
1 Introduction

The Darwinian principle of adaptation through replication, heritable variation,

and selection is not limited to a population of biological entities. It is applicable

to any object that can be copied and varied, and for which at least some of the

variants are distinguishable (by an arbitrary criterion called “fitness”). Genetic

Programming (GP) applies the logical structure of the Darwinian scheme to

computer programs, searching for those that compute a desired function. In the

realm of computation the “phenotype” corresponds to the behavior of a program

(i.e., the graph of a function in the set-theoretic sense) and the “genotype”

corresponds to that which behaves (i.e., a syntactical construct expressing a

function).

Genetic Programming [Koza, 1992] has indeed become a powerful machine

learning method. Its success has been demonstrated in a variety of applica-

tions, such as solving symbolic regression problems [Koza, 1992], discovering

game-playing strategies [Koza, 1992, Angeline, 1993], inducing decision trees

[Koza, 1992], generating controllers (e.g., for robots) [Koza, 1992, Reynolds, 1994,

Spencer, 1994, Handley, 1994], cracking and evolving randomizers [Koza, 1992,

Jannink, 1994].

A question, however, remains: When is the Darwinian process effective?

The search for an answer is still a frontier in biology. The question is hard,

because replication and variation apply to the carrier of behavior (“genotype”),

while selection applies to the behavior (“phenotype”), and, at least in biology,

2

we don’t sufficiently understand the mapping between the two.

GP applications typically start with a cleverly crafted representation of a

problem domain from which suitable high-level primitives are inferred. It may

be argued that in such cases GP plays a minor role in finding the solution

compared to the contribution of the user [Abbott, 1993, Taylor, 1993]. The

point relevant here is that the problem-specific components of applications

make a rigorous and general theoretical exploration of GP nearly impossible

[O’Reilly and Oppacher, 1994].

An analysis is needed of the intrinsic constraints and opportunities of GP

deriving from the specific language that maps syntactical constructs (genotypes)

into functional behaviors (phenotypes). Such an analysis could begin by turn-

ing to an abstract universe of functions that is (i) transparent, (ii) sufficiently

formal to encourage mathematical analysis, and (iii) canonical (i.e., it should

capture a programming language paradigm). One such universe is λ-calculus,

invented by Alonzo Church [Church, 1932, Church, 1933] to study the prop-

erties of functions. As is well known, λ-calculus is the syntactically unsug-

ared core of functional programming languages. The notion of λ-definability is

equivalent to Turing’s notion of computability and the Herbrand-Gödel notion

of general recursiveness. An exploration of the characteristic features of the

“λ-calculus landscape”, that is, the program-to-function mapping in λ-calculus,

would greatly help in framing what is possible and what is not with GP within

the paradigm of functional programming.

3

This, then, is the motivation for our use of λ-calculus. The present paper

by no means characterizes the features of the λ-calculus landscape. That is a

long-term challenge. Our contribution merely consists in illustrating GP within

this semantically elegant and minimalist framework, raising a few questions,

and providing support for the claim that the study of the λ-calculus landscape

holds promise for a more rigorous and systematic understanding of GP.

As an example we attempt to evolve the predecessor function. Church had

just about convinced himself that there is no λ-definition of the predecessor

function, when Kleene found a representation for it [Kleene, 1981, Revesz, 1988].

It was an important result, because otherwise a computable function would exist

that is not λ-definable. Although the predecessor function seems difficult to find,

there is no particular practical benefit in finding it, since it is already known.

Section 2 briefly introduces the λ-calculus. Section 3 introduces genetic

operators that naturally fit the syntactical machinery of λ-calculus. In Section

4 the predecessor function is evolved as an example. In Sections 5 and 6 the

influence of different parameter settings is discussed. Section 7 concludes, and

raises a few issues.

2 λ-calculus

In λ-calculus functions are represented as λ-expressions. The simplest λ-expression

is a variable (without type or sort) of which there is an infinite supply. To build

4

more complex λ-expressions there are only two constructions: application and

abstraction.

