariant (closed) under
interaction.

Syntactical regularities are made explicit by parsing expressions into two kinds of
building blocks, called terminal elements and prefixes3 [26, 31]. Terminal elements
are closed λ-expressions (also called combinators, see appendix A). Prefixes are

3We define a terminal element to be the smallest closed subexpression reading from the end

14

not complete λ-expressions. However, prefixes form closed expressions when they
precede a terminal element. The invariant subspace contains only expressions
that are made from a characteristic set of such building blocks.

...
.

...
.

Figure 2: A simple self-maintaining organization. The dots (left)
and the squares (right) represent λ-expressions with a particular
grammatical structure. They are made of one prefix [λx.(x)] and
two terminals [T1

def== λx.x and T2
def== λx.λy.(y)λz.(z)x]. From

bottom to top, the dots (left) are expressions consisting of an
increasing number of prefixes (starting with 0 at the bottom) ter-
minated by T2. The same holds for the squares (right), except that
they are terminated by T1. A solid arrow indicates the transforma-
tion of an argument (tail) to a result (tip) by an operator (dotted
arrow). For clarity, only a subset of the possible interrelations
is shown. Notice the connectivity enables kinetic confinement.
Most transformations yield objects at the bottom (leading to an
increasing concentration profile from top to bottom). Some oper-
ations, however, yield objects up the “ladder”, thus establishing
self-maintenance. Both syntactical families depend on each other
for maintenance as indicated by the “cross-family” connections.

Algebraic laws are a description of the specific action(s) associated with each
building block. This action may depend on the context of a building block
within an expression. The characterization of the functional relationships among
the blocks yields a system of rewrite equations [50]. This system can, in many
cases, be exhaustively specified using Knuth-Bendix (and related) completion

of a λ-expression. A prefix is a smallest closed substructure. It need not be (and typically is
not) a well-formed expression.

15

techniques [51, 52]4. Rewrite systems which complete, permit a finite specifica-
tion of all interactions among the expressions of the subspace. They implicitly
determine a grammar for its (normal form) expressions.

The rewrite system cast in terms of building blocks is a description of the con-
verged reactor system in which all reference to the underlying λ-calculus has been
removed. In other words, the generic λ-calculus can be replaced by another for-
malism specific to the self-maintaining ensemble of expressions in the reactor,
that is, a particular algebraic structure.

The expressions of the invariant subspace are the carrier set of the algebra. Very
often, but not always, that set is infinite. Although the reactor has only a very
small capacity (1000 or 2000 expressions), the algebra persists through a fluctu-
ating, yet stably sustained, finite set of expressions. This occurs whenever the
connectivity of the transformation network is such that it channels most of the
production flow to a core set of expressions. This we call kinetic confinement .
An example is shown in figure 2.

Organization

The main conceptual result is a useful working definition of what we mean by an
“organization”: an organization is a kinetically self-maintaining algebraic struc-
ture. Self-maintenance has here two aspects which reflect the two modes of
interaction: (i) algebraic, a network of mutual production pathways that is a
fixed-point under applicative interaction, and (ii) kinetic, the concentrations of
the expressions in the network core are maintained positive. The former is a
necessary, but not a sufficient condition for the latter (i.e., a network can be al-
gebraically a fixed-point - every expression being produced within the network -
but its particular connectivity may not suffice to sustain non-zero concentrations
of its core components under flow-reactor conditions as specified by equations (1)
and (2)).

Organizations of differing algebraic structure are obtained by varying the set of
λ-expressions used to seed the reactor. An infinity of such organizations are
possible. Developing a taxonomy of their structure and properties remains a
long-term goal of our program.

4Some rewrite systems induce an infinite recursion and defy completion. In our system,
this is manifested as building blocks whose action upon one another is to generate new building
blocks with the same property. The failure of some rewrite systems to complete is a consequence
of the unsolvability of the universal word problem.

16

Self-repair and constrained variation

Two prominent properties of these organizations are their resilience to the sub-
traction of existing components and resistance to the addition of new expressions.
Organizations often repair themselves following removal of even large portions of
their component expressions. Some organizations are even indestructible: they
regenerate themselves from any component. The reason for this robustness is
the existence of generators of the algebra. These are sets of expressions whose
repeated interactions rebuild piece by piece the entire organization; if they are
retained, the system regenerates.

The link with algebra also clarifies an organization’s response to the addition of
new expressions, but for a different reason. The grammatical and algebraic invari-
ances can be viewed as abstract boundaries of the organization. They determine
membership. An expression which does not conform with that organization’s
particular grammar cannot be a member of the organization. Despite having an
independent description, an organization is embedded in the larger λ-universe,
and a non-member expression may perturb the organization algebraically (and
grammatically), generating further expressions “outside” of it. The perturbing
expression can, in some cases, be stably integrated, leading, for example, to a self-
maintaining extension of the original organization. Alternatively, the perturbing
expression may be diluted out of the system leaving the organization unaltered.
The algebraic relationships which define an organization also determine specific
opportunities for its extension. Biological interpretations are many. As but one
example, Morowitz suggests that nonenzymatic precursor networks of the cellular
core metabolism have evolved via distinct extensions [72].

Organization within organization

Organizations can have a quite complex substructure. To explain what we mean
by substructure we need two iterated mappings. One is an “expansion” of a set
Ai of expressions:

Ai+1 = Ω(Ai)
def
== (Ai ◦ Ai) ∪ Ai (3)

where A◦B means the set resulting from applying every expression in A to every
expression in B. The other is a “contraction” of a set:

Ai+1 = Ω(Ai)
def
== (Ai ◦ Ai) ∩ Ai (4)

Given an organization O, generated in our experimental reactor, we take each

expression i in O and iterate Ω T times to obtain an expansion of i: B = Ω
T
({i}).

After this we contract B until we have found a fixed point: O{i} = ΩT+1(B).

17

In sum, O{i} = ΩT+1(Ω
T
({i})). If O{i} is not empty, we have obtained a self-

maintaining suborganization contained inO that has been generated by the single
expression i.

Figure 3: The substructure of an organization. Each node (circle
or square) represents a self-maintaining set. Circles denote self-
maintaining subspaces with a potentially infinite number of ex-
pressions, while squares represent finite self-maintaining subsets.
When two nodes are connected by an edge, the lower one repre-
sents a set that is contained in the upper one. The size and grey
level of a node reflects that node’s share of the overall diversity
and total number of expressions in the reactor, respectively. See
text for further discussion. (Figure and analysis courtesy Harald
Freund.)

The relationships between all suborganizations generated by individual expres-

18

sions of an organization can be visualized in a lattice partially ordered by inclu-
sion. An example is shown in figure 3. The topmost node represents the entire
organization. It is a combination of 11 suborganizations located at the next lower
level in the diagram. The leftmost suborganization, for example, is an extension
of the organization below it (darker node), which in turn is an extension of the
black node. Since the black node is contained in a number of organizations above
it, these organizations necessarily overlap (i.e., they share some members). The
bottom node is a small closed self-maintaining set contained in all others. Despite
its apparent complexity, only three interaction laws involving only one terminal
element and two prefixes are required to describe the system.

The substructure of an organization reflects only the algebraic aspects of the
organization. Any physical realization of such an organization is also a matter
of dynamic stability. Structure and dynamics jointly define organization-specific
properties with respect to robustness and evolvability.

Higher-order organizations

We can combine disjoint organizations that have been obtained independently.
In some instances they build a stable higher-order organization that contains the
component organizations in addition to a set of products arising from their cross-
interactions. This set is not self-maintaining, yet it is crucial in stabilizing their
integration into a new unit. We call such a set of objects a glue. Biologists will
recognize this as an issue of some importance in history-of-life [8, 61], e.g., the
mitochrondria and chloroplasts of eucaryotic cells are descendants of cells with
an independent procaryotic ancestry.

Copy functions and the emergence of organization

Our model universe invites experimentation on the conditions which facilitate or
impede the emergence of organization. An example of one such condition involves
the role of replicating objects, that is, λ-expressions that copy.

Replication is a term usually used to denote an autocatalytic kinetic role, i.e.,
an agent whose change in concentration is proportional to its own concentration.
In addition to its kinetic aspect, the present model makes the operational role
of a replicator explicit. A replicator is the fixed-point of some interaction. f
is a replicator, if the system contains some g (including g = f) such that f is
a “left” or “right” fixed-point of its interaction with g: (g)f = f or (f)g = f .
Notice that g may turn f , but not another h, into a replicator (unless g is the
trivial identity function). Replicators, then, need not be universal copiers. They
may act to both copy and construct depending upon the expressions they take

19

as arguments.

A C

B

A

B

Figure 4: A basic alternative: copy actions (left) and non-copy
actions (right). Closure of the former yields hypercycles, or “Level
0” in our nomenclature [26]. Self-maintaining closure of the lat-
ter (in the absence of the former) yields “Level 1” organizations
[26]. A middle ground, copiers that also participate in construc-
tive interactions, impede the development of hypercycles, favoring
“Level 1” organization.

The distinction between the kinetic and operational aspects of replication is key to
understanding an essential condition for organization. Self-maintaining structures
capable of sustaining themselves solely on the basis of their copy actions (i.e.,
without constructive interactions) are easily encountered in our system (examples
labelled as “Level 0” in [26]). Such structures are hypercycles, just as Eigen and
Schuster discovered some time ago [23]. If replicators are disabled or if their
operational role involves both constructive and copy interactions, the system will
organize (examples labelled as “Level 1” in [26]). “Level 1” organizations differ
fundamentally from hypercycles in their self-repair and extensibility properties.

1.4 Main limits

The results summarized above clearly illustrate that the merger of a dynamical
system (the flow reactor) with a universe of objects that entertain constructive in-
terrelations (λ-expressions) does indeed achieve the desired objective. A motion-
in-the-object-space is induced, such that self-maintaining structures, character-
ized by an invariant pattern of transformations, arise. Moreover, these organiza-
tions possess properties – regeneration, structure-dependent extension, complex
substructure, capacity for hierarchical nesting – akin to properties of living or-
ganisms. Yet, λ-expressions are far from molecules and our organizations far
from organisms. The major limitations of Minimal Chemistry Zero (MC0) are
enumerated below.

20

1. Shape: Molecules interact selectively. Violated in MC0, because λ-operators
can act on one another indiscriminately.

2. Symmetry: Reaction is a symmetric event. Violated in MC0, because
functional application is not commutative.

3. Mass action: With respect to a reaction event, molecules are resources and
are used up. Furthermore, atom types and number are conserved during
a reaction event. Violated twice in MC0, first by the kinetic scheme (1),
and second microscopically - which is far more serious - by the multiple
occurrence of the same bound variable in λ-expressions. To make the latter
clear: when supplying the argument 5, say, to the function f(x) = x2 +
2x+ 3, the 5 gets used twice; once when substituting in x2 and once in 2x.
Where does the second 5 come from? In chemistry, a reaction has only as
many atoms as are present in the reactants.

4. Reaction classes: Chemical reactions proceed according to a variety of
distinct schemes, such as substitutions, additions, and eliminations. In
particular, individual reactions can yield several molecules on the product
side. Violated microscopically in MC0, because application in λ-calculus
yields at most one normal form (product). (Note that the reaction scheme
(1) is an exogenous condition we impose.)

5. Rate constants: In chemistry reactions proceed with different velocities,
which leads to a separation of time scales in reaction networks. Violated in
MC0, because every reaction event has the same unit rate constant.

These limitations are substantial and motivate the improvements to which we
now turn.

2 Minimal Chemistry One

We consider an extension of MC0 designed to address the issue of “shape” (item
1 in section 1.4). Pure λ-expressions are strings of characters that represent func-
tions with no specific domain of definition (i.e., they can act on any expression).
Shape enforces a specificity upon interaction.

2.1 Shape and action

The virtues of MC0 lie in the transparency of λ-calculus and the connections its
use provides to abstract algebra and rewrite systems. It is difficult to imagine
how a 3-dimensional interpretation could be given to the actions of λ-expressions

21

in a canonical way. An explicit spatial representation would seem to be required.
However, a price for capturing shape would surely be paid in transparency of the
resulting model. Might there not be an abstraction of shape that evades the costs
of explicit spatial imitation?

Molecular shape derives from a self-consistent balance of nuclear and electronic
motions influenced by each other’s field. At the same time the resultant distribu-
tion of electronic and nuclear densities gives rise to specific chemical properties.
In this sense shape and chemical action are two sides of the same coin. In a slightly
more abstract sense, the specificity of chemical action between molecules results
from (i) the complementarity of chemical properties between reacting functional
groups and (ii) their spatial disposition. The first aspect means, for example,
that an electron donor group on one molecule must meet an electron acceptor
group on the other for an action between them to occur. To put it in a car-
toonish way, chemical complementarity emphasizes that action occurs when one
functional group is of the type “if I’m given an x, then I yield a y”, while
the other group is of the “I’m an x”-kind. If the latter were an “I’m a z”, no
action would take place. It is clear at once that interaction selectivity, though
invariably tied to space in real chemistry, does not require space to be expressed
abstractly.

When a reaction involves more than one chemically complementary group, their
spatial disposition further contributes to specificity by excluding those reaction
partners that have the right groups at the wrong places. However, this is a
combinatorial aspect that is neither unique to spatial extension, nor one that
fundamentally alters the nature of specificity caricatured above.

A rather different issue is raised by non-reactive molecular interactions based on
shape. There, the geometric aspect of spatial form is essential in giving rise to
supramolecular morphologies, such as membranes or viral capsids. This aspect
necessarily escapes a formalization cast in a non-geometrical syntactical system;
it is as much outside the calculus-metaphor as is the flow-reactor kinetics. At
this stage of our program, however, we dispense from further physical embeddings
(beyond kinetics); our interest being in transferring as much as possible of what
appears to be physical to an abstract computational domain.

Two aspects of molecular form, shape-as-conditional-action and shape-as-geometry,
are together responsible for chemical interaction specificity. Here we formalize
only the first aspect, taking the stance that it is not the molecule’s shape-as-
a-coordinate-list that counts, but rather how the spatial configuration is parsed
into basic reaction classes. (A virtuoso synthetic chemist looks at a molecular
configuration in much the same way that a grand master looks at a chess con-
figuration, perceiving the molecule in terms of what can be done with it, i.e.,
which features can be exploited to make or break bonds with respect to a syn-

22

thesis goal.) Thus, to the extent that shape is abstracted as a suite of lawful
restrictions on permissible actions, it is plausible to capture its role by imposing
a suitable discipline upon λ-interaction. This is done by augmenting the notion of
function in λ-calculus with the constructive analogue of a “domain of definition”
and a “range”.

2.2 What is a type?

Minimal Chemistry One employs the use of typed versions of λ-calculus, where
the system of types serves as an abstraction of restrictions on chemical action.
Here, we briefly introduce the notion of a “type”. A more detailed but still
expository overview can be found in appendix B. For a rigorous treatment the
reader should consult the literature [9, 10, 38, 55, 77].

A type is a statement about overall action. To appreciate this, consider an un-
typed universe, such as a computer at the level of memory cells [10]. It appears
as an unstructured array of binary strings undergoing transformations. When
looking at these strings we typically have no way of telling what is being repre-
sented. In contrast, a typed universe, such as a programming language, provides
frames of interpretation for the digital contents of computers by imposing a kind
of semantics defining intended use. Such frames work by offering a repertoire
of behavioral types , such as variables, arrays, pointers, procedures, and control
structures. Furthermore, variables themselves are often distinguished according
to the type of value they are meant to hold: boolean, real, integer, character,
and so on. The effect of such constructs is basically to enforce a discipline of
interaction. For example, the interpreter of a programming language rejects the
application of a function that removes blanks from character strings to an “in-
appropriate” object such as a vector of numbers. In essence, a type is but an
object’s “interface” that regulates with what it may communicate.

In programming languages a type serves as a specification, that is, it provides
partial information about what an operator (a program) abstractly does. In
chemistry, however, there are no external reference frames, no intentionally de-
fined “integers”, “character strings”, or “vector products”. The lawful behavior
of chemistry is internally defined by the underlying physics. It is, therefore,
important to understand that the abstract notion (and theory) of types is inde-
pendent of any particular meanings. A representation of chemistry at a chosen
level of resolution could be defined by a repertoire of primitive objects with as-
signed behaviors. Their internal structure is suppressed, and the behaviors are
defined reciprocally. This is what computation theory calls an “abstract data
type”. Primitive objects of this sort could be atoms, or functional groups, such
as hydroxy, amino, carbonyl groups, etc., or they might be further abstracted en-
tities, those which carry “oxidizing”-behavior, others with “reducing”-behavior,

23

“acid”-behavior, “base”-behavior and so on. The action of a chemical group as
a primitive could be specified by indicating which other groups it interconverts,
without indicating how this is done (e.g., mapping a keto group into a hydroxy
group under certain conditions). To turn this into a chemistry, a mechanism
for building complex objects from primitive ones and for interconverting them
is needed. That is what typed λ-calculus provides. Admitting primitives with
a specific behavioral interpretation amounts to defining constraints as to which
objects can be built and, therefore, which reactive combinations are possible.

2.3 Improved metaphor

We have implemented a simple standard type system for λ-calculus [15, 63],
following the path laid out by a very useful prototype [59, pp. 97–113]. The
system is explained in appendix B. Here we emphasize only those conceptual
features that are important for our chemical agenda.

• Syntactical structure and type are coupled. A type is not arbitrarily
attached to a λ-expression. It is derived from its syntactical structure by means
of inference rules in a process called type synthesis. If an expression is modified,
its type changes accordingly. The requirement to possess a type constrains the
syntactical structure, and excludes some of the expressions that were possible
in the untyped case. These constraints are interpreted to reflect the fact that a
molecule’s specific domain of action is based on its structure and composition,
and that the properties of atoms constrain what kinds of molecules there can be.

