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We construct and analyze a stochastic model of a population of N protein molecules, each of which
can be phosphorylated and dephosphorylated at J sites by the same kinase and phosphatase respec-
tively. In addition, fully dephosphorylated (phosphorylated) proteins feed back to act as catalysts
for all intermediate dephosphorylation (phosphorylation) reactions. The population is treated as a
vector of occupancies of J + 1 sites in a one-dimensional lattice representing the phosphorylation
states of each protein molecule. This model exhibits a continuous phase transition at any J ≥ 2,
between a symmetric and a symmetry-breaking state. In addition, we find that the universality
class of the phase transition at finite J is different than that at J → ∞.
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Molecular switches are a key component of many sig-
nal transduction and gene expression circuits that control
cellular behavior such as the cell cycle [1, 2], differenti-
ation [3, 4] and memory [5]. One sense of switching is
termed ultrasensitivity, in which the character of a given
steady state changes significantly within a small signal
range [6]. A different functionality is bistable (toggle)
switching, the capacity of a deterministic circuit to flip
between two states in response to a transient signal [7].
Toggle switching is associated with “checkpoints” and is
implemented through some form of feedback.

Activation states in molecular signal transduction are
often defined in terms of different numbers of phospho-
rylations of a target protein. Phosphorylation is the co-
valent attachment of a phosphate group (consumed from
an energy-rich ATP molecule), generally at a tyrosine,
serine or threonine residue of a protein. Both phos-
phorylation and dephosphorylation are catalyzed concur-
rently, by exogenously supplied kinase and phosphatase
enzymes. Their rates may also be enhanced by feedback
catalysis [3], wherein the fully phosphorylated product
increases the rate of phosphorylation of the remaining
partially phosphorylated proteins.

Since the total number of protein molecules involved
in these reactions is not large, stochasticity places im-
portant limits on the stability of a switch. Thermal fluc-
tuations can jeopardize the reliability or even existence
of switches constructed from signaling pathways. Under-
standing their consequences is important, both empiri-
cally [8, 9] and theoretically [10–13].

In this Letter, rather than considering one empirically
derived signal transduction network in detail, we explore
a fictitious (though possible) circuit that unites features
present in many more complex networks: multisite phos-
phorylation Despite its abstraction, such a model illus-
trates important issues present in more realistic cases [15]
and enables us to present the refinement of formal tools
with which we can begin to address those cases.

The model assumes a set of N proteins that can un-
dergo J phosphorylation reactions each. Dephosphory-
lation also occurs concurrently from each state except 0.

In addition, the rates of phosphorylation and dephospho-
rylation are enhanced by positive feedback from states J
and 0. We analyse the master equation of this prob-
lem, using many-body techniques applied previously to
stochastic models of gene expression [16]. The Letter
demonstrates four points. First, we show that a multi-
site phosphorylation chain with both positive and nega-
tive feedback allows switching behavior to emerge from
population-level cooperative effects. The switching be-
havior of such a system is qualitatively distinct from one
originating through single-molecule kinetic effects, such
as saturation through complex formation [4, 5]. Second,
both the emergence of a bistable phase and its stabil-
ity are endogenous functions of the parameters of the
problem, which we can compute with our method, thus
generalising the analysis presented in [17]. Third, in
this minimal model at large N , bistability occurs for any
J ≥ 2. Thus multiple phosphorylation is essential for
phase-transition-mediated switching, in contrast to an
abstraction based on saturation where only J = 1 [5]
is required. (Known empirical J values range from 1 to
18 [18]). We find, in addition, that the universality class
of this phase transition from unistability to bistability,
is different for finite J and for infinite J . We do not
know of any other non-equilibrium model which shows
this behaviour. Fourth, we find that the phase transition
may be brought about either by keeping the input signal
(numbers of kinase and phosphatase molecules) constant
and varying the number of target protein molecules or by
keeping the latter fixed and changing the former. Molec-
ular biologists typically think of control within a fixed
circuit architecture, as varying the input signal. We see
that the number of target molecules also constitutes a
degree of freedom for control. In other words a circuit
can be switched with input signals clamped constant, by
changing the expression levels of target proteins.