The syntax of a λ-expression (following [Revesz, 1988]) is:

〈λ-expression〉 ::= 〈variable〉|〈abstraction〉|〈application〉 (1)

〈abstraction〉 ::= λ〈variable〉.〈λ-expression〉 (2)

〈application〉 ::= (〈λ-expression〉)〈λ-expression〉 (3)

Abstraction introduces a formal parameter 〈variable〉 (e.g., x) and turns a

given 〈λ-expression〉 into a unary function. For example, x is a λ-expression by

virtue of (1), and abstracting x via (2) yields λx.x which is the identity function

I, defined in usual notation as I(x) = x. The x after the dot in λx.x corresponds

to the body of the function (i.e., the right hand side in the defining equation

I(x) = x). In λx.x the λ preceding the x declares it as a formal parameter,

corresponding to the left hand side in the equation I(x) = x.

Of course, we could also abstract some other variable, say, y to get λy.x.

In an expression of the form λ〈variable〉.〈λ-expression〉 all occurrences of the

〈variable〉 in 〈λ-expression〉 are called “bound”. A variable that is not bound

is termed “free”. Names of bound variables don’t matter, and we identify ex-

pressions that differ only in the names of bound variables.

〈application〉 is intended to express the application of an operator (here

enclosed in parentheses) to an operand. There is no syntactical distinction

between operator and operand, both are arbitrary λ-expressions.

5

λ-calculus is meant to be a theory of the evaluation of functions. This is

achieved by defining a reduction relation between expressions that captures the

notion of “substitution”:

(λx.P)Q ⇒ [Q/x]P (4)

where P and Q are λ-expressions and x is a variable. [Q/x]P means the substi-

tution of Q for all occurrences of x in P . (We assume unique names for bound

variables, distinct from names of free variables.) The situation in equation (4)

corresponds to the substitution of the actual parameter Q for the formal pa-

rameter x in the body P of a function λx.P . The reduced form corresponds to

the result of the evaluation. For example, I(y) def== (λx.x)y ⇒ [y/x]x = y.

An expression that contains no (sub)-expression to which scheme (4) applies

is called a “normal form”, and the process of rewriting an expression into normal

form is a “normalization”. Not every expression does have a normal form.

One may encounter an infinite sequence of reductions, corresponding to a non-

terminating computation.

Everything computable can be defined with just the syntax (1-3) and the rule

(4). Recall, however, that there is no syntactical distinction between functions

and arguments. Natural numbers, for example, are functions too, and they can

be represented in a variety of ways. We will use the Church numerals here, and

henceforth refer to them simply as numerals:

0 def== λf.λx.x

6

1 def== λf.λx.(f)x

2 def== λf.λx.(f)(f)x

3 def== λf.λx.(f)(f)(f)x

In general, the numeral representing the number n iterates its first argument to

its second argument n times. In the following we use the short-hand notation

n def== λf.λx. (f) . . . (f)︸ ︷︷ ︸
n times

x
def== λf.λx.(f)n

x. (5)

Note that in (untyped) λ-calculus every expression can act via (4) as a map

sending any expression into some expression (that may or may not possess a

normal form). In recursion theory, however, the notion of function is a map

from non-negative integers to non-negative integers. Thus, only the behavior

of λ-expressions restricted to a representation of numbers (i.e., numerals) is

considered. In other words, arithmetic functions are λ-expressions whose re-

duced form is a numeral when they are applied to one (or several) numeral(s).

λ-expressions that are arithmetic functions don’t contain free variables. Such

expressions are termed “closed expressions”, also known as combinators.

As an example take the successor function, which increments its argument

by one: succ def== λn.λg.λy.((n)g)(g)y. Normalizing the application of succ to

the numeral 2 yields:

(succ)2 def== (λn.λg.λy.((n)g)(g)y︸ ︷︷ ︸
succ

)λf.λx.(f)(f)x︸ ︷︷ ︸
2

⇒

λg.λy.((λf.λx.(f)(f)x)g)(g)y ⇒

7

λg.λy.(λx.(g)(g)x)(g)y ⇒ λg.λy.(g)(g)(g)y ≡ 3.