• Type polymorphism and boundary conditions. Types can convey differ-
ent degrees of specificity. A particular type may constrain an expression to act on
one sort of argument only, while another may not discriminate at all. This is type
polymorphism (see appendix B). The degree of polymorphism is controlled by
assigning basis types of chosen specificity to the variables (and constants, if any)
of the λ-system. The set of basis types constitutes a new boundary condition. It
permits the tuning of the overall reactivity of our abstract chemistry and the def-
inition of primitives with specifically chosen interrelations. It is in the definition
of the basis set that an abstraction of molecular shape-as-conditional-action (or
any other intended restriction upon action) succeeds or fails.

• Interaction specificity. An expression that represents a map sending objects
of type τ into objects of type σ can act only upon arguments type τ . To decide
when an interaction can occur is not as trivial as it seems. The type-expression
can be viewed as describing a domain whose size reflects its degree of polymor-
phism. Whether the polymorphic types of two colliding λ-expressions match
properly is not a mere syntactic comparison, but involves detecting whether one
type is an instance of the other. The decision procedure is outlined in appendix

24

B.

The present formalization treats the abstract essence of “shape” as a statement
about a molecule’s domain of action. It bears emphasis that in this formalization
the λ-term continues to be the object corresponding to the physical molecule. The
type-expression derived from the λ-term is but a device to enforce an interaction
specificity. If the types of two colliding objects permit their interaction, the
syntactical manipulations follow the λ-calculus. It is good conceptual hygiene
not to confuse the type with the object. This is plain in chemistry, the shape of
a molecule is not the molecule.

These features, in aggregate, define the metaphor underlying Minimal Chemistry
One:

chemistry · · · · · · typed calculus

physical molecule · · · · · · symbolic representation of an operator

molecule’s behavior · · · · · · operator’s action

specificity of interaction · · · · · · type discipline

chemical reaction · · · · · · evaluation of a functional application

2.4 Model and preview of results

The reactor with Minimal Chemistry One is schematically shown in figure 5.

Our results with the MC1 model have yet to be exhaustively reported in the
primary literature and, accordingly, we will not provide as detailed a summary of
results as presented for MC0. The major consequence, however, of the improved
model is that organizations are once again achieved and display properties akin
to those documented for MC0. Organization, however, is considerably more
difficult to achieve than in the untyped case, as may be expected by a restriction
on interaction. The degree of difficulty is related to the degree of polymorphism,
and, therefore, to the type basis.

3 Minimal Chemistry Two

Only one of the limitations inherent in Minimal Chemistry Zero, section 1.4, is
addressed by our abstraction of shape as a lawful discipline upon interaction and
our accompanying implementation of that abstraction in typed λ-calculus. Prob-
lems with MC0 regarding symmetry, resource accountability, reaction classes and
rate constants remain in MC1. Indeed, one might even contend that our notion
of types-as-shape is not mature until these problems are solved - that is, until

25

we succeed in defining a basis set that generates, for example, the appropriate
classes of reaction in some restricted chemical domain.

random collision

remove

@
@@
@

@
@

@
@

@
@
@
@@

@

@
@@
@

@
@

@
@

@@
@@
@
@@

@

@

@@@@
@@@@

@

@
@
@
@ @

@@
@@
@

add

reactor

transform into
normal form

?

is this complex possible?

yes

σ τ

 does a ξ exist, such that
σ and τ −> ξ can be unified?

ξ

ξ

@
@@

Figure 5: The λ-calculus flow-reactor with function-particles that
discriminate among interaction partners on the basis of a type sys-
tem. Two randomly chosen expressions with types σ and τ (rep-
resented as shaded regions) collide. The validity of the interaction
complex depends on whether a type can be assigned to it. The
procedure is explained in appendix B. If the interaction complex is
typable, the reaction proceeds by normalizing the complex. Oth-
erwise, the types σ and τ are incompatible for interaction, and the
collision is regarded as elastic.

The issue is one of the level of abstraction we chose. A critic might well contend

26

that our level of abstraction is so high as to willfully preclude eventual maturation
from an abstract to an actual chemistry. This, however, would be a misreading of
our intent, see for example [84]. The retention of a high level of abstraction in the
transition from MC0 to MC1 is anything but a resistance of the actual. Rather it
represents a strategic claim that the benefits of a high level of abstraction exceed
the costs of distance from actuality. A principal benefit lies in facilitating the
transition between related formal systems. A return on costs will be realized if we
are led to alternative formalisms uniquely well-suited to stepwise refinement of
the original metaphor. Minimal Chemistry Two is vindication of that strategy.

MC2 differs from the advance of MC1 over MC0 in two ways. First, in MC1 we
retained the core elements of the MC0 metaphor, merely refining it to include
shape. In MC2, we tinker with the ontology itself. Here we abandon λ-calculus
as the chosen formalism and are empowered to do so without loss of progress
gained in the λ framework by virtue of an isomorphism between formalisms. Sec-
ond, unlike MC0 and MC1, MC2 has yet to be implemented. Hence, we limit
ourselves below to the task of sketching, sequentially, how the typed λ-calculus
leads naturally to formalisms in proof-theory, how the chemical metaphor might
be translated to and enriched by the proof-theoretic connection, and what limi-
tations of a λ-based artificial chemistry this translation permits us to address.

3.1 From λ-calculus to proof-theory

The Curry-Howard isomorphism

Within MC1, a small number of plausible basis sets were implemented and char-
acterized. These established that the typed system retained the capacity to yield
self-maintaining organizations first established in MC0. A multitude of plausi-
ble basis sets remains unexplored. Exploring them with chemical plausibility in
mind, however, requires insight into how type construction may be used to im-
pose, for example, resource accounting within λ-calculus. While not impossible,
the task would clearly be vastly simplified if the syntax itself imposed such a
discipline of stoichiometry. Syntactical systems of this sort exist. One is led to
them through a mapping between typed λ-calculus and proof-theory. Indeed, the
mapping lies at the core of a deep connection between computation and logic (see
appendix 1).

Typed λ-calculus can be viewed as a syntax for the derivation of logical formulae.
The mapping is known as the Curry-Howard isomorphism [38, 45] and may be
stated informally as (see 1 for a more detailed introduction):

type σ ←→ logical formula (proposition) σ

λ-term of type σ ←→ proof of σ

27

Since we use λ-calculus to define an abstract chemistry, any rigorous link between
typed λ-calculus and other areas of mathematics extends the chemical metaphor.
Roughly:

“shape” ←→ logical formula (proposition)

molecule with that shape ←→ proof of that formula

Proof-theory is a large domain, characterized by an initially bewildering diversity
of syntactical systems. Our task, to which we now turn, is to situate our approach
within this diversity, that is, to specify chemical interpretations of a chosen syntax
which are both consistent with the isomorphism and which have potential in
ameliorating the deficits of the λ-syntax.

What do proofs have to do with it?

The connection between typed λ-calculus and proof-theory and our imputed con-
nection between both formalisms and chemistry will not demand that a reader
have a rich appreciation of logic. Some prefatory remarks are, nonetheless, in
order.

A logical formula is built from atomic formulae using connectives like and (∧), or
(∨), implies (→), negation (¬), and universal (∀) and existential (∃) quantifiers.
There are two basic questions we may put to a logical formula. We may ask
for the truth value (true or false) of a formula, or we may ask for its validity.
Contrary to widespread folklore outside of logic, logic is not exhausted by “truth-
tables” that permit reading off the truth-value of compound statements, such as
A ∧ B,A ∨ B,A → B,¬A, given the truth-values of the propositions A and B.
Logic is far richer and much of the richness lies in the latter of these questions.

A taste of the relation between truth assessments and validity may be introduced
by considering Frege’s [30] distinction between the sense and denotation of a
logical formula. In 10/2 = 1 + 4 the denotation of both 10/2 and 1 + 4 is 5.
Hence, the denotation of 10/2 = 1 + 4 is true. How, though, does one know
that 10/2 has the same denotation as 1 + 4? As Girard points out [36, 38], it is
not obvious that 10/2 = 1+ 4, for if it was we would need neither symbolism for
division and addition, nor, even find need to state an equality. This is what is
meant, then, by saying that 10/2 has a different sense than 1 + 4.

Frege’s distinction tells us that what matters in logical systems is not the deno-
tation (i.e., the content) of the propositions, but rather their relational structure.
When Aristotle says that “All men are mortal; all Athenians are men; hence all
Athenians are mortal”, he is saying “All B is C; all A is B; hence all A is C”,
he is not saying “true; true; hence true” [36]! Logic manipulates the sense, not
the denotation.

28

How then does one proceed from sense to denotation? Let us return to 10/2 =
1 + 4. In this example, it is clear. Something must be done to show that they
have the same denotation and here that “something” is a computation.

Just as different logical systems are endowed with different connectives, so must
proof-theory come in a diversity of flavors. The flavors of proof-theory germane to
our project are those which bear a correspondence with computational operations.
These comprise a class known as constructive proof-theory or constructive logic.
The idea behind constructive proof-theory is that the meaning of a formula is the
set of its proofs, where the proofs are objects of an effective calculus, i.e., proofs
are seen as construction scaffolds for a formula. Loosely speaking, the meaning
of α ∧ β is to exhibit a proof of α and a proof of β. The meaning of α → β is
to provide a function which transforms proofs of α into proofs of β. Framed in
this way, constructive logic appears not so much as a tool for reasoning about
computation than a computational activity itself. Indeed, this is the essence of
what is established by the Curry-Howard isomorphism.

3.2 Ontological commitment, resultant metaphor, and formal repre-
sentation

Amongst the diversity of constructive logics is a recent innovation known as linear
logic [33]. We use it here to illustrate how the proof-theoretic context refines the
chemical metaphor. We do so in an intuitive fashion, building from our (similarly
intuitive) characterization of typed and untyped λ-calculus. As in our previous
treatments, the reader is referred to Appendix (3) for a more detailed, but still
gentle, treatment.

In linear logic, indeed with proof-theory generally, the properties of a logical
connective are defined algebraically (rather than by truth-tables), through rules
stating how a connective can be inserted into and removed from a formula. Proof-
theory emphasizes what actions must be taken to construct a formula using a set
of rules governing introduction and elimination.

The introduction rules, elimination rules and connectives of a fragment of linear
logic appear in appendix 3.1. Relative to the sparsity of axiomatic operations in
λ-calculus, the rules in 3.1 reveal a proliferation of syntactical operators. This
meets our intent to progressively refine our chemistry (after all, one needs a richer
syntax to describe an atom in quantum mechanical terms than to describe it as
“a little solar system”). As the basis for the following discussion we use here
only the smallest fragment of linear logic, so-called multiplicative linear logic
(MLL), in sequent notation. For details see Appendix 2, but for those who are
in a rush � means “logical consequence”, ψ and φ are propositions, capital greek
letters are sets of propositions, and � ψ, φ stands for a proof of the disjunction

29

ψ “or” (comma) φ using the inference rules of the proof-system. These rules
are represented by a horizontal bar separating the premises (above) from the
conclusion (below). An axiom is a conclusion without premises. By virtue of the
par -rule the comma (“or”) behaves like a �.

axiom
� φ, φ⊥

� Γ, φ � φ⊥,∆
cut

� Γ,∆
(5)

Connectives

� Γ, φ � ψ,∆
times

� φ⊗ ψ,Γ,∆
� Γ, φ, ψ

par
� φ�ψ,Γ

(6)

with negation, ⊥, defined as:

φ⊥⊥ def
== φ (7)

(φ⊗ ψ)⊥ def
== φ⊥�ψ⊥ (8)

What are the imputed chemical interpretations of this syntax and how do they
relate to that explored in MC0 and MC1? Recall the core of our original MC0
metaphor:

physical molecule .λ-expression (an operator)
molecule’s behavior . operator’s action
chemical reaction . evaluation of a functional application

Our approach in MC1 merely extended the metaphor by modulating a molecule’s
behavior to include:

molecule’s shape . type

Composing this with the Curry-Howard isomorphism yields:

molecule’s shape type σ logical formula σ
physical molecule normal λ-term of type σ proof of σ

The interpretation of a molecule as a proof, compelled by the isomorphism, leads
to the first refinement. In linear logic (see appendix 3), a proof is the construction
of a multi-set of logical formulae, known as a “sequent” (whose raison d’être is
explained in appendix 2). Recall from Curry-Howard that a formula is equivalent
to the type of a λ-expression, and that in MC1 a type was the specification of
a reaction site. A proof of the sequent � φ1, . . . , φn, then, represents a molecule
with n possible reaction sites φ1, . . . , φn, rather than a single one as in MC1.

30

Now that we have logical formulae as descriptions of potential reaction sites, we
need an interpretation of a chemical reaction. Like in MC1 a chemical reaction
involves two issues: (i) which sites are allowed to interact (i.e., specificity), and
(ii) what happens once two sites do interact (i.e., action). For this we turn to
linear logic and its syntactical machinery, rules (5, 6).

Let us again proceed intuitively. If we view a logical formula as a potentially
reactive site, then we must look for the logical counterpart to “chemical comple-
mentarity” (see the discussion in section 2.1). In linear logic, this is provided by
negation, ⊥. The fact that negation is defined in terms of a duality, rules (7, 8),
fits quite naturally with chemistry, where the encounter of chemical “duals” (i.e.,
acid vs. base, oxidizing vs. reducing) is required for a reaction to occur.

ψ

ψ

ψ

ψ⊥

cut elimination

Figure 6: A cartoon of negation, cut, and cut-elimination in linear logic.

In this logic, duality appears at the level of primitive building blocks. These
are axioms, i.e., syntactical entities of the form � ψ, ψ⊥. The structure means
that a primitive object always enters the scene as a pair of connected dual “fla-
vors”, ψ and ψ⊥. More complicated sequents (representing the reactive options
of a molecule) are constructed from such “atoms” using the rules (6) for the
connectives.

When two such sequents (molecules) meet, it is the cut rule that tells us whether
they can interact:

cut
� ∆, φ⊥ � φ,∆′

� ∆,∆′ (9)

The rule states that for an interaction to occur, each molecule must possess
the same formula φ, but in a complementary flavor. The cut-rule, therefore,
emphasizes the role of a logical proposition as an address , i.e., a structured name
enabling communication with a specific other address (of dual kind)5. Girard’s

5In this context, the reader is urged to resist giving a logical proposition an interpretation

31

[34] metaphor of a plug , as sketched in figure 6, renders the situation best. A
proof-system, then, functions as a formal “physics” in which such addresses are
constructed endogenously6.

The cut-rule states which objects can interact, but it doesn’t state what happens
once they do so. The fact that one has a lamp and an electrical outlet does not
mean one has light. All that cut does, is to initiate a chemical reaction (the
“plugging”). An action is still required. Mathematically, the cut-rule enables
two proofs to be joined into a new proof on the basis of a “trade”; one proves (φ)
what the other assumes (φ⊥). The cut rule is formally equivalent to functional
application in λ-calculus which was used to initiate a chemical reaction in MC0
and MC1. Indeed, in correspondence with reduction to normal form, Gentzen
[32] showed that a cut can always be removed from a proof. Crucially, Gentzen
exhibited an effective process that performs this elimination by rearranging the
proof structure (see appendix 2). It is this process, then, which is triggered by cut
and that provides the associated action completing a reactive encounter. Cut-
elimination yields a proof in normal form (i.e., a “direct” proof of a sequent, where
the previously involved intermediate “lemma” φ has been removed). Completing
the synthesis of a molecule is seen as “removing the intermediates” (by letting
them react) yielding the product molecule as a “normal form proof”.

Thus, via negation, cut and cut-elimination we have specified an interpretation of
a chemical reaction and thereby completed our translation. The MC2 metaphor
follows:

chemistry · · · · · · proof-theory
chemical properties of bonds · · · · · · algebraic properties of connectives

reaction site σ · · · · · · logical formula (proposition) σ

stable molecule with site σ · · · · · · cut-free proof of σ

chemical complementarity of sites · · · · · · negation (σ and σ⊥)

chemical reaction · · · · · · proof with cut between σ and σ⊥

This may be summarized (in words that might be chosen only by those deep
within its grip) in its barest essentials as follows. The proof-theoretic metaphor

linked to “human reasoning”. It will not prove edifying. To further clarify the address issue,
consider conditions under which nothing happens. For example, both objects carry the same
flavor of sort ψ (proton-donor meets proton-donor), or both objects carry different flavors but
not of the same sort (proton-donor, say ψ, meets electron-acceptor, say π⊥).

6Chemistry may be thought of as a system for constructing addresses that enable reactions
that further construct addresses. This perspective recalls the π-calculus paradigm of Milner
[67, 68, 69] (Appendix 3).

32

views a molecule as the cut-free proof of a “shape”, i.e., a chemical action. The
cut-rule corresponds to a chemical reaction at site φ. Complementary chemical
propensities are mirrored by negation, φ and φ⊥. The coming into contact of these
complementary types creates an instability (the cut). In chemistry this initial site
of instability is propagated through the molecular skeleton, possibly breaking old
bonds and making new ones, until the stable product molecule results. This
reaction progress is mirrored in the mechanics of cut-elimination that propagates
the “unstable” cut-site through the proof-skeleton until normal form is attained.

3.3 Addressing prior limits in the linear logic framework

MC0 is an absolutely minimal chemistry, consistent with our intent in assessing
the potentials inherent in adding constructive interactions to a dynamical setting.
The success of MC0 in yielding self-maintaining organizations with properties
seemingly so reminescent of biological systems renders its minimality a severe
impediment to progress. The deficiencies enumerated earlier (section 1.4) were:
(i) molecules had no specificity of interaction (i.e., no shape), (ii) reactions were
asymmetric by virtue of the asymmetry of application in λ-calculus, (iii) mass-
conservation (stoichiometry) was violated (i.e., no resource accountability), and
both (iv) reaction classes and (v) rate constants were lacking. Content that the
first issue has been addressed with typed λ-calculus and progress carried over
to the proof-theory framework via Curry-Howard, we here attempt to sketch the
potential of the proof-theoretic representation in addressing the remaining issues.
We emphasize, however, that MC2 has yet to be implemented and the following
must therefore be regarded as “a transcript from a lab notebook” recorded well
before the first reagents have been mixed.