A schematic representation of our model is shown in
Fig. 1. Phosphorylation states are represented as J + 1
lattice sites indexed by j ∈ 0, . . . , J , among which the
N protein molecules hop independently forward (by in-
dividual phosphorylation) or backward (by dephosphory-
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lation). The forward and backward rates have two com-
ponents: a part resulting from the externally supplied
kinase and phosphatase particles (I and P respectively)
and a part resulting from feedback catalysis. We have set
the strength of the feedback equal to the occupancy of
sites 0 (or J) for backward (forward) hops, without loss
of generality. In all that follows, we analyse the model
for the case I = P = q.
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FIG. 1: The symmetrized multisite phosphorylation chain.
The number of phosphorylated sites of the target protein
defines states 0 . . . J depicted as a one-dimensional lattice.
Dashed arrows represent phosphorylation and dephosphory-
lation transitions between states. Solid arrows designate cat-
alytic action (thick: phosphorylation, thin: dephosphoryla-
tion). I is the number of externally-supplied kinase particles,
P the number of externally-supplied phosphatase particles,
and nJ and n0 the number of target proteins feeding back
with kinase and phosphatase activity, respectively.

We have effectively assumed a specific sequence for
phosphate attachment, in not assigning combinatorial
factors for attachment rates which grow at intermedi-
ate j. Our abstraction does not include the formation
of enzyme-substrate complexes, but can be considered as
approximating a situation in which the enzyme-substrate
complex has a high dissociation (Michaelis) constant. Fi-
nally, as in Ref. [16], we omit spatial structure and dimen-
sionality, as could be induced in real systems if reactions
are scaffolded at membranes or other cellular structures.

Our symmetrizing assumption that the unphosphory-
lated state j = 0 is a catalyst for dephosphorylation, per-
mits closed-form analysis of many interesting quantities.
This assumption can be relaxed in numerical investiga-
tions [15]. There are two respects in which nonsymmetric
systems, either topologically (where only the j = J state
acts as a catalyst) or through I �= P , can differ from
the system idealized here. If the topology is symmetric
but I �= P we expect that one of the two steady states
becomes metastable and the transition first-order. If the
topology is asymmetric however, sufficiently large N al-
ways ensures that the feedback wins and that there is a
unique stable state.

Before presenting details of the analysis, we summarize
our results below. The system of Fig. 1 is describable in
terms of a single parameter g ≡ N/q. At small g values
the N particles are homogenously distributed over the
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FIG. 2: Order parameter |〈nJ − n0〉| /N for the phosphory-
lation chain: mean-field theory (lines) and simulations (sym-
bols). J + 1 = [5, 10, 100] corresponds to [dot, dash, solid] for
lines and [+, o,×] for symbols. Particle numbers used in the
simulations are respectively N = [4000, 2000, 400].

J + 1 sites of the lattice. In particular, average occu-
pancy 〈n0〉 of site 0 is equal to the average occupancy
〈nJ 〉 of site J , where the averages are over the steady
state distribution. As g increases, at a value g = gc, the
system undergoes spontaneous symmetry breaking and
the occupancy at either site 0 or J becomes greater than
at the other, until at very large g, almost all the parti-
cles are found at either the fully dephosphorylated state
j = 0 or the fully phosphorylated state j = J . The
relevant order parameter describing the system is hence
|〈nJ − n0〉| /N ∈ [0, 1]. Fig. 2 shows our numerical and
analytical estimates of this quantity.

The phase transition occurs at any J > 1 at a critical
point whose mean-field value is gc = (J + 1) / (J − 1). In
a neighborhood of order gc ≤ g <∼ 1 + 2 (gc − 1), the or-
der parameter scales with g as in Curie-Weiss mean-field
ferromagnetism [19], with a J-dependent normalization:

|〈nJ − n0〉|
N

≈
√

6J

J + 1

(
g

gc
− 1

)1/2

. (1)

For g >∼ 1+2 (gc − 1) the order parameter saturates to
a J-independent envelope value

|〈nJ − n0〉|
N

→ 1 − 1
g
. (2)

Since gc − 1 → 2/J for large J , Eq. (2) also gives the
behavior in the formal J → ∞ limit. The derivative of
the order parameter converges to one in arbitrarily small
neighborhoods of the critical point, rather than to ∞ as
in the Curie-Weiss regime; thus J → ∞ defines a dif-
ferent universality class than any finite J , as shown in
Fig. 2. Qualitatively, the distinction between small and
large-J is determined by whether one or both reflect-
ing boundaries are sensed by the near-critical symmetry-
broken state.