A more detailed introduction of λ-calculus can be found, for example, in

[Revesz, 1988, Hankin, 1994, Barendregt, 1984].

3 Genetic programming in λ-calculus

In GP the task is to find a program with a prespecified behavior in a given

language. A fitness function is defined to grade the actual behavior of a program

with respect to the desired target behavior.

In the present case GP is not operating on conventional programs but on λ-

expressions1. Since we want to evolve arithmetic functions, we restrict the space

of λ-expressions to closed expressions, and we will use simple genetic operators

that preserve syntactical legality and closure.

GP starts with a population of randomly generated closed expressions. An

expression is chosen for reproduction with a probability proportional to its fit-

ness. The reproduction event produces either an exact copy, a mutant, or a

recombinant with another randomly chosen expression. Selection pressure re-

sults from constraining a population to a constant number of expressions: each

time an expression has been reproduced, another one, chosen randomly, is re-

moved.
1Genetic Programming originally operated on LISP programs which are basically λ-

expressions cast in user friendly syntax.

8

3.1 Mutation

According to the grammar (1-3), a mutation should naturally consist in intro-

ducing or removing the two expression constructors 〈abstraction〉 and 〈application〉.

Our mutation operators are inspired by [O’Reilly and Oppacher, 1994], and are

motivated by minimizing the syntactical change of a λ-expression upon mutation

while preserving closure of the expression.

An abstraction of a new variable can be inserted before any (sub-)expression.

Similarly, any unused abstraction (i.e., an abstraction that does not bind a vari-

able) can be deleted. For example, λx0.x0 and λx0.λx1.x0 can be transformed

into one another by insertion and deletion of λx1..

The insertion of an application requires two steps. First, a (sub-)expression

is chosen randomly and is determined (randomly) to become the operator or

the operand in the application to be created. Second, the missing operand

or operator expression has to be generated. This happens according to the

following scheme: let V be the set of variables that are bound at the point where

the missing expression has to be inserted. The missing expression is either a

randomly chosen variable in V or, if V = ∅, the identity function λx.x. For

example, λx0.x0 can be mutated into λx0.(x0)x0 or (λx0.x0)λx.x by insertion

of an application. Similarly, an application can be removed by erasing either the

operator or the operand expression, but only if the expression to be erased does

not contain an application (i.e., if it is of the form λx1.λx2. · · ·λxn.x, where x

may or may not be one of the xi) For example, λx0.(x0)λx1.x0 can be mutated

9

into λx0.x0 by deleting the underlined portion of an application.

To summarize, the most basic scheme allows deletions or insertions of the fol-

lowing underlined constructs in the context of any closed expression: (i) λ〈x〉.•,

where • stands for an expression, and 〈x〉 is a variable, (ii) (〈simple〉)•, and (iii)

(•)〈simple〉, where 〈simple〉 is the identity function or a bound variable2. These

moves are independent from one another. In our specific case we deviate from

the basic moves in two minor ways: we insert a λx.x only if there’s no bound

variable to insert (this minimizes syntactical change due to insertions), and we

also allow the deletion of compound expressions of the form λx1.λx2. · · ·λxn.x

(this speeds up things by bundling a number of primitive deletions).

Every combinator (closed expression) can be transformed into any other

combinator by a finite number of mutations: in the worst case first delete all

applications and abstractions of one combinator until λx.x is left, then proceed

by inserting abstractions and applications to yield the wanted combinator.

3.2 Crossover

Crossover of parse trees is usually the exchange of subtrees [Koza, 1992]. In

λ-expressions this would correspond to the exchange of sub-expressions. How-

ever, the exchange of arbitrary sub-expressions of combinators may lead to free

variables in the offspring expressions, thus violating conservation of closure.

Therefore, we allow only sub-expressions that are combinators to be chosen for

2The substitution of a bound variable by another is possible, but not realized here.