Symmetry

In both MC0 and MC1 a chemical reaction was represented as functional applica-
tion. Application in λ-calculus is non-commutative, hence asymmetric reactions
come as a fixed deficit of the formalism. In the proof-theoretic frame a chemical
reaction is modeled by the cut-rule, which is, in turn, dependent upon negation.
Negation in linear logic is defined via deMorgan-like dualities (see equation (8)
and section 3) and is involutive: A⊥⊥ = A (like a matrix transposition). This
permits a completely symmetric reaction. By this we mean that in a reaction
between sites φ and φ⊥ it doesn’t matter which of the molecules carries the φ-site
and which the φ⊥-site: the result is the same. Symmetry of reaction is as generic
to linear logic as is asymmetry in λ-calculus.

33

Resource Accountability

Violation of mass-conservation is rampant within both MC0 and MC1. Recall
that a failure in resource accounting obtains whenever the same variable oc-
curs multiple times in a λ-expression. When, for example, a reaction between
λCl−.(Cl−)λy.(Cl−)y and some OH− occurs, the OH− is used twice during normal-
ization: (λCl−.(Cl−)λy.(Cl−)y)OH− → (OH−)λy.(OH−)y → · · ·. The meaning and
extent of this difficulty is apparent. We are effectively permitting the same OH−-
group to substitute for two distinct Cl− ions, or, equally problematic, having the
same Cl− be at two different places in the molecule. Moreover, if a variable is
declared that never appears in the term, a reaction would simply “annihilate” one
reactant, such as in: (λCl−.λy.y)OH− → λy.y. Serious attention to syntactical
resource accounting is required in a mature artificial chemistry and no such tools
are inherent in the syntax of λ-calculus.

Resource sensitivity is hardly a feature of classical logic, but several varieties
of constructive logic - including linear logic - have this attribute. In classical
logic, formulae are not viewed as physical entities (or tokens) - like chemicals (or
money) - that are consumed when they are deployed to cause effects. A lemma
proven by mathematician X need not to be reproven after mathematician Y has
used it in proving a theorem. The lack of a resource problem in classical logic
derives from the contraction and the weakening rules (see section 2) which state
that in the manipulation of proofs, available formulae can be copied or surplus
instances erased arbitrarily. For example, the classical conjunction of twice the
same formula, φ ∧ φ, is equivalent to φ. The problem with the real world is that
if φ stands for some fact like a dollar, then classical logic states that 2 dollars
- and, hence, any number of dollars - are equivalent to one dollar. Or that one
molecule of a substance has the same effect as an Avogadro such molecules. Here
classical logic departs radically from the physical world.

Several constructive logics are resource sensitive, linear logic amongst them. Lin-
ear logic achieves resource sensitivity by placing weakening and contraction under
explicit control. Depending on the tightness of the control several variant logics
are obtained (e.g., [78]). The basic idea shared by each system, however strict
its accounting, is to view formulae as “assets” that are consumed when they
are used. For our purposes here it is sufficient to note that the syntax of linear
logic permits resource accountability; attention is paid to enforce that no formula
may be used that has not first been generated and that, no formula, once used,
may be used again without generating it anew. This clearly permits an artificial
chemistry embedded in linear logic to escape another of the deficits inherent in
λ-representation.

34

Reaction classes

The reaction scheme of MC0 and MC1 shares a deficit beyond that of resource
accounting. Specifically, the λ-framework explored only a very restricted set
of chemical reaction classes. Moreover, these were exogenously imposed. The
restriction is apparent in noting that a λ-expression (a reactant) applied to an-
other can yield either a single product or no product at all. How are commonplace
chemical reactions with multiple products, e.g., RCOOH+R′OH→RCOOR′+H2O,
handled in the λ-framework? They are not.

00000000000
00000000000
00000000000
00000000000
00000000000
00000000000

C⊥

A⊥ B

&

&

000000000000
000000000000
000000000000
000000000000
000000000000

x

A B⊥

C

x

&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
00000000000
00000000000
00000000000
00000000000
00000000000
00000000000

C⊥

A⊥ B

&

&

x CA B⊥

x

88888888888
88888888888
88888888888
88888888888
88888888888
88888888888
88888888888
88888888888
88888888888
88888888888
88888888888
88888888888
88888888888

A⊥ B

D D⊥

&

x&

000000000
000000000
000000000
000000000
000000000
000000000

x

A B⊥

C C⊥
x

β

β⊥

α
γ

δ

β⊥

β

CUT

β⊥ δ

α
β

γ
+ α

β

γ

β⊥ δ δ
α

γ
β⊥β+

&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&

888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888

A⊥ B

D D⊥

C⊥

&

x&

x CA B⊥

x

δ

α
γ

Figure 7: A chemical reaction with linear logic proof-nets. See
text and section 3.2 for details.

Accomodating this deficit within the linear logic framework is the challenge that

35

most limits implementation of MC2. In the case of λ-calculus, the limitation
was inherent in the formalism. In contrast, linear logic - as well as alternative
formalisms motivated by linear logic (e.g., [54]) - provide a broad set of options.
They raise, however, important issues of chemical interpretation (much like cer-
tain chemically motivated extensions to the logical framework raise interesting
issues of logical interpretation). For the purpose of this contribution there is little
to be gained in fully developing the various candidate schemes. It will suffice to
introduce an example to illustrate the power of this route to MC2. We chose
this particular example because it makes especially apparent a larger issue which
lurks within any choice of chemical interpretation.

Recall that we identify a molecule with a proof, initiate a reaction with the infer-
ence rule “cut” and complete the reaction by cut-elimination. As with λ-calculus,
it is a simple matter to generate a single product. Figure 7 illustrates a simple
scheme that stretches the usual inference by yielding multiple products (i.e., more
than one sequent as a conclusion). The reaction is presented in Girard’s [33] proof-
net notation, a concise presentation mode detailed in appendix 3. Mastery of
proof-net notation is not required to appreciate the reaction intuitively, however.
It is sufficient to know that each structure is a valid proof and that the shaded
regions are propositional formulae. Imagine the figure to represent esterification
of a carbonic acid with an alcohol: RCO OH +R′O H →RCOOR′+ H−OH with

OH labelled (as in figure 7) as β and H as β⊥. The cut performed on β and β⊥

is now seen as the chemical action between an acid and its complementary base.
The by-product of the esterification is water, captured here as the combination
of the two cut-formula flavors, H and H⊥ ≡OH, in a single molecule correspond-
ing to β − β⊥ in figure 7. Clearly, exchange of shaded components between the
reactant proofs has yielded the desired disconnected product proofs. The inter-
pretation presented in figure 7 is illustrative of how particular issues of chemical
interpretation are raised. In the cut rule (9), the single conclusion sequent has
lost (both flavors of) the cut formula. Yet, in our figure, we have simply collected
the garbage that would otherwise be thrown away during cut-elimination. One
might justify this practice on the grounds that in real chemistry, nothing is ever
annihilated. The attribution purchased by this justification is that of imparting
a physicality to the cut-formula.7. The process shuffles a reaction site from one

7The attribution has consequences. (i) In linear logic, the cut formula is erased. Its erasure
makes cut irreversible. Keeping the latter in our interpretation (see figure 7) preserves all
information necessary for its reversal. Yet, we cannot reverse it, because the reverse reaction
does not proceed via the cut rule which we took as the formal definition of a reaction. (ii)
Treating the cut-formula as an object, say the functional group OH, makes it impossible to
subsequently cut within that object, e.g., separating the H from the O. (iii) Our interpretation
only implements substitution reactions of chemistry. The scheme is unable to introduce, or
eliminate, connectives (i.e., types of chemical bonds). The rules for the connectives (6) are
not suited to model such reactions, because they don’t provide interaction specificity (see the
discussion of cut in section 3.2).

36

molecule to another. This, then, is a clean interpretation of the reaction class
known in chemistry as substitution reactions.

Treating the cut-formula as a physical object introduces a larger issue. Disarticu-
lating the physical - whether it be an object like a molecule or a memory location
in a computer - from the syntactical rules used to perform computation is a prin-
ciple challenge within the domain of computer science addressing concurrency.
Linear logic is one candidate formalism for concurrency. Our interpretation of
the cut formula in linear logic as representing a physical object is one of several
possible representations of the physical8. The diversity of paths within MC2 for
addressing the limitation of reaction classes in MC0 and MC1 reflects this larger
issue. We return to the general topic in later discussion.

Rate constants

Rate constants are an aspect of chemical reactivity with important consequences
for reaction networks. In MC0 and MC1, all reactions proceed at an identical rate.
A plausible foundation to endogenize rate constants within the λ-syntax would
be to interpret as a rate constant the number of reduction steps needed to obtain
normal form. For this to make chemical sense, reduction must be expressed in
terms of true “unit-time” events, i.e., truly elementary steps of reconfiguration.
This is not the case with standard definitions of β-reduction. The linear logic
framework, however, has made it possible to resolve reduction into elementary
events [17, 35]. We could imagine them as taking place at the beat of an external
clock. Two simultaneously occurring interactions would terminate after different
periods of time, thus yielding different “rate constants”.

We have focussed above on the power accompanying the shift in formalism en-
abled by the Curry-Howard isomorphism. It is remarkable that linear logic ap-
pears to have the capacity to addresss each and to solve some of the principal lim-

Other attributions to the cut formula are no less plausible, but carry their own suite of
consequences. One might argue that the cut-formula has no physicality, yet retain chemical
plausibility by holding that what is cut are the bonds themselves and not “that which is
bound”. A variant of linear logic, known as linear logic with MIX (direct logic) [2, 16, 25],
readily permits both connected and disconnected proofs, and may be employed in generating
multiple products. This attribution, however, purchases its power at the cost of (i) losing a
strict control over weakening (and, thereby, a relaxation of strict resource accounting), as well
as (ii) a far greater complexity in implementing cut-elimination.

8Attempting to give chemical processes a logical interpretation feeds back to logic itself.
We interpret here a chemical reaction as being a logical inference (governed by a rule such as
cut). But what logical interpretation should be given to chemical reactions that yield multiple
products? That is, what is the meaning of a rule of inference that splits proofs, i.e., that
generates two or more conclusion-sequents at the same time?

37

itations of MC0 and MC1. In focussing upon comparison with the λ- framework,
we may have given the inadvertent impression that addressing these limitations
exhausts the utility of the linear logic frame. Indeed, it may well prove to be the
case that features of linear logic unrelated to the limitations of MC0 and MC1
will ultimately provide most important.

4 A Roadmap from chemistry to proof-theory

We pause to ask: How natural is the analogy between a molecule and a proof?
Suppose Dr. X claims that a certain chemical action σ is possible. Prof. Y chal-
lenges her to prove that claim. X returns a few years later and exhibits an actual
molecule that provides that action, thereby proving her claim. Although the
molecule does what X claimed it to do, Y will rightly wonder: “How did you pro-
duce it?”. The question is fair, because by just looking at a molecule it isn’t clear
how it was produced, despite being evident that it was produced. The reason
is that in chemistry we typically can’t just stick atoms together one by one like
in a Ball-&-Stick model. A molecule tells little about its synthesis path, just as
a mathematician’s direct proof from first principles does not convey the insight
that led to it. Indeed, a mathematician usually proceeds by intermediate steps,
proving lemmas, and then combining them with the cut rule (9) to achieve the
desired theorem. Cut permits a proof to be factored into generic modules (“sub-
routines”), thereby preserving the proof idea. A mathematician, therefore, rarely
normalizes the proofs. The situation in chemistry is subtly different. First, a di-
rect synthesis of a molecule by plugging atoms together is almost never feasible.
Thus, a chemist is forced to synthesize a molecule by using other molecules as
intermediates, i.e., he cannot fully exploit what logicians know as the subformula
property. Second, as soon as the chemist mixes the reactants, the reaction pro-
ceeds, i.e., the mixture spontaneously “normalizes”, courtesy of thermodynamics.
The self-maintaining organizations we found with MC0 and MC1 appear from
this standpoint as specific ensembles of molecules that collectively retain their
synthesis pathways, because every molecule is both “final product” and “inter-
mediate”. Since in MC2 molecular actions are seen as theorems whose proofs are
the molecules that perform those actions, MC2-organizations - had we produced
them - would appear as sets of theorems that are closed with respect to inference.
The technical word for such sets is a theory .

From the initial observation that dynamical systems evade construction and that
computation is construction, we have arrived at a representation of chemistry as
proof-theory. This path has proven sufficiently surprising to us so as to expect
that others might find a roadmap helpful.

38

Table 1: The Chemistry / Proof-Theory Roadmap

Chemistry λ-calculus Linear logic

molecule as
physical object

(the nature of atoms and their
bonds)

λ-term
in normal form

proof-net
in normal form

(multiplicative fragment of lin-
ear logic)

shape as action
(domain of interaction)
(with whom and how a
molecule interacts, as deter-
mined by its shape and the
nature of its reactive groups)

type
(specification of an action: a
description of what the term
does at a particular level of res-
olution)

multiset of
propositional formulae

(theorem)
(a set of “actionable” ad-
dresses, “interfaces”, or “plug-
ging specifications”)

bonds

(connectors of molecular parts)

abstraction and
application

left and right rules
of logical connectives

initiation of a
reaction

application

rule of inference:
cut

(reactants are the premises,
products are the conclusions)

completion of a
reaction

(structural rearrangements
into stable products)

normalization cut elimination

branching reaction
(multiple reaction pathways
among the reactants)

—
multiple cut

options
(a sequent is a multiset)

synthesis pathway
(representation of a molecule
as a suite of reactions between
intermediates which enable its
synthesis)

λ-term
containing redexes

proof-net with cut(s)
(a proof making use of inter-
mediate results – lemmas a.k.a
cut-formulas)

synthesis planning
(how do we break up a
molecule into achievable sub-
goals for synthesis?)

theorem proving
(in typed λ-calculus only, e.g.,
Automath [18]; see also linear
logic)

theorem proving
(how do we break up a formula
into achievable subgoals (lem-
mas)?)

determinism
(for a particular reactive en-
counter the products are deter-
mined)

Church-Rosser
(reduction is confluent; in ad-
dition, some type systems have
strong normalization proper-
ties, i.e. any reduction se-
quence always terminates)

Church-Rosser
(cut elimination is confluent
and obeys strong normaliza-
tion in MLL)

39

Table 1: The Chemistry / Proof-Theory Roadmap (continued)

chemistry λ-calculus Linear logic

duality
(dualities apparent in stere-
ochemical complementarity,
hydrophilic/hydrophobic,
proton donor/acceptor,
reductant/oxidant)

—

duality
(linear negation is involutive,
defined by DeMorgan duali-
ties)

symmetry
(reactive interaction is sym-
metric)

asymmetric
(functional application is not
commutative)

symmetric
(assumption and conclusion
are dual - i.e., to switch is to
negate)

resource sensitive

(obeys mass conservation) —

resource sensitive
(weakening and contraction
are absent in MLL, or con-
trolled in full linear logic)

The match is suggestive, and one cannot fail to wonder whether the level of
metaphor might someday be trespassed. If so, there would be a level of explana-
tion at which chemistry would effectively be logic. This possibility is one we do
not dismiss. It is no more ludicrous than, say, becoming accustomed to regarding
physical space to “be” the threefold cartesian product of the real numbers, IR3.

3 From dynamical systems to bounded organi-

zations: The thread from chemistry . . .

The long excursion into the specific case of chemistry serves to illustrate that it
is indeed possible to move beyond the limits of dynamical systems claimed at
the outset, section 1. Here we return to the general point, reiterating its major
features in the context both of our own attempt and those of others grappling with
related issues in often quite different settings. Our treatment of related issues is
admittedly eclectic, representative only of our own interests and backgrounds.

The following define our conceptual coordinates. We sequentially amplify on each
point in the sections that follow.

1. The identification of the “object problem” as a fundamental limit in ap-
plying the dynamical systems methodology to the biological sciences and
beyond (section 1).

2. The claim that overcoming that limit requires a theory of object construc-

40

tion and, thus, necessarily involves a substantive overlap with the founda-
tions of the computational sciences.

3. The position that a concept of “organization” derives from placing a theory
of objects in a suitably constrained many-body dynamical setting (section
1.2). The conventional settings of either dynamics alone or syntactical ma-
nipulation alone are insufficient; “organization” derives (or, if one prefers,
self-organizes) from their combination in a constructive dynamical system.

4. Finally, the “organizations” resulting from a constructive dynamical set-
ting have the potential to address problems that have stubbornly resisted
solution.

1 . . . to the “object problem”

The identification of the “object problem” as a fundamental limit in applying the
dynamical systems methodology to the biological sciences and beyond (section 1).

Whenever a particular level of analysis of Nature is populated with objects whose
internal structure engenders specific action capable of changing or creating other
objects, the dynamical systems methodology encounters a fundamental limit.
The reason is that the formal machinery of dynamical systems is geared to handle
changes in quantities, but not changes in object structure. We believe that a
formal understanding of such a level of Nature requires a theory that combines
variables that can take objects as values with the more familiar variables that
hold quantitative values (such as concentrations). To convey an intuitive flavor of
this, think of action as “parametrized” by structure, and imagine a “derivative”
in object space giving information about the change of object action resulting
from a change in object structure. Clearly, being able to meaningfully define
such a thing puts stringent conditions on how structure is coupled to action.
To even start thinking about this requires a powerful formal machinery capable
of expressing the coupling of structure to action for the objects pertinent to a
particular domain of application. This is the “object problem”.