The fluctuations of the order parameter, normalized by
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the Poisson value 2N/ (J + 1), are dominated by a peak〈
(nJ − n0)

2
〉
− 〈nJ − n0〉2

2N/ (J + 1)
≈ const ∼ 1

(J + 1) |g − gc| (3)

The factor 1/ (J + 1) arises because a single mode out of
J + 1 in the diffusive spectrum goes unstable at the crit-
ical point.This mode describes collective fluctuation of
particles between the j = 0 and j = J limits, and corre-
sponds to the fluctuations in aggregate magnetization in
the Curie-Weiss solution. The results for the fluctuation
spectrum are shown in Fig. 3.
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FIG. 3: Fluctuations in the order parameter scaled for g
above and below critical. var (n′) stands for the variance〈
(n0 − nJ)2

〉
− 〈n0 − nJ〉2. Lines are leading-order expan-

sion in fluctuations about the symmetric mean-field solution,
continued through gc; symbols from simulation, J + 1 values
and markers as in Fig. 2. Large panel shows convergence of
var (n′) to N/g at all J , and a fit to (N/g)

(
1 − g−2.5

)
for

J + 1 = 100. Inset shows convergence of var (n′) to Poisson
result 2N/ (J + 1) as g → 0.

At large J , the prefactor 1/ (J + 1) in Eq. (3) re-
duces the single-mode Curie-Weiss fluctuation peak to
zero weight. The J → ∞ fluctuation spectrum is hence
therefore characterized entirely by renormalized diffusion
like in an effectively coupled Bose gas. If fluctuations
were enirely independent, the mean-field spectrum would
be

[〈
n2

0

〉 − 〈n0〉2
]
MFT

= N (1 − 1/g) (1/g). As shown
in Fig. 3, however, the large-J background converges to〈
n2

0

〉−〈n0〉2 → N
(
1 − 1/g2.5

)
(1/g), indicating that cor-

related fluctuations dominate.
We now present some details of the analysis of the

model. The phosphorylation chain is described instan-
taneously by a state vector of occupation numbers n ≡
(n0, n1, . . . , nJ ), and the ensemble by a joint probability
density P (n). N ≡ ∑J

j=0 〈nj〉 is a constant.
The master equation corresponding to the stochastic

dynamics of Fig. 1 is

d

dt
P (n) =

J−1∑
j=0

[(I + nJ − δJ,j+1) (nj + 1) P (n + 1j − 1j+1)

− (I + nJ ) njP (n)
+ (P + n0 − δ0,j) (nj+1 + 1) P (n − 1j + 1j+1)
− (P + n0) njP (n)] , (4)

where 1j represents the vector of zeros with a 1 in the jth

position, and δj,j′ is the Kronecker delta. Eq. (4) can be
solved perturbatively by introducing an operator algebra
on a basis of number states, and so converting P (n) into
an equivalent representation as a state vector. Creation
and annihilation operators are introduced [20, 21] with
standard commutation relations

[
aj , a

†
j′

]
≡ δj,j′ , and a

zero-particle state vector |0) and its conjugate (0| are
defined by the conditions aj |0) ≡ 0,∀j, (0| a†

j ≡ 0,∀j.
Number states are defined as

|n) ≡
J∏

j=0

(
a†

j

)nj |0) , (5)

and normalized as [21] (0| exp
(∑

j aj

)
|n) = 1,∀n. The

jth number operator has the usual representation n̂j ≡
a†

jaj , and (0| exp
(∑

j′ aj′
)

n̂j |n) = nj .

The master equation (4) has the corresponding repre-
sentation

d

dt
|ψ) = −Ω |ψ) , (6)

with |ψ) ≡ ∑
n P (n) |n), and the evolution operator

Ω = q

J−1∑
j=0

(
a†

j+1 − a†
j

) [(
1 +

n̂0

q

)
aj+1 −

(
1 +

n̂J

q

)
aj

]
.