10

exchange. A combinator is an “encapsulated” unit whose action is independent

from the context it is in, and thus could be regarded as a “natural” building

block.

3.3 Selection

In a population of n λ-expressions an expression, expri, is chosen to reproduce

with probability

pr(expri) = f(expri)/
n∑

k=1

f(exprk) (6)

where f(expri) is the fitness of expri.

The offspring of a λ-expression is added to the population. To induce a

selection pressure, we maintain a constant population size by removing another

expression from the population [Moran, 1958]. We use two slightly different

schemes for removal The so-called non-elitist method chooses the expression to

be removed with an expression-independent probability

pd(expri) = 1/n. (7)

The so-called elitist method does the same, except that the λ-expression with

the currently best fitness is prevented from being removed.

11

3.4 Fitness function

Here we are interested in the behavior of a λ-expression expr when applied to

the representation of the number i, numerali:

(expr)numerali ⇒ resulti, (8)

where resulti is the resulting normal form expression.

The fitness function grades the expression’s behavior, resulti with respect to

the desired target behavior, targeti. This can be done only for a finite number

of (fitness) cases. The fitness function must assign some viability to expressions

that are not solutions. This poses a difficulty, as there are two ways in which a

λ-expression can “fail” when applied to a numeral: (i) resulti is a numeral, but

does not match the desired targeti, or (ii) resulti is not a numeral. In fact, case

(ii) is typical. A simple, problem-independent way to deal with this situation

is to reward a λ-expression to the extent that its actual resulti is syntactically

“close” to some numeral. We do by using a regular expression to find the biggest

numeral expression numi that is contained in resulti. Then we “punish” the

expression expr in proportion to the syntactical “junk” that resulti contains in

addition to the pattern numi (see below). Next we use the arithmetic difference

between the number represented by numi and the desired one represented by

targeti to assess how much the case i is satisfied. The fitness contributed by

12

the case i, case, is simply the product of these two factors. Specifically,

case(resulti, targeti) =
primitives(numi)

primitives(resulti)︸ ︷︷ ︸
syntactical distance

· 1
|numi − targeti| + ε︸ ︷︷ ︸

arithmetic distance

(9)

primitives(〈λ-expression〉) denotes the sum of the number of applications, ab-

stractions, and variable occurrences in 〈λ-expression〉. A numeral numi rep-

resenting the number k consists of two abstractions, k applications, and k + 1

occurrences of variables. Therefore, primitives(numi) = 2 · k + 3. A small con-

stant ε avoids division by zero when numi = targeti. The maximum fitness per

case is 1/ε, when resulti = numi = targeti. If the result contains no numeral

at all, the fitness case contributes nothing to the overall fitness. The overall

fitness for expression expr becomes:

f(expr) =
C∑

i=0

case(resulti, targeti) (10)

where C + 1 is the number of fitness cases and resulti is obtained according to

(8).

The functions (9) and (10) are applicable to any arithmetic target function,

i.e., pairs of natural numbers (i, targeti), i = 0, 1, The only aspect in which

the fitness function does more than that, is in keeping expressions viable that

are not functions mapping numerals to numerals, while inducing a selection

pressure towards arithmetic functions in general.

13

4 Example: predecessor function

As mentioned in the introduction, we chose the predecessor function as an ex-

ample for a λ-expression to be evolved by GP. The predecessor function has a

historical meaning in λ-calculus and seems to be difficult to find [Kleene, 1981].

Its behavior is defined as

pred(n) =

⎧⎪⎪⎨
⎪⎪⎩

n − 1 if n > 0

0 if n = 0

We look for a λ-expression that has the same behavior when applied to Church

numerals.