The “object problem” is nowhere seen more crisply than in chemistry. Chemical
reactions are events in which both concentrations (i.e., quantities) and objects
(i.e., structures) change. The projection of a chemical reaction involving large
numbers of molecules on a phase-space of concentrations is known as reaction
kinetics. To set up a chemical reaction as a dynamical system in concentration
space, one only requires knowledge of the proper couplings among the concentra-
tions of reactants and products. It is sufficient if these are known as empirical
facts; knowledge of the chemical identity and properties of reactants and products
is not necessary. Cranking the tools of, say, infintesimal calculus yields the time

41

evolution of reactant and product concentrations. Remove kinetics for a moment
by considering just the information conveyed by a chemical reaction when it is
notated on paper. We are left with a reaction arrow, “→”, expressing a relation
among molecular structures. A general method capable of describing the time
evolution of the contents of a reaction vessel for an arbitray initial mixture of
molecular species would require nothing less than a formal system implicitly rep-
resenting the space of molecular objects and the relation “→” over them. That
is a formal theory of chemistry.

2 . . . to the foundations of mathematics

The claim that overcoming that limit requires a theory of object construction and,
thus, necessarily involves a substantive overlap with the foundations of the com-
putational sciences.

Where do we get a formal theory of chemistry? The answer is crucial to our ap-
proach. To date we do not have a formal, axiomatized theory of chemistry that is
useful in everyday practice, despite the fact that quantum mechanics successfully
grounds chemistry in the behavior of electrons and nuclei. The problem is one of
choosing the “right” level of description. With respect to both molecular biology
and industrial metabolisms alike, quantum mechanics is far too fine grained, and,
aside from issues of feasibility, does not convey a satisfactory understanding of
“what chemistry is actually doing”; it is too close to the trees to see the forest.
To put it provokingly, our understanding of life will derive in large measure from
how we understand chemistry. It is clear, then, that identifying a coarser grain
of analysis capable of hosting a formal theory of chemistry would be of tremen-
dous practical import and by no means limited to the foundations of theoretical
biology.

Chemistry and computation

The stance we took in prior work [26, 27], and further elaborated here, is based on
the intuition that at some level of description the reactive processes of chemistry
are analogous to manipulations (rewrites) of syntactical objects. This puts us
right into the domain of the computational sciences, section 1.1. In the present
context, the reader is well advised to detach from an all-too narrow notion of
computation as “number crunching”. Much effort in the computational sciences
goes into devising formal systems of syntactical constructs (we call “objects”)
that are interrelated by operations of transformation defined on them. It is in
this sense that “computation” is the science of the construction of abstract objects
with structure-specific “behavior”.

42

What is crucial in the present context is how object behavior is synthesized
from basic elements, as it is here that insights into fundamental mechanisms of
“construction” or “interaction” are revealed, and can be compared with empirical
facts. For what is desired in a theory of objects is not just a formalism and
the theorems that accompany it, but a transparency of interpretation in the
intended application domain. In a chemical application, one wants to capture
at least the twin facts that (i) product molecules are lawfully constructed from
substitution of parts of reactant molecules and (ii) that the same product can be
produced by a diversity of different reactants. One wants, therefore, a theory of
combinational structures and substitution together with the resultant theory of
equality . Indeed, this is what drew us originally to λ-calculus. A great variety of
alternative formal systems - Turing machines, Petri nets, Post systems, cellular
automata, to mention but a few - allow expression of the same set of functions
on the natural numbers, and, thus, may be regarded as being equivalent in that
respect . It should be clear by now, however, that what is needed here is not
merely a member of this universality class, but a member whose features are
germane to the chemical problem at hand.

Identifying λ-calculus as a plausible candidate for a chemical interpretation hardly
qualifies λ-expressions as anything but the most metaphorical of molecules. It is
merely a foothold. A crucial one, however. It enabled our painstaking progres-
sion from MC0 to MC2, showing how a formal representation can be preserved,
while progressively refining the chemical interpretation of the operators of the
formalism. This would have hardly been possible with, say, Turing machines,
Boolean operators, or assembler code. In that respect we differ markedly from
pertinent work by Kauffman [47, 49], Rasmussen [76], McCaskill [62], Thürk [85]
and Ikegami [46].

The issue here is one of grounding and formalizing an ontology, not just of captur-
ing a phenomenology. Yet, this does not require a one-to-one mapping between
some formalism expressing computational processes and real-world molecules
with their chemical reactions. The map should not be confused with the ter-
ritory; we do not want to “simulate” chemistry. We take the computational
perspective as one enabling a different - logical - level of description of chemistry
which is distinct from one that accounts for its actual physical implementation.
The latter is the domain of quantum physics. For example, whether the actual
protein folding process belongs to the class of computable functions is entirely
irrelevant to us. For all we need to capture is the logic of the connection between
structure and action specificity, not the physical process by which this connection
is implemented. Herein lies the point of a specification language for chemistry.

43

What is gained by a computational theory of objects?

What is gained is best seen in comparison with prior approaches to modelling
chemical collectives [3, 24, 48, 70, 79], following Kauffman’s [47, 48] original
casting of the problem. Particularly germane here are the efforts of Bagley,
Farmer, Kauffman and Packard [3, 24]. Their work is an ideal contrast, in that
the objective is identical to our own, but the methodology used to achieve the
end differs. In its essence their model consists of strings over some alphabet,
for example 0’s and 1’s, meant to represent polymers that recognize each other
by “complementarity” (0 pairs with 1). A string can act as the docking place
for others, thereby catalysing specific concatenation and splicing reactions. This
leads to the assembly of reaction networks capable of maintaining themselves
on the basis of a monomer or string flow through the system. Such a model
shares with our own the appearance of self-maintaining collectives (that they call
autocatalytic).

The crucial difference between our approaches is that the core of our model is
a theory of object construction - rather than the imitation of particular chem-
icals. This is what gives us the capacity to specify what the “organization” of
an emerging collective of objects is in terms of a mathematical formalism. Three
broad consequences follow.

1. The abstraction of molecules in MC0 and MC1 as symbolic functions al-
lows organization to be detected as a closure of interaction, manifested by
invariant syntactical regularities and invariant algebraic laws characteriz-
ing the action of those objects maintained in the collective. It cannot be
overemphasized that this characterization can be made by an observer of
the system who is ignorant of λ-calculus. Indeed, an organization can be
specified as an algebraic rewrite system that is independent from λ-calculus,
and, thus, the process by which it originated. With the theory of objects
comes whole-cloth a quite different theory of the collective.

2. A formal theory of objects makes transparent which features of the collec-
tive organization derive from the underlying theory of objects, and which
features are curiosities derived from particular initial conditions, parameter
settings, or a particular chemical stance. The distinction is between what
we have elsewhere called “digital naturalism” [29] and the claim for a theory
of self-maintenance.

3. As emphasized at the outset, section 1, an abstract theory of objects plays a
role analogous to that of differential equations. The analysis of a dynamical
system cast in terms of differential equations yields the characterization of
manifolds in phase space that govern the set of its possible trajectories.
Consider our MC0 implementation and imagine we seeded our reactor with

44

one λ-expression known to be a basis for all λ-calculus. Imagine further that
the container is itself infinite in size and the reactor would then be capable of
holding all possible (normal form) expressions. When we impose a dynamics
on the objects (which, in our case, is a scheme coupled to the reactor size),
we sieve particular “trajectories” in object space. Recall that our kinetic
scheme is designed to favor the maintenance of objects that are constructed
by the extant population of objects. As a consequence “trajectory” in object
space “converges” to an “attractor” - a self-maintaining organization.

This casting emphasizes the need for a theory of the “motion” in “object
space” induced by the object constructors (here, functional application or
logical inference) under the continously updating kinetics imposed by the
extant network of objects. How might such a motion differ under dynamics
different from our own (see for example [46])? Or with equivalent dynamics
and different object-constructors? Is there a meaningful formal concept
of a “trajectory” in “object space”? What is “continuity”? Is there a
useful definition of “distance” between “attractors” (in our case, algebraic
structures in λ-space)? Questions like these require a theory of objects, not
only to be answered, but even to be asked.

The value is apparent. Consider just one instance. A methodological imperative
of the dynamical systems approach is the a priori choice of the pertinent enti-
ties and their functional couplings defining the system. The fact that the choice
must be made a priori has the consequence that the dynamical systems method-
ology can never be used to address the origin of that same system, a profound
limitation to which we have referred elsewhere [26] as the existence problem. It
is apparent in MC0 that our reactor in settling upon a self-maintaining set of
objects has settled upon a fixed system of variables and functional couplings be-
tween them; thus, particular dynamical systems appear as limiting cases (such as
“fixed points”) of constructive dynamical systems. Are constructive dynamical
systems “generators” of dynamical systems? If so, a formalization of the motion
in such a space holds promise as a methodology to address scientific questions
which include the phrase “the origin of...”.

Grounding and unifying other’s ideas

Attractive intellectual constructs previously lacking a formal interpretation are
rendered accessible to conventional modes of scientific investigation in our setting.
Maturana and Varela’s concept of “autopoiesis” [56, 57, 58, 87, 88] is particularly
close, indeed arguably indistinguishable, from our concept of organization. It
shares the key ingredient that the system is composed of “components” which
engage in a network of interactions that enable the continuous regeneration of
these same “components”. Thus the autopoietic system is, at essence, a matter

45

of constructive relationships closed upon interaction; this Varela labels autonomy
(we say, self-maintenance). Autopoietic systems share with our λ-organizations
a number of other features, including regenerative abilities, accessibility only to
inputs that influence “component” interrelations, and capacity for hierarchical
coupling.

Rosen’s (M,R)-system (for metabolism-repair system) [20, 80] resembles an au-
topoietic system, but Rosen’s “components” are pure abstract functionalities.
Rosen packs a whole metabolism into a single functional letter (a “metabolic
function”), or speaks of a “repair function” and a “replication function”, the
three of which entail each other in a circular fashion by mutually acting on their
domains and ranges. The point that we find concordant here is Rosen’s emphasis
on the causal circularity inherent to functional organization. Note, however, that
Rosen’s (M,R)-systems lack any notion of object construction9.

Thus both contructs - autopoietic systems and (M,R)-systems - share with ours
the essential notion of closed relations of construction between the parts of the
system. Our work departs from both, however, in providing a concrete theory of
the conditions necessary to realize a universe of such systems and to characterize
their features in a standard formal setting.

We suspect that the autopoietic concept differs only as a consequence of Mat-
urana and Varela and subsequent investigators [71] having come to it without
the benefits of viewing organization as the consequence of joining dynamics and
construction. The only claim of Maturana and Varela that is not instantiated
in our organizations is their requirement that the system be spatially bounded.
This is essential for them, for it is the only device by which their “components”
may be isolated from the “rest-of-the-world”. The seeming need of a membrane
laid out in space is, in our view, only required because the characterization of
autopoietic systems is not built upon a theory of its components. Our organi-
zation are indeed bounded, but bounded syntactically (i.e., λ-organizations are
special invariant subspaces of λ-space). A bounding is indeed a necessary feature
of organizations, but the space need not be 3-space. Perhaps it is not surprising
that several disciplines which have found the concept of autopoiesis of utility
(e.g., notably law and social psychiatry) find the requirement of spatial bounding
dispensible (see review by [71]). At minimum, then, our work has converged to a
notion similar to that of autopoiesis from an independent angle; quite plausibly,
though, we have unwittingly generated a formal interpretation of a heretofore
frustratingly elusive notion of considerable importance.

9Rosen claims that (M,R)-systems are inherently unformalizable. Casti [11, chapter 7]
approaches some of their aspects by means of dynamical systems.

46

3 . . . to concurrency and self-organization

The position that a concept of “organization” derives from placing a theory of
objects in a suitably constrained many-body dynamical setting (section 1.2). The
conventional settings of either dynamics alone or syntactical manipulation alone
are insufficient; “organization” derives (or, if one prefers, self-organizes) from
their combination in a constructive dynamical system.

It bears emphasis that “objects”, as we frame them here, are defined by structure-
action relationships where each action is a mapping from structures to structures.
In a many-body setting this generates a constructive feed-back loop (in analogy
to dynamical feed-backs) which causes the emergence of “organization”. The
so-defined constructive feed-back is absent in genetic algorithms [44, 39], genetic
programming [53], classifier systems [43], and models of evolutionary optimization
[1, 28]. While these systems deal with objects whose structure entails action, the
action does not participate in object construction. This is exactly what puts our
concept of organization outside their scope.

We hestitate to attribute to constructive dynamical systems claims of “emer-
gence” or “self-organization”, in that these terms are increasingly used with quite
different attributions. Our organizations, however, do emerge in the sense that
an organization possesses (ex post) a level of description that is independent of
the abstract chemical universe within which it originated. Similarly, the core-
objects (constructors) of the organization self-organized in the restricted (but
meaningful) sense that the constructive dynamical system converged to them by
an endogenous motion in object space.

Our use of the words self-organization and emergence differ sharply from the
frequent use of these terms as meaning “a phenomenon displayed by a collective
and unexpected by the investigator.” The distinction is, again, one between a
theory of the collective grounded in a formalism to which an interpretation (a
meaning) is given to the operators of the formalism and the observation of an
instance of collective phenomena for which no underlying theory guides interpre-
tation or guarentees generality (i.e., “digital naturalism”, sensu [29]). In drawing
this distinction, we intend no disrespect for the value of such “complex systems”
studies. In at least two cases a lack of formal grounding of components of the
collective is appropriate. First, it is appropriate whenever the underlying suite of
behaviors of the components are themselves empirically established to be disasso-
ciable from the features of the system left unmodelled. Examples include much of
individual-based modelling in behavioral and community ecology (i.e., there is no
need for a theory of molecules-as-proofs to study the consequences of odor trails
on patterns of ant dispersion). Second, it is often desirable to leave uninterpreted
the nature of the objects when one is seeking to implement a system whose objec-
tive is a search. Holland’s genetic algorithms [44] and classifier systems [43] need

47

not be faithful chromosomes or genotype-to-phenotype representations when the
intended objective is an efficient search engine.

A more appropriate embedding of constructive dynamical systems lies in the
domain of computer science addressing concurrency. The ground here is not so
much infertile as it it poorly prepared for sowing. Susan Oyama’s underground
classic, The Ontogeny of Information [73], documents the lack of rudimentary
intellectual hygiene in the free use of metaphor from computer science to describe
and interpret biological observations. The attributions are ubiquitous: the genes
as “code”, the genome as “algorithm”, the cell as “massively parallel computer”,
and the like. Indeed, the metaphors are not merely passive inaccuracies in the
service of rhetorical aims; they actively frame our thinking (see, e.g., [74] on
representations of the ras pathway). We will not tread lightly here. The use
of the computational metaphor is crucially vacuous without a formal translation
between a chemical syntax and a syntax of computation. Here we reawaken the
problem of interpretation; our as-yet-incomplete march from MC0 to MCn has
achieving this formal interpretation as its intent.

It is, indeed, our stance that the formalisms natural to biology derive not from
physics (as a discipline), but from imposing those of physics on those of computer
science. Organisms are coherent chemical collectives, molecules are constructed
from molecules, and computation is a science of representing possible construc-
tions. The control of timing the interaction of physical objects and the repre-
sentation of the same objects as performing constructions (computations) lies
at the heart of both realizing a genuinely parallel computer and our attempt to
develop a meaningful representation of a chemical parallelism (viz our discussion
of reaction classes in MC2, section 3.2). Disarticulating the physical from the
computational is what makes parallelism a hard problem in computer science.

The relation is sufficiently subtle to remind the reader of the manner in which our
organizations were realized. The strategy we adopted was two-pronged: we first
have projected chemical objects onto abstract logical entities, using λ-calculus
as a formalization of their constructive interactions. Then we have dipped these
entities into a cocktail of chosen physical modalities: (i) many objects coexist
in the same system (reactor), (ii) an object-species has a concentration (objects
can occur in multiple instances), (iii) objects interact by random collision, (iv)
objects have a finite lifetime (constrained flow reactor).

Point (i) enables a constructive feed-back loop by providing a context from which
the interaction partners of an object are drawn, and to which the product of
a reaction is returned. Points (ii) and (iii) provide a simple (pseudo-chemical)
kinetics that biases interactions to occur among object species with the highest
concentration (relevance). Point (iv) implements the overall effect of removal,
such as loss, decay, or inactivation. In conjunction with points (ii) and (iii) this

48

removal reinforces precisely those reaction pathways whose constituents on the re-
actant side also appear on the product side somewhere along the path. The result
are self-maintaining collectives of objects, with each object being simultaneously
interpreted as a physical object and a function.

We are drawn to this view of parallelism by physical intuition – flow reactors and
chemicals being common laboratory objects. The computer scientist comes from
a quite different intuitional base. Physicality is foreign ground, the strength of
computation by syntactical manipulation lies in its leaving open the interpreta-
tion of the syntax. We find it remarkable, then, to what degree our work abrades
with that of theoretical computer science. The body of work known as commu-
nication and concurrency [42, 64, 65, 67], aims at a formalization of the behavior
of systems consisting of many coexisting and independently interacting heteroge-
nous computational agents. Individual agents are referred to as “processes”.
Processes “communicate” to influence each other’s behavior (i.e., the ability to
communicate). Two examples serve to illustrate how short the intellectual dis-
tance is separating the issues in concurrency and our approach to organization.
In π-calculus [68, 69], a popular concurrent formalism (Appendix 3), a single
expression is equivalent to the entire content of our reactor at a given point in
time. The evolution of the reactor appears as a series of “reductions” of this large
expression. Even more striking is the correspondence between our system and a
device used to choose among the multiple communication channels available to
a given concurrent process. To address this issue, Berry and Boudol [5, 6] intro-
duced the notion of a Chemical Abstract Machine as a possible execution machine
for the π-calculus. Berry and Boudol’s insight - which predates our work - was to
use physical aspects of chemistry (such as randomly colliding objects) to imple-
ment a concurrent computation, while we independently originated the reverse
interpretation, i.e., to use computational objects as a proxy for molecules and to
join them together into a concurrent setting. Despite the distance in intended
application, then, both approaches share the underlying challenge of imposing
a physics upon computational construction. Computer scientists seeking to im-
plement concurrency no longer have the luxury of ignoring physical modalities -
their processes must communicate in time to other processes with “real-world”
positions and properties. This is, again, little different from our own problem
in reverse; we start from a dynamical systems setting and need to add to it a
formalism of object construction. We both face the challenge of confronting time
and properties that characterize objects as physical entities, while simultaneously
endowing the same entities with the power of construction.