(7)
The integral of Eq. (6), |ψt) ≡ e−Ωt |ψ0), is converted

to a functional integral by the insertion of the coherent-
state representation of the identity operator

∫
dφ†

t′
dφt′

π
e
−φ†

t
′ ·φt

′
ea†·φ

t
′ |0) (0| eφ†

t
′ ·a =

∑
n

|n) (n| = I

(8)
at a set of times t

′
= k∆t ∈ (0, t). φt is a column

vector of J + 1 complex coefficients, and φ†
t its ad-

joint. If we take as a convenient choice of initial state
|ψ0) = exp

(∑
j n̄j

(
a†

j − 1
))

|0), we obtain by standard
methods [21] the relation for the normalized partition
function

(0| exp

⎛
⎝∑

j

aj

⎞
⎠ |ψt) =

∫
Dφ̃Dφe−

∫
dtLeφ̃0·(n̄−φ0),

(9)
in which the diffusion-“Lagrangian” is

L
(
φ̃, φ

)
= φ̃ · ∂φ

∂t
+ Ω

(
φ̃ + 1, φ

)
. (10)
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The field φ†
t is shifted in notation as φ†

t ≡ φ̃t + 1, to
cancel the surface term from the normalization, and the
function Ω

(
φ̃ + 1, φ

)
in Eq. (10) has the form of Eq. (7),

with the substitutions a†
j → φ̃j + 1, aj → φj .

The mean number density is related to the integra-
tion variables as

〈
φjt

〉
=

〈
njt

〉
, where the first 〈 〉 de-

notes average in the functional integral (9), and the sec-
ond the equivalent average under P (n). The mean-field
solution for the order parameter is obtained from the
stationary-point approximation of

〈
φjt

〉
by the solution

φ̄ to ∂L/∂φ̃
∣∣∣
φ̃≡0

= 0, and recovers Eq. (1) and Eq. (2) in

appropriate limits. Fluctuations are computed by shift-
ing the integration variables φ̃ ≡ 0 + φ̃

′
, φ ≡ φ̄ + φ

′
,

and expanding L to second order in primes, to obtain a
matrix equation of the form

L = φ̃
′
D0φ

′
+ φ̃

′
D2 φ̃

′ T
. (11)

D0 is the diffusion operator in the stationary background,
and D2 is a kernel whose eigenvalues govern the Gaussian
noise spectrum of the stochastic process.

Manipulation of the operators in the functional inte-
gral gives the corresponding fluctuation relation in the
symmetric phase, used in Fig. 3:〈

(nJ − n0)
2
〉
− 〈nJ − n0〉2

2N/ (J + 1)
= 1+

J + 1
N

〈(
φ

′
J − φ

′
0√

2

)2

t

〉
.

(12)
The important property of the matrix D2 in Eq. (11)

is that it has a single negative eigenvalue at all g, whose
fluctuations may be removed in exchange for a Langevin

field, which then drives the noise spectrum of the en-
semble, just as in classical reaction-diffusion [21]. All
other eigenvalues of D2 are zero in the symmetric phase,
and a single positive eigenvalue appears in the symmetry-
broken phase.

Also from Eq. (11), the Green’s function which prop-
agates the Langevin fluctuations may be expanded in
eigenvectors of D0. Elementary algebra shows that only
the lowest antisymmetric eigenvector becomes degener-
ate at the critical point, leading to the Curie-Weiss di-
vergence with weight 1/ (J + 1) of Eq. (3). The remain-
der of the eigenvectors remain close to ordinary diffusive
solutions in the symmetric phase, leading to the regular
component of the fluctuation spectrum in Fig. 3. These
details, as well as an analysis of the symmetry-broken
phase, will be provided in a longer paper [22].

To conclude: in attempting to understand as a many-
body effect the stability of a signal-transduction element
based on multiple phosphorylation with feedback, we
have found that the onset of bistability is a second-order
phase transition at large N , with distinct small-J and
large-J behaviours.

An important feature of the model is the residence time
within states in the symmetry-broken phase as a function
of N and g. This feature is of biological interest, since it
pertains to the memory of switches at finite temperature.
For a system described by a single occupation variable,
assuming the form of the switching potential, this has
been bounded above [17] by an exponential in N . For
a multi-variate system, this bound should only receive
polynomial corrections. An analysis of our model leads
to a first-principles computation of these corrections [22].
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