A simplified version of Kleene’s representation for the predecessor function

can be found in [Revesz, 1988]:

λx1.(((x1)λx2.λx3.((x3)λx4.λx5.(x4)(((x2)λx6.λx7.x6)x4)x5)(x2)λx8.λx9.x8)

λx10.((x10)λx11.λx12.x12)λx13.λx14.x14)λx15.λx16.x16

The trick of this expression (not easily intelligible when seeing it as it stands)

consists in introducing ordered pairs. Application of this expression to the

numeral n generates n + 1 ordered pairs iteratively, such that the zeroth pair is

[0, 0] and the i-th pair (0 < i ≤ n) is [i, i− 1]. It is easy to obtain [i + 1, i] from

[i, i − 1]. Finally, the second element of the pair [n, n − 1] is projected out as

the result of the predecessor function.

GP was able to find predecessor functions. Among almost 300 runs, four of

them were successful. Many more runs were successful, if the requirement was

14

dropped that pred(0) be 0. We will return to this point later.

One of the successful runs turned out 805 different predecessor functions

(in normal form) until it was stopped. All the ones we examined are based on

the same principle, which is different than Kleene’s. We will demonstrate this

principle on the shortest predecessor function found (most of them were much

longer, with the longest having 116 abstractions).

The expression reads:

λx1.((x1)λx2.((x2)λx3.x3)λx4.λx5.((x2)x4)(x4)x5︸ ︷︷ ︸
S

)λx6.(x1)λx7.λx8.λx9.x9︸ ︷︷ ︸
A

,

which we may write in abbreviated form as

pred def== λx1.((x1)S)A

Applying this expression to a numeral n, see (5), gives

(pred)n = (λx1.((x1)S)A)λf.λx.(f)n
x.

The first reduction step produces ((λf.λx.(f)n
x)S)An with An ≡ λx6.(λf.λx.(f)n

x)λx7.λx8.λx9.x9. Note that A depends on n. The next step gives (λx.(S)n
x)An,

yielding finally

(pred)n = (S)n
An.

When pred is applied to the numeral n, its subexpression S is iterated n times

on An. When n = 0, S is not applied to A0 ≡ λx6.(λf.λx.x)λx7.λx8.λx9.x9 at

all, and A0 normalizes to λx6.λx.x which is the Church numeral for 0 (modulo

names of bound variables). Therefore, (pred)0 = 0.

15

In the case of n > 0, An>0 ≡ λx6.(λf.λx.(f)n
x)λx7.λx8.λx9.x9, whose

normal form is A′ def== λx6.λx.λx8.λx9.x9 independently of n > 0. When

S is applied to A′ the result is the numeral representing 0. A similar analysis

(left to the reader) reveals that S, when applied to a Church numeral, acts

exactly like a successor function! The mechanism of this predecessor function is

quite elegant: it applies n > 0 times an expression S to an expression A′ that is

not a numeral. The first application is, therefore, not a successor action, but it

happens to return the numeral for zero. The next n−1 applications of S simply

increment zero to n − 1, yielding the predecessor of n:

(pred)n = (S)n
A′ = (S)...(S)︸ ︷︷ ︸

n times

A′ = (S)...(S)︸ ︷︷ ︸
n−1 times

(S)A′ = (S)...(S)︸ ︷︷ ︸
n−1 times

0 ≡ n − 1.

Throughout our experiments we used 9 fitness cases (numerals 0 to 8) to

test the arithmetic action of a candidate λ-expression, and to evaluate its fit-

ness. Fitness was computed as described above with ε = 0.1 (maximum fitness

is therefore 90). A population size of 1000 was used. Usually 105 to 2 · 105 ex-

pressions were generated during a run. Other parameters, such as the mutation

rate, were varied in different experiments. In the following we briefly compare

these settings.

5 Parameter settings

For each combination of parameter settings 9 runs were performed. This is

sufficient for a qualitative assessment, but obviously not for a statistical study.

16

We briefly summarize our findings.