Despite this correspondence, our efforts depart sharply from work in concur-
rency and communication in one important respect. Our organizations self-
organize from random communications in a many-body, flow-reactor setting. Self-
organization is anathema to computer engineers - indeed, such lack of rigid control

49

over communication is precisely what they seek a formalism to avoid. Control
over communication is deemed essential; one need only imagine the task of a sys-
tems administrator attempting to communicate with an operating system after a
series of system calls have unexpectedly self-organized. Yet, as our organizations
indicate, the product of constructive dynamical systems is not a lack of coherent
behavior, but the creation of collectives with predictable features and properties.
Perhaps the treatment of concurrency would benefit from exploring the feature in
which our work departs from their own. Surely - at the moment - the prospect of
e-mail messages spontaneously combining into a coherent manuscript strikes the
authors as an acceptable price to pay for an occasional unexpected core dump!

4 . . . to biology and beyond

Finally, the “organizations” resulting from a constructive dynamical setting have
the potential to address problems that have stubbornly resisted solution.

Biology has only two claims to theories unto itself - Mendel’s theory of transmis-
sion and Darwin’s theory of natural selection. The intellectual history of the first
half of this century is a story of continuing debate over whether the two theo-
ries were in conflict. Fisher, Haldane, and Wright demonstrated that no conflict
existed and the same fields are filled today by a self-perpetuating army of investi-
gators using the same plows (powered now by computers much as farmers today
use tractors). The talk of plows and tractors is not intended as idle ridicule, for
the tools are the issue here; the limits of the tools define the “barrier” we address.
The tools employed by Fisher to show that the great theories of biology were con-
cordant required casting the problem in a fashion that threw out the constructive
aspects of biology, rendering the problem tractable as one in dynamical systems.
Throwing out construction meant throwing out the organism; trying to put the
organism back in is fair epitome of the intellectual history ever since.

The claim is that biology requires a trinity of theories; we have two of them;
we lack only “a theory of the organism”. The claim we make is that the self-
maintaining organizations we derive hold promise as that missing theory. Indeed,
such a theory need not await a global solution to the specification language for
chemistry. The fact that our organizations can be described in a formalism dis-
tinct from that in which they were generated (i.e., as abstract rewrite systems
rather than λ-expressions) leaves their terms (like those of any syntax) open to
interpretations other than chemical. From this realization flows a diversity of
potential applications.

Given a universe of self-maintaining abstract rewrite systems (ARS), the uses are
limited solely by the properties of the particular ARS and the interpretation given
to its terms. An interpretation of the terms as engineering functions in a machine

50

might be route to a self-repair mechanism, an interpretation as a semiotic unit
as a device for natural language interpretation, and interpretation of terms-as-
molecules as germane to a blueprint for the design of a self-maintaining chemical
manufacturing process [7], as it is to a metabolic cycle in a cell or a system
of cell-cell communications defining an organ. The origin of such specifications
from a research program in artifical chemistry or in experimental λ-calculus is
irrelevant. It cannot be overemphasized that herein lies the significance of the
characterization of our organizations in an alternative formalism.

To the extent that one accepts that the missing “theory of the organism” is
recognizable as a general specification procedure for self-maintaining systems of
constructive relations, MC0 suffices. Application to the biological issues left
wanting for a generation - indeed to domains distinct from biology - are limited
solely by the interpretation given to the terms of the abstract rewrite system and
the extent to which its properties are germane to the question at hand. While
work-in-progress portends considerable promise in applications to evolutionary
biology in particular, it is neither feasible nor appropriate to address them here.
After all, the editors asked us to identify a “barrier to knowledge”, they did not
ask us to lift it.

The claim for relevance here is large indeed. Hence, we conclude with a warning.
The optimism and the passion with which we assess the potential of constructive
dynamical systems has all the characteristics of a bullish investor at the eve of
the market’s collapse. The reader would do well to heed the admonition

...beware of the boa constructor.
Erwin Panofsky

Acknowledgements: We thank Harald Freund for numerous discussions on the
limits and potentials of MC0. This is paper #41 from the Center for Computa-
tional Ecology at Yale.

51

References

[1] C. Amitrano, L. Peliti, and M. Saber. Population dynamics in a spin-glass
model of chemical evolution. J. molec. Evol., 29:513–525, 1990.

[2] A. Asperti. Causal dependencies in multiplicative linear logic with MIX.
Math. Struct. in Comp. Sci., 11:1–31, 1993.

[3] R. J. Bagley and J. D. Farmer. Spontaneous emergence of a metabolism. In
C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Artificial
Life II, Santa Fe Institute Studies in the Sciences of Complexity, pages 93–
141, Redwood City, 1992. Addison-Wesley.

[4] H. G. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Studies
in Logic and the Foundations of Mathematics. North-Holland, Amsterdam,
second revised edition, 1984.

[5] G. Berry and G. Boudol. The chemical abstract machine. In 17th ACM
Annual Symposium on Principles of Programming Languages, pages 81–94,
New York, 1990. ACM Press.

[6] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Com-
puter Science, 96:217–248, 1992.

[7] P. Bro. Artificial life in real chemical reaction systems. Book manuscript in
preparation (contact address: P. Bro, Santa Fe Institute, 1399 Hyde Park
Road, Santa Fe NM 87501), 1995.

[8] L. W. Buss. The Evolution of Individuality. Princeton University Press,
Princeton, 1987.

[9] L. Cardelli. Type systems. Chapter in a forthcoming CRC Handbook of
Computer Science and Engineering, available at http://www.research.
digital.com/SRC/personal/Luca Cardelli/Papers.html, 1996.

[10] L. Cardelli and P. Wegner. On understanding types, data abstraction, and
polymorphism. Computing Surveys, 17:471–522, 1985.

[11] J. Casti. Reality Rules (vol.2). Wiley, New York, 1992.

[12] A. Church. A set of postulates for the foundation of logic. Annals of Math.
(2), 33:346–366, 1932.

[13] A. Church. A set of postulates for the foundation of logic (erratum). Annals
of Math. (2), 34:839–864, 1932.

52

[14] A. Church. The Calculi of Lambda Conversion. Princeton University Press,
Princeton, 1941.

[15] L. Damas and R. Milner. Principal type-schemes for functional programs.
In Proceedings of the 9th Annual Symposium on Principles of Programming
Languages, pages 207–212, New York, 1982. ACM.

[16] V. Danos and L. Regnier. The structure of the multiplicatives. Arch. Math.
Logic, 28:181–203, 1989.

[17] V. Danos and L. Regnier. Proof-nets and the Hilbert space. In J.-Y. Gi-
rard, Y. Lafont, and L. Regnier, editors, Advances in Linear Logic, London
Mathematical Society Lecture Note Series, pages 307–328, Cambridge, 1995.
Cambridge University Press.

[18] N. G. de Bruijn. A survey of the project Automath. In J. R. Hindley and J. P.
Seldin, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda-
Calculus and Formalism, pages 579–607. Academic Press, New York, 1980.

[19] M. E. Szabo (ed.). The Collected Papers of Gerhard Gentzen. North Holland,
Amsterdam, 1969.

[20] R. Rosen (ed.). Foundations of Mathematical Biology (vol.2). Academic
Press, New York, 1972.

[21] M. Eigen. Self-organization of matter and the evolution of biological macro-
molecules. Naturwissenschaften, 58:465–526, 1971.

[22] M. Eigen, J. S. McCaskill, and P. Schuster. The molecular quasi-species.
Advances in Chem. Phys., 75:149–263, 1989.

[23] M. Eigen and P. Schuster. The Hypercycle. Springer Verlag, Berlin, 1979.

[24] J. D. Farmer, S. A. Kauffman, and N. H. Packard. Autocatalytic replication
of polymers. Physica D, 22:50–67, 1982.

[25] A. Fleury and C. Retoré. The mix rule. Math. Struct. in Comp. Sci., 4:273–
285, 1994.

[26] W. Fontana and L. W. Buss. ‘The arrival of the fittest’: Toward a theory of
biological organization. Bull. Math. Biol., 56:1–64, 1994.

[27] W. Fontana and L. W. Buss. What would be conserved ‘if the tape were
played twice’. Proc. Natl. Acad. Sci. USA, 91:757–761, 1994.

[28] W. Fontana, W. Schnabl, and P. Schuster. Physical aspects of evolutionary
optimization and adaptation. Phys. Rev. A, 40:3301–3321, 1989.

53

[29] W. Fontana, G. Wagner, and L. W. Buss. Beyond digital naturalism. Arti-
ficial Life, 1:211–227, 1994.

[30] G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formel-
sprache des reinen Denkens. Louis Nebert, Halle, 1879.

[31] H. Freund. Self-maintaining λ-organizations and analysis via rewrite sys-
tems. Poster presented at the 3rd European Conference on Artificial Life
(ECAL 95) in Granada, Spain, June 1995.

[32] G. Gentzen. Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, 39:176–210, 405–431, 1935.

[33] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[34] J.-Y. Girard. Towards a geometry of interaction. In J. W. Gray and A. Sce-
drov, editors, Categories in Computer Science and Logic, pages 69–108.
American Mathematical Society, 1989. Proceedings of the AMS-IMS-SIAM
Joint Summer Research Conference, June 14–20, 1987, Boulder, Colorado;
Contemporary Mathematics Volume 92.

[35] J.-Y. Girard. Geometry of interaction II: Deadlock-free algorithms. In
P. Martin-Löf and G. Mints, editors, COLOG-88, pages 76–93. Springer-
Verlag LNCS 417, 1990.

[36] J.-Y. Girard. La logique linéaire. Pour La Science, Edition Française de
‘Scientific American’, 150:74–85, April 1990.

[37] J.-Y. Girard. Linear logic: Its syntax and semantics. In J.-Y. Girard, Y. La-
font, and L. Regnier, editors, Advances in Linear Logic, pages 1–42. Cam-
bridge University Press, 1995. Proceedings of the Workshop on Linear Logic,
Ithaca, New York, June 1993.

[38] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts
in Theoretical Computer Science 7. Cambridge University Press, 1988.

[39] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, Mass., 1989.

[40] C. Hankin. Lambda Calculi. A Guide for Computer Scientists. Clarendon
Press, Oxford, 1994.

[41] M. Hennessy. Algebraic Theory of Processes. The MIT Press, Cambridge,
Mass., 1988.

[42] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, Engle-
wood Cliffs, 1985.

54

[43] J. H. Holland. Escaping brittleness: The possibilities of general purpose
machine learning algorithms applied to parallel rule-based systems. In R. S.
Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine learning:
An artificial intelligence approach. Kaufmann, Los Altos, CA, 1986.

[44] J. H. Holland. Adaptation in Natural and Artificial Systems. Bradford Books,
The MIT Press, Cambridge, Mass., 1992. reprint edition.

[45] W. A. Howard. The formulae-as-types notion of construction. In J. R.
Hindley and J. P. Seldin, editors, To H. B. Curry: Essays on Combinatory
Logic, Lambda-Calculus and Formalism, pages 479–490. Academic Press,
1980.

[46] T. Ikegami and T. Hashimoto. Coevolution of machines and tapes. In
F. Morán, A. Moreno, J. J. Merelo, and P. Chacón, editors, Advances in Ar-
tificial Life, Third European Conference on Artificial Life, Granada, Spain,
pages 234–245, Berlin, 1995. Springer Verlag.

[47] S. A. Kauffman. Cellular homeostasis, epigenesis and replication in randomly
aggregated macromolecular systems. J. Cybernetics, 1:71–96, 1971.

[48] S. A. Kauffman. Autocatalytic sets of proteins. J. Theor. Biol., 119:1–24,
1986.

[49] S. A. Kauffman. The origins of order. Oxford University Press, New York.,
1993.

[50] J. W. Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science,
volume 2, pages 1–116. Clarendon Press, Oxford, 1992.

[51] J. W. Klop and A. Middeldorp. An introduction to Knuth-Bendix comple-
tion. CWI Quarterly, 1, 1988.

[52] D. E. Knuth and P. E. Bendix. Simple word problems in universal algebra.
In J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon
Press, New York, 1970.

[53] J. R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. The MIT Press, Cambridge, Mass., 1992.

[54] Y. Lafont. From proof-nets to interaction nets. In J.-Y. Girard, Y. Lafont,
and L. Regnier, editors, Advances in Linear Logic, London Mathematical
Society Lecture Note Series, pages 225–247, Cambridge, 1995. Cambridge
University Press.

55

[55] R. Lalement. Computation as Logic. Prentice Hall, Englewood Cliffs, 1993.

[56] P.-L. Luisi. Defining the transition to life: self-replicating bounded structures
and chemical autopoiesis. In W. Stein and F. J. Varela, editors, Thinking
About Biology, Santa Fe Institute Studies in the Sciences of Complexity,
pages 3–23, Redwood City, 1993. Addison-Wesley.

[57] H. Maturana and F. J. Varela. De Máquinas y Seres Vivos: Una teoŕıa de
la organizaćıon biológica. Editorial Universitaria, Santiago de Chile, 1973.
Reprinted in: H. Maturana and F. J. Varela, Autopoiesis and Cognition:
The Realization of the Living, 1980.

[58] H. Maturana and F. J. Varela. Autopoiesis and Cognition: The Realization
of the Living. D. Reidel, Boston, 1980.

[59] M. Mauny. Functional programming using Caml Light. User’s manual avail-
able from ftp.inria.fr by anonymous ftp, January 1995.

[60] J. Maynard-Smith. Natural selection and the concept of a protein space.
Nature, 255:563–564, 1970.

[61] J. Maynard-Smith and E. Szathmáry. The major transitions in evolution.
W. H. Freeman, Oxford, 1995.

[62] J. S. McCaskill. Polymer chemistry on tape: a computational model
for emergent genetics. unpublished manuscript, MPI für biophysikalische
Chemie, Göttingen, 1988.

[63] R. Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348–375, 1978.

[64] R. Milner. A Calculus of Communicating Systems. Lecture Notes in Com-
puter Science, Vol 92. Springer-Verlag, Berlin, 1980.

[65] R. Milner. Communication and Concurrency. Prentice Hall, New York,
1989.

[66] R. Milner. The polyadic π-calculus: a tutorial. Report ECS-LFCS-91-180,
University of Edinburgh, 1991.

[67] R. Milner. Elements of interaction. Comm. ACM, 36:78–89, 1993.

[68] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I.
Information and Computation, 100:1–40, 1992.

[69] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, II.
Information and Computation, 100:41–77, 1992.

56

[70] E. Minch. Representation of Hierarchical Structure in Evolving Networks.
PhD dissertation, State University of New York at Binghamton, 1988.

[71] J. Mingers. Self-Producing Systems - Implications and Applications of Au-
topoiesis. Plenum Press, New York, 1995.

[72] H. J. Morowitz. Beginnings of Cellular Life: Metabolism Recapitulates Bio-
genesis. Yale University Press, New Haven, 1992.

[73] S. Oyama. The Ontogeny of Information. Cambridge University Press,
Cambridge., 1985.

[74] S. Oyama. The accidental chordate: contingency in developmental systems.
In B. H. Smith and A. Plotnitsky, editors, Mathematics, Science, and Post-
classical Theory (South Atlantic Quart., Vol. 94), pages 509–526. Duke Uni-
versity Press, Durham, NC, 1995.

[75] V. R. Pratt. The duality of time and information. In W. Cleaveland, editor,
Proceedings of the Third International Conference on Concurrent Theory,
pages 237–253, New York, 1992. Springer-Verlag.

[76] S. Rasmussen, C. Knudsen, R. Feldberg, and M. Hindsholm. The coreworld:
Emergence and evolution of cooperative structures in a computational chem-
istry. Physica D, 42:111–134, 1990.

[77] C. Reade. Elements of Functional Programming. Addison-Wesley, Reading,
Mass., 1989.

[78] C. Rétoré. Réseaux et Séquents Ordonnés. PhD dissertation, University of
Paris VII, 1993.

[79] D. S. Rokshar, P. W. Anderson, and D. L. Stein. Self-organization in prebio-
logical systems: Simulation of a model for the origin of genetic information.
J. Mol. Evol., 23:110, 1986.

[80] R. Rosen. Life Itself: A Comprehensive Inquiry into the Nature, Origin, and
Fabrication of Life. Columbia University Press, New York, 1991.

[81] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and
Higher-Order Paradigms. PhD dissertation, University of Edinburgh, 1992.

[82] M. Schönfinkel. Über die Bausteine der mathematischen Logik. Math. An-
nalen, 92:305–316, 1924.

[83] B. C. Smith. On the Origin of Objects. Bradford Books, The MIT Press.,
1996.

57

[84] E. Szathmáry. A classification of replicators and lambda-calculus models of
biological organization. Proc. R. Soc. Lond. B, 260:279–286, 1995.

[85] M. Thürk. Ein Modell zur Selbstorganisation von Automatenalgorithmen
zum Studium molekularer Evolution. PhD dissertation, Universität Jena,
Germany, 1993.

[86] A. S. Troelstra. Lectures on Linear Logic. CSLI Lecture Notes 29, Center
for the Study of Language and Information, Stanford, California, 1992.

[87] F. J. Varela. Principles of Biological Autonomy. North-Holland, New York,
1979.

[88] F. J. Varela, H. R. Maturana, and R. Uribe. Autopoiesis: the organization
of living systems, its characterization and a model. BioSystems, 5:187–196,
1974.

58

Appendix

A λ-calculus for tourists

1 Conceptual

The modern view of “function” is that of an arbitrary set of pairs - (argu-
ment/value) - whose first element is unique. The entire graph of the function
is taken to be available at once, as a given, with no “cost” for its generation. For
example, you are given the following graph, in which a prime is paired with 1
and a non-prime with 0, as fully completed to the infinite right.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1 b b b

b

b

b

b

b b b

b

b

b

b

In contrast, an older view emphasizes a function as a rule of computation, i.e.,
as a process of symbolic manipulation that produces a value when applied to an
argument.

Given a number n try dividing it by 2 and by each odd
integer up to the biggest integer which is smaller or
equal to the square root of n. If none of the trial
divisors divides n, return 1, otherwise return 0.

The point is that one trades the instant random access to a look-up table which
is so big as not to fit into the universe, with a procedure which fits into your
pocket, but at the “cost” that it must be carried out. Procedures have to be
expressed in some formal language. The requirement of a language, in turn,
entails a refinement of the world into “behavior” and “that which behaves.” The
former remains the still “ethereal” graph, while the latter is an “object”, that
is, a symbolic structure shaped by some sort of syntax that can be subject to
new kinds of manipulation. This procedural or computational paradigm lies at
the base of our project. It takes seriously the fact that in the physical world one
never manipulates behavior, only the objects that behave.

Of course, the above example is no more than a joke; we would have to be equally
explicit about what we mean by “divide”, “2”, “each”, “integer”, “biggest”,
“smaller”, “or”, “equal”, “square root”. It is no joke, however, that the λ-
calculus invented by A. Church in the 1930’s [12, 13] (following a trail pioneered
by M. Schönfinkel [82]) does just that.

59

2 Instant Syntax and Semantics

The universe of λ-objects consists of terms with a particular structure. This
structure is defined inductively, starting from “atoms”.

Terms

λ-calculus Informal Interpretation Tourist Notation

x x is an atomic name taken from
some available name space.

x

λx.A

Make the λ-term A into a func-
tion of x. This is done by turn-
ing x in A from being a literal
“x” into something replaceable,
a variable. Since x now holds
a place, it’s particular name has
lost significance. All that mat-
ters is the link to its correspond-
ing λ marker, indicated by writ-
ing λx. One says, x has been ab-
stracted.

Given the expression x2 +4x+ y
we turn it into a function in x
by declaring x to be a variable:
x → x2 + 4x+ y.

(A)B
If A and B are λ-terms, then
their juxtaposition (A)B denotes
the application of A to B

Given the function f : x → x2 +
4x+ y and given 6, we can speak
of f(6).

So far we have only terms. Let’s have some action.

Reduction

λ-calculus Informal Interpretation

(λx.A)B → A[x := B]

When applying a function λx.A
to an argument B, we proceed
by literally substituting for the
placeholder x the argument B.
The fact that the place(s) held
by x has (have) been filled is doc-
umented by removing the place-
holder declaration λx. In the
above example, f(6) → 60 + y.

60

That’s all there is.

Some details on reduction

There are two technical details one should be aware of. (i) The abstractor λ
has a scope (like an ordinary integral sign), i.e., in (λx.A)B the binding influence
of λ stops at A, and does not continue into B. (ii) The idea behind substitution
is to replace equals by equals, meaning that the behavior of (λx.A)B should
be the same as that of A[x := B]. Unbound literals must, therefore, never get
bound during substitution. This one, for example, is illegal: (λx.λy.(x)y)λz. y →
λy.(λz. y)y. The boxed y has been captured by a λy. To perform the substitution
safely, one has to rename the bound y into, say, w. We skip the formalization of
these statements.

In a reduction step an “application” annihilates an “abstraction”. Normal-
ization is the process in which all the reductions that are possible within a term
are carried out. At that point a term is said to be in normal form. The normal
form is unique (if it exists - see below). This property of the reduction relation
on λ-terms is called confluence. The reflexive, symmetric and transitive closure
of the reduction relation is an equivalence relation on terms, i.e., two λ-terms
are equivalent, if they have the same normal form.

Within the scope of our chemical metaphor a normal form is the analogue of
a stable molecular form. The application of one (abstraction) term to another is
analogous to a reactive encounter. Such a configuration is (usually) not a normal
form, and is “stabilized” by normalization - the λ-analogue of a “reaction path”.
In this view of chemistry, “(free) energy” is that which causes molecular transition
states to stabilize into products and is captured by our requirement that terms be
in normal form. Other aspects of energy, such as differential rate constants, are
not captured in Minimal Chemistry Zero (but see section 2.3.3 for MC2).

Two examples: A
def== λx.((x)λy.y)x is in normal form; so isB

def== λu.(u)λv.v,
but not (A)B def== (λx.((x)λy.y)x)λu.(u)λv.v. We normalize (underlining the
subterms being reduced at each step):

(λx.((x)λy.y)x)λu.(u)λv.v → ((λu.(u)λv.v)λy.y)λu.(u)λv.v →
((λy.y)λv.v)λu.(u)λv.v → (λv.v)λu.(u)λv.v → λu.(u)λv.v

In this case B is a fixed point of A.
Not every term has a normal form. For example, here’s a term which is not

normalizable:
(λx.(x)x)λx.(x)x → (λx.(x)x)λx.(x)x

A calculus in which every term has a normal form is called strongly nor-
malizing. Our model utilizes only terms with a normal form. Indeed, we even
discard those terms which fail to normalize within some specified limits.

It is worth pointing out that in this version of λ-calculus every term can be applied
to every term. Thus, any term can be filled into the place held by a variable. Or,

61

by means of slogan, there’s no syntactical distinction between function and data.
Everything in λ is, in some sense, a function. This is a very powerful concept.
You may have wondered where the “numbers” are, or where the familiar “addi-
tion” has gone. No such operations are given. Everything has to be constructed
just with what we’ve got, i.e., variables, abstraction and application. (It can
be done.) The intriguing feature of λ-calculus is in forcing one to realize that
something is, for example, a numeral (a representation of a number), if it behaves
- via application and reduction - like a number. Something is a numeral when it
is a member of a sequence of distinct terms that have a successor function, and
there exists a test for a distinguished element “zero”. Likewise, something is an
“addition”, if it behaves like an addition in relation to some system of numerals.
Change the system of numerals and the object that behaved like an addition
doesn’t anymore. Here’s an example of a numeral system:

λf.λx.x corresponds to 0
λf.λx.(f)x corresponds to 1

...
...

...
λf.λx. (f)...(f)︸ ︷︷ ︸

n times

x corresponds to n

...
...

...

Relative to it, the addition operation becomes +
def
== λm.λn.λf.λx.((m)f)((n)f)x.

The normalization of 3 + 2 is displayed in table A1. It looks slightly frighten-
ing, but most of the 54 intermediate steps are just necessary rearrangements in
preparation for reductions.

Note then the “relativity” of the system – one defines what behaves and generates
behaviors. The power of the system derives from just this flexibility. “Behavior,”
in the example above, was treated as a device which sends numerals into numerals.
This frame need not be maintained. In fact, nothing prevents us from taking the
addition function, +, and apply it to something else than a numeral - to itself,
say. So here is (+)+:

(λm.λn.λf.λx.((m)f)((n)f)x)λm.λn.λf.λx.((m)f)((n)f)x→ · · ·
· · · → λn.λf.λx.λu.λv.((f)u)((((n)f)x)u)v

(Where the variable names u and v come from renaming during normalization.)

Can we still meaningfully say that a “function” has been computed? No. In
full λ-calculus the notion of a “function” is better replaced by the more vague
notion of an “operator”. This point is crucial for our usage of λ-calculus. Indeed,
the individual interactions in our reactor by and large don’t compute anything,
they solely rearrange symbolic structures. The interpretation of their “behavior”

62

is framed by the algebraic and kinetic properties of the organization that their
actions participate in maintaining. The same can be said of chemistry.

((λm.λn.λf.λx.((m)f)((n)f)x︸ ︷︷ ︸
+

)λf.λx.(f)(f)(f)x︸ ︷︷ ︸
3

)λf.λx.(f)(f)x︸ ︷︷ ︸
2

1 (λn.(λm.λf.λx.((m)f)((n)f)x)λf.λx.(f)(f)(f)x)λf.λx.(f)(f)x
2 (λn.λf.(λm.λx.((m)f)((n)f)x)λf.λx.(f)(f)(f)x)λf.λx.(f)(f)x
3 (λn.λf.λx.(λm.((m)f)((n)f)x)λf.λx.(f)(f)(f)x)λf.λx.(f)(f)x
4 (λn.λf.λx.((λm.(m)f)λf.λx.(f)(f)(f)x)(λm.((n)f)x)λf.λx.(f)(f)(f)x)λf.λx.(f)(f)x
5 λf.(λn.λx.((λm.(m)f)λf.λx.(f)(f)(f)x)(λm.((n)f)x)λf.λx.(f)(f)(f)x)λf.λx.(f)(f)x
6 λf.λx.(λn.((λm.(m)f)λf.λx.(f)(f)(f)x)(λm.((n)f)x)λf.λx.(f)(f)(f)x)λf.λx.(f)(f)x
7 λf.λx.((λm.(m)f)λf.λx.(f)(f)(f)x)(λn.(λm.((n)f)x)λf.λx.(f)(f)(f)x)λf.λx.(f)(f)x
8 λf.λx.(((λm.m)λf.λx.(f)(f)(f)x)(λm.f)λf.λx.(f)(f)(f)x)(λn.(λm.((n)f)x)λf.λx.(f)(f)(f)x)λf.λx.(f)(f)x
9 λf.λx.((λf.λx.(f)(f)(f)x)(λm.f)λf.λx.(f)(f)(f)x)(λn.(λm.((n)f)x)λf.λx.(f)(f)(f)x)λf.λx.(f)(f)x
10 λf.λx.(λx.(λf.(f)(f)(f)x)(λm.f)λf.λx.(f)(f)(f)x)(λn.(λm.((n)f)x)λf.λx.(f)(f)(f)x)λf.λx.(f)(f)x
.
..

.

..
25 λf.λx.(f)(f)(λy1.(λx.(y1)x)(λn.(λm.((n)f)x)λf.λx.(f)(f)(f)x)λf.λx.(f)(f)x)f
26 λf.λx.(f)(f)((λy1.λx.(y1)x)f)(λy1.(λn.(λm.((n)f)x)λf.λx.(f)(f)(f)x)λf.λx.(f)(f)x)f
27 λf.λx.(f)(f)(λx.(λy1.(y1)x)f)(λy1.(λn.(λm.((n)f)x)λf.λx.(f)(f)(f)x)λf.λx.(f)(f)x)f
28 λf.λx.(f)(f)(λx.((λy1.y1)f)(λy1.x)f)(λy1.(λn.(λm.((n)f)x)λf.λx.(f)(f)(f)x)λf.λx.(f)(f)x)f
29 λf.λx.(f)(f)((λy1.y1)f)(λx.(λy1.x)f)(λy1.(λn.(λm.((n)f)x)λf.λx.(f)(f)(f)x)λf.λx.(f)(f)x)f
30 λf.λx.(f)(f)(f)(λx.(λy1.x)f)(λy1.(λn.(λm.((n)f)x)λf.λx.(f)(f)(f)x)λf.λx.(f)(f)x)f
.
.
.

.

.

.
43 λf.λx.(f)(f)(f)(λx.((λf.f)(λn.f)λf.λx.(f)(f)x)(λf.(f)x)(λn.f)λf.λx.(f)(f)x)(λn.x)λf.λx.(f)(f)x
44 λf.λx.(f)(f)(f)((λf.f)(λn.f)λf.λx.(f)(f)x)(λx.(λf.(f)x)(λn.f)λf.λx.(f)(f)x)(λn.x)λf.λx.(f)(f)x
45 λf.λx.(f)(f)(f)((λn.f)λf.λx.(f)(f)x)(λx.(λf.(f)x)(λn.f)λf.λx.(f)(f)x)(λn.x)λf.λx.(f)(f)x
46 λf.λx.(f)(f)(f)(f)(λx.(λf.(f)x)f)(λn.x)λf.λx.(f)(f)x
47 λf.λx.(f)(f)(f)(f)((λx.λf.(f)x)(λn.x)λf.λx.(f)(f)x)(λx.f)(λn.x)λf.λx.(f)(f)x
48 λf.λx.(f)(f)(f)(f)(λf.(λx.(f)x)(λn.x)λf.λx.(f)(f)x)(λx.f)(λn.x)λf.λx.(f)(f)x
49 λf.λx.(f)(f)(f)(f)(λf.(f)(λx.x)(λn.x)λf.λx.(f)(f)x)(λx.f)(λn.x)λf.λx.(f)(f)x
50 λf.λx.(f)(f)(f)(f)((λf.f)(λx.f)(λn.x)λf.λx.(f)(f)x)(λf.(λx.x)(λn.x)λf.λx.(f)(f)x)(λx.f)(λn.x)λf.λx.(f)(f)x
51 λf.λx.(f)(f)(f)(f)((λx.f)(λn.x)λf.λx.(f)(f)x)(λf.(λx.x)(λn.x)λf.λx.(f)(f)x)(λx.f)(λn.x)λf.λx.(f)(f)x
52 λf.λx.(f)(f)(f)(f)(f)(λf.(λx.x)(λn.x)λf.λx.(f)(f)x)f
53 λf.λx.(f)(f)(f)(f)(f)(λx.x)(λn.x)λf.λx.(f)(f)x
54 λf.λx.(f)(f)(f)(f)(f)(λn.x)λf.λx.(f)(f)x

5︷ ︸︸ ︷
λf.λx.(f)(f)(f)(f)(f)x

Table A1: 3 + 2 = 5 in λ-calculus.

λ-calculus is a theory of equality based on substitution. In a more specialized
sense, λ-calculus is a general theory of functions. Having served as a template for
LISP, it inspired the “functional style” of programming. Moreover, as detailed
in text, λ-calculus has served as a tool in constructive proof-theory and, accord-
ingly, in mechanizing parts of logic (see section 1). This makes λ-calculus an
almost obligate check point when introducing new paradigms of computation to
which properties such as termination, confluence, normalization, or substitution

63

are central. In the computational sciences these ingredients of λ-calculus play
a role comparable to that of the fundamental principles of physics [55]. Good
introductions are Hankin [40] or Lalement [55], an encyclopedic treatment for
aficionados with a good pair of shoes is Barendregt [4].

3 Beyond λ

The limits of λ-calculus are found in its inherently sequential paradigm. This is
reflected by its non-commutative basic mode of interaction, application. What
would be a commutative analogue? This question leads one to parallelism,
or more precisely, concurrency. In contrast to sequentiality, the concurrent
paradigm of computation considers a system of many heterogenously behaving
independent entities that “interact” with one another (usually asynchronously).
The proper technical word for interaction in such a setting is communication and
the entities are called processes. The theory of communication and concurrency is
among the most exciting and challenging frontiers in today’s computational sci-
ences. This is obviously not the place for a tutorial in concurrency; some places
to start are [42, 65, 67]. Here we paint with a broad brush just some of the issues
at stake so as to situate our work relative to it.

The transition from the concept of “function” to that of a “process” is illustrated
by means of an example due to Robin Milner [67]. Consider the behavior of the
following program, A, where “:=” means an assignment:

1: x := 2; (assign 2 to x)

2: y := x+3; (assign to y the content of x plus three)

3: print y;

Clearly, the program A will print 5. Suppose now that there is a further concur-
rently running program B that has access to the memory location referred to by
x in A. Such a program can alter the value at x after A has executed its first
statement and before it executes the second. As a consequence, the observation
of A does not yield a specific result anymore; it may print anything, depending
on the behavior of B. This is the kind of situation that the theme of “communi-
cation and concurrency” is roughly about. The concept of “process” emphasizes
behavior primarily as the ability to communicate at various points in time [41]
rather than a computational activity. The issue, as emphasized in [75], is one of
an apparent duality of time and information.

What is being communicated? The simplest kind of communication is a synchro-
nization between two processes, i.e. a “handshake”. One process pauses until
it receives a signal from another upon which it resumes its behavior [64]. The

64

next order of communication involves the sending and receiving of port names
themselves. This yields a system where “pointers” are passed around, thereby
changing the communication topology of the system over time [68, 69]. At the
next order whole processes rather than their address can be communicated [81].
This in turn raises the issues of “access” and “privacy”. On the formal side the
challenge is to find “calculi” which enable to reason about various notions of pro-
cesses and their equivalence, in analogy to what λ-calculus does for the sequential
realm.

Communication occurs between ports of processes. Ports are named, and each
name has a complement. For example: a and a, where a may stand for an input
port and a for an output port. Communication can only occur between ports
that bear complementary names. This ensures commutativity of communication
by definition.