1. Elitist vs. non-elitist selection. With non-elitist removal (Section 3.3)

the temporarily best expression will get lost sometimes. Under these conditions

GP never found a solution. In particular, the highest fitness score did either not

improve at all or only marginally, even when 1–5·106 expressions were generated

in the process. In almost all runs the best λ-expression present in the initial

population is λx1.λx2.λx3.x3. It corresponds to the constant function f(x) = 0,

and, thus, solves two fitness cases correctly, as well as returning numerals for the

others. During most runs better λ-expressions were generated, but they were

lost before they could proliferate sufficiently, despite their probability of being

chosen for reproduction (proportional to fitness) is higher than their probability

of being removed (independent of fitness).

2. Normal form. When a λ-expression is generated (either randomly at

the outset, or by mutation, or by crossover) it is usually not in normal form.

A λ-expression can be admitted to the population either “as it is”, or it can

be normalized. While nothing changes semantically (“phenotypically”) during

normalization (that is, both the original expression and its normal form com-

pute the same function), the effects of a genetic operation can be considerably

widened at the syntactical level. This in turn will affect future variation.

The populations whose expressions were in normal form performed slightly

better. An advantage of dealing with normal forms could be the enormous

17

reduction of the search space, because one is moving between equivalence classes

of expressions rather than individual expressions. This seems to outweigh the

loss of redundancy, which is thought to buffer the disruptive action of crossover

[Koza, 1992].

3. Number of λ-expression generated. After 105 λ-expression were gen-

erated the runs had usually converged, in the sense that no significant further

improvement in fitness occurred.

4. Mutation and crossover rates. Only four out of 300 runs found a

predecessor function. In one of these four runs the mutation rate was 0.01

and the crossover rate was 0.6 (i.e. 1% of the λ-expressions were generated

using mutation, 60% of the λ-expressions were generated using crossover the

remaining 39% were duplicated by copying). These rates correspond to those

used by Koza [Koza, 1992]. The other successful runs occurred with mutation

and crossover rates of 0.2 and 0.4, respectively, as well as 0.3 and 0.3, and

0.4 and 0.6. However, the other eight unsuccessful runs performed with these

same settings were not significantly better than most runs performed with other

settings.

Experiments with mutation and recombination rates varying from 0 to 0.4

and 0 to 0.8, respectively, were performed, using elitist selection, keeping the

expressions in normal form, and generating 2 ·105 λ-expressions. The only clear

conclusion from these experiments is that runs where either the mutation or the

18

crossover rate were zero performed significantly worse than runs were both were

operative.

These explorations confirm the well-known difficulty of determining “good”

parameter settings in Genetic Programming [Kinnear, 1994, p.14].

6 Discussion

With the exception of the four successful runs, almost none found an expression

that computed anything close to the predecessor function. In 56% of the runs

no expression was found that returned the correct value for at least three out of

the nine fitness cases. In only 6% of the runs an expression solved at least four

fitness cases. Why were most runs so unsuccessful?

1. Fitness proportional selection without scaling is problematic.

Early in a run most λ-expressions have a very low fitness and the few better

ones will quickly dominate the population, leading to premature convergence.

Later in the run the average fitness is close to the optimal fitness and fitness

proportionate selection degenerates to random selection [Goldberg, 1989]. This

may be counteracted by playing with scaled fitness or tournament selection

[Koza, 1992]. However, our point was not to fine-tune the system.

2. The requirement that pred(0) = 0. The nature of the natural numbers

requires that the predecessor of zero be zero. Our success rate would have been

more impressive without this requirement. Dropping it, resulted in 11% of the

19

runs finding a “predecessor” function, compared to the meager 1.3% that ended

with a genuine predecessor complying with pred(0) = 0.

The reason for this behavior is not that the “predecessor” functionality with-

out the zero case is so much simpler to realize. As a matter of fact, the distance

between a predecessor expression (with pred(0) = 0) and a “predecessor” (with

pred(0) = something) was at times just one mutation. GP had to generate only

a few hundred λ-expressions to find a correct predecessor function, when the

initial population was seeded with a “predecessor” failing on zero. The point is

that when pred(0) had to be zero, the constant function f(x) = 0 was a trap

(returning always a numeral and satisfying two fitness cases). The population

converged to one of the many realizations of this local maximum.