π-calculus

One foundational attempt at mobile processes (systems with changing com-
munication topology) is the π-calculus of Milner, Parrow and Walker [68, 69].
Just to give a glimpse of it for the purpose of comparison with λ-calculus, here’s
a π-expression:

x̄y.A︸ ︷︷ ︸
1

| x(u).ūv.B︸ ︷︷ ︸
2

| y(z).C︸ ︷︷ ︸
3

It denotes a soup of three processes, 1, 2, 3, that co-exist independently. This
concurrence is expressed by the operator |. The processes in the example are only
partially specified, since A,B and C stand for further structure which we disre-
gard. x̄y means “output the name y along channel x”, while x(u) means “receive
a name along channel x and substitute that name for u in the remaining process”
(this input prefix binds u much like a λ). In the above example a communication
can occur between process 1 and process 2 along channel x, yielding:

A︸︷︷︸
1′

| ȳv.B[u := y]︸ ︷︷ ︸
2′

| y(z).C︸ ︷︷ ︸
3

The point is that, as a result of this event, process 2 (now 2′) has obtained a port
name that enables it to communicate with process 3:

A︸︷︷︸
1′

| B[u := y]︸ ︷︷ ︸
2′′

| C[z := v]︸ ︷︷ ︸
3′

Concurrent processes can occur embedded within a process, such as in x̄y.(A|B).
Furthermore, there is a scoping operator ν which restricts the use of x to pro-
cess A in (νx)A, and there is a choice operator + behaving so that in A + B a
communication with A destroys B and vice versa. Finally, there is a replication
operator !A which permits process A to spin off further copies of itself allowing
for recursion.

“|” might be a way to notate the concurrency of the λ-particles in our flow-
reactor. As in λ-calculus, a “type”-discipline for π-calculus can be defined. For

65

the further development of our model, we are inclined towards the logic path to
concurrency rather than π-calculus, as developed in the text. Readers wishing to
further explore π-calculus are referred to [66].

The world of functions and the world of processes emphasize the halting problem
differently. While termination is a desideratum for functions or algorithms, the
opposite is typically true for processes. There one looks for conditions under
which a community of processes is guaranteed never to dead-lock, as there are
many situations where ongoing communication or interactivity is required. Exam-
ples include operating systems, whether in air traffic control systems, computer
systems, mobile telephone networks, or...living and cognizing systems. The focus
on the absence of dead-lock shifts the attention from computation to organization.
This clearly locates concurrency very close to our project.

B Types for tourists

1 The chemistry of types

Types are a high-level statement about the behavior of objects. A conventional
addition function, for example, has type N × N → N , meaning that it accepts
pairs of integers, and returns integers. This is not sufficient to distinguish it
from a subtraction function, but is enough to distinguish it from a function that
adds “carriage returns” to a string of characters. The definition of a type system
decides on how much about the actual behavior of an object is conveyed by its
type. A type system also provides a procedure to infer the type of a compound
object from the types of its components.

We first need a way to express types. The notation is inductive like the syntax of
λ-calculus. We start by defining a set of atomic types, called simple (or ground)
types, say T = {a, b, c, . . .}. From simple types we construct compound types
with the help of type constructors. This is analogous to λ-calculus where com-
pound terms are built from two term constructors - abstraction and application
(see Appendix A). The choice of type constructors reflects the kind of actions
one seeks to capture. For the sake of simplicity we consider here only one type
constructor: the function type “→”. A type, then, is either

• a simple type: s ∈ T , or

• a function type: s → t, where s and t are types.

The function type s → t denotes a mapping which accepts objects of type s and

66

returns objects of type t. Think of it as one kind of chemical bond (“→”). It
links together the action(s) of atoms (or groups of atoms).

The type system is coupled to the λ-calculus by means of inference rules based
on the structure of λ-terms. Let’s proceed intuitively at first: if a variable x in
λ-calculus has type s, notated x : s, and if the expression E has type t, notated
E : t, then the term λx.E has type s → t, notated λx.E : s → t. What we have
just made is a bond connecting action s with action t. The corresponding term
- the abstraction λx.E - is the physical bond - as opposed to its type (→) which
indicates it’s potential chemical activity. Indeed, a bond that can be made, can
be broken. This holds for types as well. When the object λx.E whose action is
s → t is brought into contact with an object F : s, the bond is broken, and the
action t is recovered: (λx.E)F : t. The corresponding normalized object can
be shown to have the same type. The fact that the type doesn’t change upon
normalization indicates that types do not compute results; the computation is
done by the λ-calculus mechanics. Types are just a statement about the possible
reactions and results.

Summing up, “abstraction” makes bonds, “application” breaks bonds (of the
“→” kind). A bond works here like an “if-then” relation, since s → t specifies
the conditions that have to be met to break and to release the “then” portion (in
this case simply to encounter an object of type s).

2 Polymorphism

A function of type s → t, where s and t are simple types, is monomorphic,
because - in terms of our metaphor - it only has one shape: it recognizes only
things of the shape s, and it returns things of the particular shape t. Seen this
way there are infinitely many identity operations, λx.x, with different types - such
as: a → a, b → b, (a → b) → (a → b), etc. - yet all do the same thing. In fact,
these different types are but specific instances of a generic type α → α, where
α can be anything. Because it can be anything,we can treat it as a variable - a
type variable. This is expressed as ∀α.α→ α, also known as a type scheme. The
introduction of type variables yields the concept of a polymorphic type. In contrast
to a monomorphic operator, a polymorphic one can act on a variety of things with
different shapes. For example, a function with type ∀α.(α → a) → (b → α) can
operate on any object which is an instance of the type ∀α.α→ a, such as c → a

or ∀β.(c → β) → a, but it cannot act on instances of ∀β.β → c. In the context
of the chemical metaphor, polymorphism means that our abstract molecules can
have different degrees of “specificity”. Some could be “rigid” (monomorphic),
others could be completely unspecific, and still others could cover the spectrum
of specificity in between.

67

3 Type inference

Given the structure of a λ-term how do we infer its type? To begin with we
assign type schemes to certain variables initially. This initial assignment, A, has
the status of a boundary condition. It specifies our “chemistry”. We will write
the derivation of type σ for the expression P under the assumptions A as an
inference: A � P : σ (read: “from A derive P of type σ”). Here’s the complete
set of rules for this game [55, 63], which we explain intuitively below:

Tautology x : σ ∈ A � x : σ

Instantiation
A � e : σ

(σ > σ′)
A � e : σ′

Generalization
A � e : σ

(α not free in A)
A � e : ∀α.σ

Application
A � e : τ ′ → τ A � e′ : τ ′

A � (e)e′ : τ

Abstraction
Ax ∪ {x : τ ′} � e : τ
A � λx.e : τ ′ → τ

Let
A � e : σ Ax ∪ {x : σ} � e′ : τ

A � (let x = e in e′) : τ

The meaning of the Taut-rule is simply that a free variable has the type assigned
to it in the boundary condition. If there is no assignment the expression x is not
typable, and is barred from the universe.

The meaning of rule App is also clear. It is useful, however, to know how the
rule is implemented, since it introduces an important concept. Suppose that we
have an object e whose type has been established to be σ, and that we want to
apply it to an object e′ of type τ ′. For this to be possible e must have a type of
the form τ ′ → τ where τ stands for a generic unknown type of (e)e′ that needs
to be determined. Hence, for the interaction (e)e′ to be possible e’s established
type σ and the required type τ ′ → τ must be made equal. This may be possible,
since σ and τ ′ may contain type variables which can be made more specific in
order to satisfy the equality. This means we must look for some type substitution
T of the free variables in σ and in τ ′ → τ such that Tσ = T (τ ′ → τ). T is called
a unifier, and the procedure for finding T is called unification. It boils down to
solving a set of equations. For details about how this procedure is carried out the
reader is referred to any standard textbook on type theory. The point is that a

68

successful unification will end up with a particular τ , the desired type of (e)e′. If
unification is not successful, then e cannot be applied to e′, i.e., the interaction
term (e)e′ does not exist.

It is clear now that a type system poses constraints on permissible λ-terms. For
example, λx.(x)x is not any longer an element of the universe of objects, for it
has no type. To type the subterm (x)x we would have to first assume the generic
type α for x, and then use rule App which requests that x be of type α→ α. But
the equation α = α→ α is recursive and has no solution (in this type system).

Recall that we model a chemical reaction by the application of a function: (λx.E)F .
In Let the argument, F , is typed first, and then its type is assigned to the vari-
able x when proceeding in the type synthesis of E. The Let rule allows for more
general interactions than are otherwise permitted by App. We use Let to model
a reaction.

Finally, the Abs-rule is used like this. If the variable x has a type assigned in
the boundary condition A, τ ′ say, then we must use τ ′ in the derivation of the
type for the function body e. If e is determined to have type τ , then the whole
expression is τ ′ → τ . On the other hand, if x has no assignment, then we are free
to temporarily assume one. We assume a generic α, and proceed to derive the
type for e. During this process the assumed type α may need to be specialized
into τ ′(< α) to meet type constraints (viz unification). The resulting type for the
overall expression is τ ′ → τ , and the boundary condition A is left unchanged.

The other two rules, Gen and Inst, are used to generalize and to instantiate
(specialize) a type in a particular way. Their explanation is not crucial at this
level of discussion, and we skip it.

C Logic background

1 The Curry-Howard isomorphism

The Curry-Howard isomorphism [45] provides a rigorous link between the com-
putational sciences and logic.

Recall the two rules for typing abstraction and application in λ-calculus (Ap-
pendix B):

Abs
A ∪ {x : τ ′} � e : τ
A � λx.e : τ ′ → τ

App
A � e : τ ′ → τ A � e′ : τ ′

A � (e)e′ : τ

69

The notation is understood as a rule which links the two hypotheses (above the
horizontal line) with a conclusion (below the line).

Take for instance the Application rule and consider what remains when every-
thing but the type information is erased:

τ ′ → τ τ ′

τ

Now read τ ′ and τ as logical propositions , and interpret the function arrow “ →”
to mean logical implication. Then, if we know that τ ′ implies τ , and if we know
that τ ′ actually holds, then we can conclude that τ holds. This logical inference
is known as modus ponens. For example, empiricists routinely use this inference,
reasoning that if an event τ is known (say, by prior experiment) to be contingent
upon an event τ ′, and τ ′ is an empirical observation in a current experiment, then
we observe τ in the current experiment.

In logic, “to know that a proposition holds” means to prove it, i.e. to stepwise
assemble the proposition with the help of a “scaffold” (the proof). Made of
special building blocks (rules of inference), a proof is a syntactical object just like
a λ-term. Let us symbolize the text documenting the proof of a hypothesis with
vertical dots (meaning, “insert the formal steps of proof here”):

····
a proof

τ ′ → τ

····
another proof

τ ′

τ

Now, this could be seen as a proof of the proposition τ by combining a proof
of τ ′ → τ and one of τ ′. Indeed, modus ponens is a step in the construction of
proofs. We could use the following scheme to name the steps in the proof:

····
e

τ ′ → τ

····
e′

τ ′

τ




(e)e′ (10)

This, however, is precisely the rule for typing an “application” (here, (e)e′) in
λ-calculus (App). From this point of view the rule for typing an Abstraction is
interpreted as:

[τ ′]
····
e

τ

τ ′ → τ



λx.e (11)

70

This is meant to illustrate that a proof of τ , using the assumption τ ′, is a proof of
τ ′ → τ where τ ′ has been removed from the list of assumptions. One says that τ ′

has been discharged10. In typed λ-calculus a free (unbound) x is, therefore, seen
to stand for an assumption made (of type τ ′). “Abstraction” - i.e., the binding of x
as a variable - discharges that assumption, yielding a logical implication. Indeed,
the object λx.e is a function. The function takes a (proof of the) proposition τ ′

and returns a (proof of the) proposition τ ; hence it proves τ ′ → τ .

The two rules (10) and (11) together define what “→” means by stating how
to eliminate and how to introduce it, respectively, from a logical formula. The
implication connective is introduced by shuffling an assumption from the proof
(the meta-language) into the logical formula (the object-language) which now
keeps track of it11. The implication connective is eliminated by supplying a
proof for the assumption expressed in the implication. Analogous rules of in-
troduction and elimination exist for disjunction (∨), conjunction (∧), and for
the existential (∃) and universal (∀) quantifiers in the predicate case. This style
of proof-presentation is called “natural deduction”. We have introduced it here
not for its direct utility in the chemical metaphor, but because it provides the
simplest and most gentle connection between a logic and the typing of λ-terms.

Proof-normalization

How is the λ-calculus reduction process reflected in proof-theory? Reduction in
λ-calculus is triggered by the application of a λ-expression to another: (λx.e)e′

which becomes e[x := e′]. The expression (λx.e)e′ corresponds to a proof where
the introduction of an implication (abstraction) is immediately followed by its
elimination (application). Consider the case sketched below.

[τ ′]
····
e

τ

τ ′ → τ

····
e′

τ ′

τ

−→

····
e′

τ ′····
e

τ

Here a proof is “normalized” by replacing copies of the derivation ending in τ ′

(i.e., right branch) for every discharged assumption τ ′ in the derivation on the

10This fact, however, must be recorded, for example by wrapping τ ′ into square brackets.
This introduces a “non-local” action, i.e., an annotation at a location in the proof tree that is
removed from the horizontal bar in (11) where things are currently happening. This will be
avoided in another syntactical system introduced in Appendix 2.

11Stated differently, if we can prove β from assumption α (i.e. α � β), then we can prove
α → β from no assumption (i.e. � α → β). This is the “deduction property” of logical
consequence (�).

71

left branch (i.e., top-most segment of left branch).

2 Sequent calculus

Whenever a theory has “objects” as its subject, notation becomes of paramount
importance. The reason is that to a good extent the theory is the notation.
Major perspectives on logic are, therefore, characterized by differring notational
systems.

One of them is Gentzen’s sequent calculus, introduced here and elsewhere [32,
19], as a natural bridge between the natural deduction systems/types (discussed
above) and linear logic (a discussion of which follows). The judgements derived in
sequent calculus are not individual formulae like in the previous case, but rather
ensembles of formulae. These judgements are called “sequents”, and are of the
form Γ � ∆, where the turnstile indicates “logical consequence” and ∆ and Γ are
multisets of formulae, i.e. sets where some formula may occur more than once.
The connection between sequent calculus and natural deduction is direct in the
case where the right side of the turnstile contains a single formula: the proof of
the judgement Γ � ψ corresponds to the deduction of ψ under the hypotheses Γ.
The sequent notation is a device to keep track of all assumptions made and all
formulae derived up to any point in the proof tree (collecting assumptions on the
left and conclusions on the right). In contrast to “natural deduction” (Appendix
1, footnote 10), this makes the proof tree construction entirely local; what can
be done at any stage depends solely on the end point of the tree.

The rules of the calculus - which we do not explain in detail here - taken together
define the exact meaning of a sequent. The sequent

φ1, . . . , φn � ψ1, . . . , ψm

means that the conjunction of the “antecedents” (φ1 and φ2 and . . . and φn)
implies the disjunction of the “succedents” (ψ1 or ψ2 or . . . or ψm), i.e. φ1∧ . . .∧
φn → ψ1 ∨ . . . ∨ ψm Stated in terms of a Boolean valuation B the sequent (12)
says that “if all φi are true (under B), then at least one ψi is true (under B)”.
Sequent calculus makes the symmetries and the algebraic properties of the log-
ical connectives visible. In sequent calculus, like in natural deduction, proofs
of judgements are built inductively by linking together other judgments through
specific rules all the way up to assumptions or axioms. To provide the reader with
the flavor of the system, we show the rules for implication (→). Capital letters
denote multisets of formulae, lower case letters denote individual formulae.

left
Γ � φ,∆ Γ′, ψ � ∆′

Γ,Γ′, φ→ ψ � ∆,∆′ right
Γ, φ � ψ,∆

Γ � φ→ ψ,∆
(12)

72

For the purpose of an intuitive explanation, let us suppose that each judgement
contains only one succedent, i.e., ∆ = ∅ and ∆′ = δ. The left rule then means: (i)
we know that under the stated conditions φ holds (left branch above the horizontal
bar), and (ii) we know that under the stated conditions the assumption of ψ gives
us δ (right branch above the bar). Clearly, if we can show that φ (what we have)
implies ψ (what we lack), then δ would follow (under the stated conditions). This
is tantamount to saying that we can derive δ from assuming the formula φ→ ψ
in that context, and that is what appears below the bar.

Conversely, the right rule says that if - in a given context Γ - we can derive
ψ by assuming φ, then we can derive from the context Γ alone that φ → ψ.
This transfers the assumption from the meta-language of the proof to the object-
language of the logical formula.

In sequent calculus logical connectives are introduced on the right and the left side
of a judgement corresponding to introduction and elimination rules, respectively,
in natural deduction (see Appendix 1 and the rules for implication (12)). Similar
symmetric schemes hold for the other logical connectives. Sequent calculus needs
no axioms beyond the rules of proof, since it allows the use of arbitrary identities
at any time:

φ � φ

An important feature of the calculus is the existence of three “structural” rules
to manipulate proofs. They do not introduce logical connectives on either side:

Γ � ∆

Γ, φ � ∆

Γ � ∆

Γ � φ,∆
weakening

Γ, φ, φ � ∆

Γ, φ � ∆

Γ � φ, φ,∆
Γ � φ,∆

contraction

The weakening rule “weakens” a proof by introducing antecedents or succedents
that are unnecessary. If the weakening of the succedent strikes you as peculiar,
remember that the succedent of a judgement is the disjunction of its formulae.
In λ-calculus weakening corresponds to the declaration of a variable which never
occurs in the body of the function, e.g., λx.λy.y. Operationally it means “discard-
ing an input”, since the argument supplied for x evaporates. The contraction rule
means that one can use as many copies of a formula as one wishes. In other words:
there is no resource accounting in classical logic. In λ-calculus this corresponds
to “nonlinearity”, i.e., to the multiple occurrences of the same variable within the
body of a function, e.g., λx.(x)x.

73

The third structural rule is the so-called cut-rule:

Γ � φ,∆ Γ′, φ � ∆′

Γ,Γ′ � ∆,∆′ cut (13)

The cut rule achieves a result in two steps: (i) by using a particular assumption
φ (right branch) and by (ii) proving that assumption (left branch). This cor-
responds to a proof which uses “lemma” φ. Notice that in the proven sequent
(below the bar) φ has been annihilated.

Cut and modus ponens

The cut rule is just another way of stating modus ponens (m.p.) of natural
deduction. The sequent version of modus ponens is:

Γ � φ → ψ Γ � φ

Γ � ψ

In

Γ � φ → ψ

Γ,∆ � φ → ψ

∆ � φ

∆,Γ � φ
m.p.

∆,Γ � ψ

we have used weakening and m.p. to derive a generalized m.p. (boxed sequents)
with unequal contexts in the assumptions. From this generalized m.p. one derives
cut:

Γ � φ

φ,∆ � ψ
right →

∆ � φ → ψ
m.p.

∆,Γ � ψ

Cut-elimination

The cut-rule deserves a special place in the order of things, and we explain why
this is so at some length. The cut-rule (9) enables the combination of two proofs
into a single proof, provided they can - metaphorically speaking - “trade” on a
formula φ. The necessity to “trade” arises if one proof needs φ⊥ (it books φ as
an assumption), while the other provides φ (it books φ as a conclusion).

The key point about sequent calculus is the famous Hauptsatz of Gentzen, which
says that cut is not needed, meaning that the sequent calculus with cut can
prove as much as the one without it. The main message comes from how this is

74

achieved. The theorem is proven by exhibiting a procedure through which the
cut-rule can be eliminated from a proof without affecting the overall conclusion.
The crucial step consists of replacing the occurrence of a cut by one or more
cuts on formulae with smaller complexity. In this way the cut(s) bubble toward
the leaves of the original proof-structure until they encounter an identity and
disappear, i.e., cutting Γ � ψ,∆ with ψ � ψ leaves Γ � ψ,∆.

Cut-elimination

As an example consider the following cut on an implication introduced by the
left and right rules (12):

····
Γ, φ � ∆, ψ

Γ � ∆, φ → ψ

····
Π � Ω, φ

····
ψ,Ξ � Λ

Π,Ξ, φ → ψ � Ω,Λ
cut on φ → ψ

Π,Ξ,Γ � ∆,Ω,Λ
····

In the process of cut-elimination this proof-segment is replaced by:

····
Π � Ω, φ

····
Γ, φ � ∆, ψ

cut on φ
Π,Γ � Ω,∆, ψ

····
ψ,Ξ � Λ

cut on ψ
Π,Ξ,Γ � ∆,Ω,Λ

····
The two cuts which replace the previous one occur on less complex formulae, and
since formulae are finite, this process will bottom out when a cut is finally made
on an identity at the leaf of the proof tree. Similar procedures can be carried out
for all connectives, independently of whether they are introduced left and right
at the same level.

Cut-elimination does something analogous (but not formally identical) to reduc-
tion in λ-calculus. It replaces each occurrence of the assumption φ with a proof of
it. Proofs that use cut are much easier to understand, since they are “modular”
in the sense of using generic packages, which can be specialized “on demand” in
different ways; for example, the package φ � Γ can be specialized by means of
Ψ � φ to give Ψ � Γ, or with Ω � φ to give Ω � Γ, etc. More specifically, a proof
may first derive the theorem (a+b)2 = a2+2ab+b2 and then use it via cut twice,
once with a = 5 and once with a = 2. In the cut-free proof the (a+ b)2-theorem
would be derived once specifically as (5+b)2 = 25+10 ·b+b2 and once specifically
as (2+ b)2 = 4+4 · b+ b2 without exploiting the fact that these are two instances
of the same generic structure.

75

What happens is similar to the application of a function to a particular argument.
In fact, for certain versions of the logic (e.g., if sequents are limited to only one
formula on their right side) cut is exactly analogous to functional application, and
the process of cut-elimination corresponds to the evaluation of the function, i.e.
it represents the computation. In that case a cut-free proof basically corresponds
to a normalized proof in natural deduction; it is a canonical proof [38].

3 Linear logic for tourists

In 1986 Jean-Yves Girard introduced linear logic. The system may be regarded as
a theory about the control of the contraction and weakening rules (see Appendix
2) of classical logic. In linear logic a formula ψ stands by default for a single
occurrence which must be used exactly once. A formula may be, nonetheless,
explicitly marked as potentially available in any number of copies (!ψ, read as “of
course ψ”). Such a supply, however, may be accessed only by another modifier
(?ψ, read as “why not ψ”). A naked ψ (not under the scope of ! or ? modalities)
means exactly one copy of the formula ψ. In this spirit the logical connectives
become descriptions of actions in which formulae are consumed.

To avoid confusion with the classical meanings, linear logic has its own notation.
Linear implication is written as ψ ◦ φ, and means that ψ is used up when giving
rise to φ. Linear implication is, therefore, a causal relation. The symbol ⊗ (read:
“cross”) denotes a linear conjunction, for example, ψ⊗ψ indicates the cumulation
of two instances of ψ obtained from disjoint resources. The resource sensitivity of
linear implication does not permit, for example, ψ ◦ (ψ⊗ψ). This is in marked
contrast to the classical case where ψ → (ψ ∧ ψ) is a provable formula.

To appreciate the meaning of this discipline, suppose that atomic formulae stand
for real-world tokens. To use a textbook example, consider a vending ma-
chine which distributes soda cans and chocolate bars for one dollar each. We
could use linear logic to characterize its behavior. Actions like dollar ◦ soda

or dollar ◦ chocolate are possible, but not dollar ◦ (soda ⊗ chocolate).
However, we surely have (dollar ⊗ dollar) ◦ (soda ⊗ chocolate). Note that
dollar ◦ soda is - like dollar - an action resource that can be used only once; it
specifies the conversion of a particular dollar into a particular soda. To express
the idea that this vending machine always converts dollars into sodas or into
chocolates, we write !(dollar ◦ soda) and !(dollar ◦ chocolate).

The control over weakening and contraction has the consequence of requiring
us to distinguish between different flavors of the classical connectives according
to the way resources are being used. Classical conjunction, ∧, splits into two
linear connectives ⊗ (“cross”) and & (“with”). The formal reason is shown in
the detail-box below. The difference can be roughly summarized as follows. ⊗

76

acts as an accumulator of resources. In φ⊗ ψ both φ and ψ have been obtained
from disjoint resources, then glued together into a pair which we must use as
a unit. In φ�ψ both φ and ψ arise from the same resource, and, therefore,
we cannot have them both, but must choose one of them. By projecting out φ
from φ�ψ we lose ψ and vice versa. This difference is reflected by our vending
machine which doesn’t have an action dollar ◦ (soda⊗ chocolate), but does
behave like dollar ◦ (soda�chocolate). Note that choice is in the hands of
the consumer, hence & is also called an “internal choice”.

The splitting of classical conjunction [86]

Consider the case of classical conjunction, ∧, in sequent calculus. We could
use the following right ∧-introduction rule:

R∧:
Γ0 � φ,∆0 Γ1 � ψ,∆1

Γ0,Γ1 � φ ∧ ψ,∆0,∆1

However, we could equally well use:

R∗
∧:

Γ � φ,∆ Γ � ψ,∆

Γ � φ ∧ ψ,∆

In fact, by virtue of weakening and contraction both rules are equivalent. We can
derive R∗

∧ from R∧:

Γ � φ,∆

Γ � ψ,∆
weakening

Γ,Γ � ψ,∆
weakening

Γ,Γ � ψ,∆,∆
R∧

Γ,Γ,Γ � φ ∧ ψ,∆,∆,∆
==================

Γ � φ ∧ ψ,∆

where the double bar indicates the use of multiple contractions. And we can
derive R∧ from R∗

∧:

Γ0 � φ,∆0

Γ0,Γ1 � φ,∆0

Γ0,Γ1 � φ,∆0,∆1

Γ1 � ψ,∆1

Γ0,Γ1 � ψ,∆1

Γ0,Γ1 � ψ,∆0,∆1

R
∗
∧

Γ0,Γ1,Γ0,Γ1 � φ ∧ ψ,∆0,∆1,∆0,∆1

=============================
Γ0,Γ1 � φ ∧ ψ,∆0,∆1

Similarly, the classical left ∧-introduction rule can be written as:

L∧:
Γ, φ, ψ � ∆

Γ, φ ∧ ψ � ∆

77

But equally well one could use:

L1∗
∧ :

Γ, φ � ∆

Γ, φ ∧ ψ � ∆
L2∗
∧ :

Γ, ψ � ∆

Γ, φ ∧ ψ � ∆

The classical equivalence of L{1,2}∗
∧ with L∧ is again easily established. From

L{1,2}∗
∧ to L∧ by means of contraction:

Γ, φ, ψ � ∆

Γ, φ ∧ ψ,ψ � ∆

Γ, φ ∧ ψ, φ ∧ ψ � ∆

Γ, φ ∧ ψ � ∆

We skip the other direction, from L∧ to L{1,2}∗
∧ , where weakening is used.

When contraction and weakening are absent, as in linear logic, the two sets
of left/right introduction rules are no longer equivalent. Consequently, the con-
nectives they introduce must be distinguished. Let us denote by ⊗ (“cross”) the
conjunctive connective obtained by the previously unstarred L/R pair:

R⊗:
Γ0 � φ,∆0 Γ1 � ψ,∆1

Γ0,Γ1 � φ ⊗ ψ,∆0,∆1

L⊗:
Γ, φ, ψ � ∆

Γ, φ ⊗ ψ � ∆
(14)

As can be seen from the rules, ⊗ is a “context-free” or “multiplicative” version
of conjunction, in the sense that there is no restraint on the contexts for the
R⊗-rule (Γ0,Γ1). With the connective ⊗, the side formulae of each premises
are accumulated in the conclusion. It is in this sense that that ⊗ acts as an
accumulator of resources.

The other conjunctive connective, & (“with”), is defined by the previously
starred L∗/R∗ pair:

R&:
Γ � φ,∆ Γ � ψ,∆

Γ � φ�ψ,∆
L1

&:
Γ, φ � ∆

Γ, φ�ψ � ∆
L2

&:
Γ, ψ � ∆

Γ, φ�ψ � ∆

In contrast to ⊗, the contexts must be the same for the R-rule to be applicable
here. This makes & “contextual” or “additive” in the sense of a superposition.
Said differently: the side formulae in each premise coincide with the side formulae
of the conclusion, and, hence, & is not accumulative.

It is worth pointing out that, in the absence of contraction and weakening, the
split between the introduction rules must occur in the way just shown. There
cannot be a conjunction introduced, for example, by the L∗/R pair of rules.
Cut-elimination would fail otherwise (see [86]). (In the classical case - where
contraction and weakening ensure equivalence between ⊗ and & - it is, however,
customary to use the L∗/R pair of rules to introduce ∧.)

Similar arguments hold for classical disjunction, ∨, which in the absence of con-
traction and weakening splits into two linear connectives: � (“par”) and ⊕ (“ei-
ther”). Again, with respect to resources the former is “cumulative” and the latter

78

expresses “superposition”. Like “with”, ⊕ is a choice, but in contrast to “with”
the choice is external to the action. For example, our vending machine may be
defective at times and swallow your dollar returning nothing. This choice is
not under the control of the customer, hence: dollar ◦ ((soda�chocolate) ⊕
nothing).

The connective � in φ�ψ expresses a mutual dependency of φ and ψ, which
can be stated through linear implication. φ�ψ is equivalent to both φ⊥ ◦ ψ or
ψ⊥ ◦ φ. The symbol ⊥ denotes “linear negation”, and is defined by formal fiat.
First, one postulates (like in classical logic) equivalence between φ⊥⊥ and φ, i.e.

φ⊥⊥ def
== φ

This property is also called “involutivity”. Second, negation expresses dualities
between the linear connectives, much like the deMorgan laws in classical logic
(e.g., φ ∨ ψ = ¬(¬φ ∧ ¬ψ), where ¬ is classical negation):

(φ⊗ ψ)⊥ def
== φ⊥�ψ⊥

(φ�ψ)⊥ def
== φ⊥ ⊗ ψ⊥

(φ⊕ ψ)⊥ def
== φ⊥�ψ⊥

(φ�ψ)⊥ def
== φ⊥ ⊕ ψ⊥

The involutivity of negation allows to pass from two-sided sequents, Γ � ∆, to
equivalent one-sided sequents, � Γ⊥,∆, where Γ⊥ is the linear negation of all
formulae in Γ. With respect to logical consequence, �, linear negation behaves
like a matrix transposition in linear algebra.

One-sided sequents

One-sided sequents utlize the dualities expressed by ⊥ to halve the rules needed
for defining the linear connectives. For example, take the defining rules for ⊗ (14),
and pass to the one-sided version by linearly negating what’s on the left:

R⊗:
� φ,Γ⊥

0 ,∆0 � ψ,Γ⊥
1 ,∆1

� φ ⊗ ψ,Γ⊥
0 ,Γ⊥

1 ,∆0,∆1

L⊗:
� φ⊥, ψ⊥,Γ⊥,∆

� φ⊥
�ψ⊥,Γ⊥,∆

Because one-sided sequents are right-sided, nothing much changes with respect
to the right rules. The left rule of ⊗, however, becomes the right rule for �. A
similar situation occurs with the two-sided rules for �, the right one stays, and
the left one turns into the right one of ⊗.

This has a very important consequence. The cut rule becomes symmetric, in the
sense that there is no distinction between a premise and a conclusion within a
sequent:

� ∆, φ � φ⊥,Γ
� ∆,Γ

79

The asymmetry between “premise” and “conclusion” is mirrored in the compu-
tational arena by the role-asymmetry between function and data, despite their
syntactic indistinguishability. A function sends a premise into a conclusion and
the datum supplies the premise. Ultimately this asymmetry reflects the sequential
paradigm of a functional calculus. Its removal makes linear logic one approach
to concurrency (Appendix 3).

Cut can occur between any formula and its dual (negation). The connective �,
for example, is the dual of ⊗, and φ�ψ can be cut with φ⊥ ⊗ ψ⊥. The situation
has an especially elegant “geometric” interpretation in Girard’s proof-net concept
[33] (see Appendix 3.2) which is a sequent-calculus stripped to its syntactical bare
bones.

3.1 The rules of the game

For the purpose of reference we conclude with a table of the connectives and the
standard set of rules for the multiplicative and additive fragment of linear logic
(i.e., MALL, this the fragment without ! and ?).

The linear connectives

disjunction conjunction resource use

� ⊗ cumulative
⊕ � superposition

←− duality −→

The rules for the linear connectives

(Although we have treated sequents as (multi)sets, i.e. � φ, φ, ψ is the same
as � φ, ψ, φ, the permutation rule is stated as an explicit reminder that sequents
are modulo permutation.)

Identity and cut

identity
� φ, φ⊥

� Γ, φ � φ⊥,∆
cut

� Γ,∆

Permutation

� Γ
Γ′ is a permutation of Γ

� Γ′

80

Connectives

� Γ, φ � ψ,∆
times

� φ⊗ ψ,Γ,∆
� Γ, φ, ψ

par
� φ�ψ,Γ

� Γ, φ � ψ,Γ
with

� φ�ψ,Γ

� Γ, φ
l-plus

� φ⊕ ψ,Γ

� Γ, ψ
r-plus

� φ⊕ ψ,Γ

The system with only the boxed connectives is known as the multiplicative frag-
ment of linear logic (MLL). We have not formally used the exponential modalities
! and ? in this appendix or the main text. We therefore skip their proof-theoretic
definition. The reader is referred to [37] for details.

3.2 Proof-nets

Consider a proof of the sequent � (A⊗ B⊥)⊗ C, (A⊥
�B)�(C⊥ ⊗D), D⊥ using

the rules listed in the previous section:

� A,A⊥ � B,B⊥
times

� A⊗B⊥, A⊥, B
par

� A⊗B⊥, A⊥
�B � C,C⊥

times

� (A⊗B⊥)⊗ C,A⊥
�B,C⊥ � D,D⊥

times

� (A⊗B⊥)⊗ C,A⊥
�B,C⊥ ⊗D,D⊥

par

� (A⊗B⊥)⊗ C, (A⊥
�B)�(C⊥ ⊗D), D⊥

The atoms A,B,C,D and their negations are introduced as identities at the
leaves of the proof. All other occurrences of these atoms derive from their first
introduced instance. Writing the connectives as labelled wires between formulae,
and connecting with a straight wire a formulae and its negation (as they always
are introduced together), we can draw a picture of the above proof where only
the essential information is recorded. Every formulae occurs exactly as many
times as it has been introduced through identities. Figure 8 shows the proof
above in this more concise notation; it is called a proof-net [33]. The rules for
building proof-nets within MLL are fairly straightforward. A formulae and its
negation are always connected by a wire. They form the simplest proofnet. A

81

⊗ connects two disconnected proof-nets, and a � connects two parts within the
same proofnet.

888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888

A⊥ B

D D⊥

&

x&

000000000
000000000
000000000
000000000
000000000

x

A B⊥

C C⊥
x

β

α
γ

Figure 8: A proofnet.

The three shaded regions α, β, γ partition the proof-net in figure 8 exactly into the
formulae of the conclusion sequent: β

def
== (A⊗B⊥)⊗C, α

def
== (A⊥

�B)�(C⊥⊗
D) and γ

def
== D⊥. The boundaries of each region are always given by atomic

links. The formula represented by the β-region can be cut with its dual β⊥

(= ((A ⊗ B⊥) ⊗ C)⊥ = (A⊥
�B)�C) from another proof-net. The elimination

of the cut amounts to disconnecting the cut-formulae at their atomic links and
discarding the cut-formulae (but see figure 7, section 2.3.3). For an excellent
introduction, see the appendix by Y. Lafont in [38].

The proof-net concept can be extended to full linear logic with the exponentials,
! and ?, as well as the additive connectives ⊕ and �. The handling of proof-nets,
however, becomes much trickier than in the simple case considered here.

82