7 Concluding remarks

In this paper we have shown that an exceedingly simple version of GP is able

to find an elusive function like the predecessor function. Moreover, once a pre-

decessor function was found, hundreds of expressions with neutral functionality

were produced. The mapping from expressions to behaviors on numerals is in-

deed many-to-one, and seems to possess some clustered structure. It was an

interesting aside that the evolved predecessor function works with a different

mechanism than Kleene’s version. Yet both mechanisms make use of a succes-

sor function as a component. We have not systematically tried to evolve other

20

arithmetic functions, but we can report that GP was successful in finding, for

example, the addition operation. We emphasize once more that the GP com-

ponent used was minimal, implementing only the essential Darwinian scheme,

and that it was problem-independent in the restricted sense of being usable for

any arithmetic function. The example presented indicates that a computational

analysis of the “λ-calculus landscape” is feasible.

What would such an analysis be good for? The issue at the outset was to

understand what GP can do. GP’s power may derive not so much from the Dar-

winian search strategy, but rather from the medium in which it operates, i.e.,

the specific way in which functional action (“semantics”) is expressed by syn-

tactical structure in a programming language. What is “easy” for an unsugared

GP may simply reflect the characteristic properties and constraints of a syntax

and its operational semantics. A programming language is a device mapping a

space of symbolic expressions (here λ-expressions) into a space of possible be-

haviors (here recursive functions). The set of possible expressions or programs

is structured by a neighborhood relation. Two programs are neighbors if one

is transformed into the other by a single “basic” mutation reflecting the gram-

matical structure of the language. In λ-calculus, basic mutations are insertions

or deletions of the two term constructors “application” and “abstraction” (see

Section 3.1). The domain of an untyped λ-expression comprises the set of all

possible λ-expressions. Our interest, however, is restricted to the behavior on

numerals. On this portion of the domain many expressions will coincide in their

21

behavior; the mapping from λ-expressions to functions (on numerals) is many-

to-one. Call a behavior A “accessible” (in one step) from behavior B, if the

programs that realize A are typically neighbors of the programs that realize B.

From this viewpoint, understanding GP means understanding this “accessibility

relation”.

This raises a number of issues. Given a particular function, how “dense” in

program-space are the expressions realizing it? Is there a notion of a “frequently

realized” function, as opposed to a “rare” one? What characterizes the most

frequent ones? How are their programs distributed in program space? Are

programs with identical behavior accessible from one another by a few basic

mutations? Do they form networks on which a population could evolve neutrally

[Kimura, 1983], thereby exploring program space while not losing the currently

best function?

We bluntly take this perspective from a quite different case concerning spe-

cific biopolymers: RNA sequences (think genotypes) and their folding into struc-

tures (think phenotypes) which determine chemical behavior [Schuster et al., 1994].

In that context it was discovered (i) that there exists a well-defined notion of

“frequent” structure, (ii) that almost all frequent structures are realized within

a small (compared to sequence length) neighborhood of any random sequence,

(iii) and that sequences folding into the same structure form extended con-

nected networks that percolate through sequence space. The implications of

these findings for the evolutionary adaptation of populations of RNA molecules

22

are immediate [Huynen et al., 1996]: the process of adaptation by mutation and

selection is not suited for finding prespecified “rare” structures in a systematic

way. It will find, however, without great difficulty any prespecified “frequent”

structure, no matter where the process starts in sequence space.

Although nucleotide sequences and their folded structures are different ob-

jects than programs and their behaviors, the RNA example serves to illustrate

(in a biologically relevant case) that what the Darwinian process can charac-

teristically achieve is tightly constrained by the statistical regularities of the

genotype to phenotype mapping. By analogy, a starting point for a theoretical

analysis of what GP can do, may be provided by a similar statistical study of

a canonical functional landscape, the “λ-calculus landscape”. The advantage of

this landscape is its definitional transparency and the large body of mathemat-

ical theory available on λ-calculus.

References

[Abbott, 1993] Abbott, R. (1993). mailing list

genetic-programming@cs.stanford.edu.

[Angeline, 1993] Angeline, P. J. (1993). Evolutionary Algorithms and Emergent

Intelligence. PhD thesis, The Ohio State University.

[Barendregt, 1984] Barendregt, H. G. (1984). The Lambda Calculus: Its Syntax

and Semantics. Studies in Logic and the Foundations of Mathematics. North-

23

Holland, Amsterdam, second revised edition.

[Church, 1932] Church, A. (1932). A set of postulates for the foundation of

logic. Annals of Math., 2s. 33:346–366.

[Church, 1933] Church, A. (1933). A set of postulates for the foundation of

logic (second paper). Annals of Math., 2s. 34:839–864.

[Goldberg, 1989] Goldberg, D. E. (1989). Genetic Algorithms in Search, Opti-

mization, and Machine Learning. Addison-Wesley.

[Handley, 1994] Handley, S. G. (1994). The automatic generation of plans for a

mobile robot via genetic programming with automatically defined functions.

In Kinnear, K. E., editor, Advances in Genetic Programming. MIT Press,

Cambridge, MA.

[Hankin, 1994] Hankin, C. (1994). Lambda Calculi. A Guide for Computer Sci-

entists. Clarendon Press, Oxford.

[Huynen et al., 1996] Huynen, M., Stadler, P. F., and Fontana, W. (1996).

Smoothness within ruggedness: The role of neutrality in adaptation. Proc.

Natl. Acad. Sci. USA, 93:397–401.

[Jannink, 1994] Jannink, J. (1994). Cracking and co-evolving randomizers. In

Kinnear, K. E., editor, Advances in Genetic Programming. MIT Press, Cam-

bridge, MA.

24

[Kimura, 1983] Kimura, M. (1983). The Neutral Theory of Molecular Evolution.

Cambridge University Press, Cambridge.

[Kinnear, 1994] Kinnear, K. E., editor (1994). Advances in Genetic Program-

ming. MIT Press, Cambridge, MA.

[Kleene, 1981] Kleene, S. C. (1981). Origins of recursive function theory. Annals

of the History of Computing, 3(1):52 – 67.

[Koza, 1992] Koza, J. R. (1992). Genetic Programming. MIT Press, Cambridge,

MA.

[Moran, 1958] Moran, P. A. P. (1958). Random processes in genetics.

Proc.Camb.Phil.Soc., 54:60–71.

[O’Reilly and Oppacher, 1994] O’Reilly, U.-M. and Oppacher, F. (1994). Pro-

gram search with a hierarchical variable length representation: Genetic pro-

gramming, simulated annealing, hill climbing. In Davidor, Y., Schwefel, H.,

and Manner, R., editors, Parallel Problem Solving from Nature - PPSN III,

Int. Conf. on Evolutionary Computation, Jerusalem, Israel. Springer Verlag.

[Revesz, 1988] Revesz, G. E. (1988). Lambda-Calculus, Combinators, and Func-

tional Programming. Cambridge University Press.

[Reynolds, 1994] Reynolds, C. W. (1994). Evolution of obstacle avoidance be-

havior: Using noise to promote robust solutions. In Kinnear, K. E., editor,

Advances in Genetic Programming. MIT Press, Cambridge, MA.

25

[Schuster et al., 1994] Schuster, P., Fontana, W., Stadler, P. F., and Hofacker, I.

(1994). From sequences to shapes and back: A case study in RNA secondary

structures. Proc. Roy. Soc. (London) B, 255:279–284.

[Spencer, 1994] Spencer, G. (1994). Automatic generation of programs for

crawling and walking. In Kinnear, K. E., editor, Advances in Genetic Pro-

gramming. MIT Press, Cambridge, MA.

[Taylor, 1993]

Taylor, S. (1993). mailing list genetic-programming@cs.stanford.edu Message-

ID: <199309090140.AA04904@xedoc.xedoc.com.au>.

26

